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Abstract—In this paper, the Gaussian mixture model (GMM) is introduced to implement channel multipath clustering. The GMM

incorporates the covariance structure and the mean information of the channel multipaths, thus it can effectively reveal the similarity

of the channel multipaths. First, the expectation-maximization (EM) algorithm is utilized to search for the posterior estimation of the

GMM parameters. Then, the variational Bayesian (VB) algorithm is employed to optimize the GMM parameters to enhance the

searching ability of EM and further to determine the optimal number of Gaussian distributions without resorting to cross-validation.

Finally, a compact index (CI) is proposed to validate the clustering results reasonably. Thanks to the proposed CI, it is possible to find

a close relationship among the GMM clustering mechanism, the multipath propagation characteristics and the CI evaluation index.

Experiments with synthetic data and outdoor-to-indoor (O2I) channel data are presented to demonstrate the effectiveness of the

proposed method.

Index Terms—Gaussian mixture model, channel multipath clustering, variational Bayesian, K-means, expectation-maximization
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1 INTRODUCTION

THE channel model is of great importance in system sim-
ulations and technology evaluations for mobile commu-

nications. In fifth-generation (5G) mobile communication
systems, the geometry-based stochastic model (GBSM),
which is cluster based, is a popular model [1]. In the three-
dimensional (3D) multiple-input multiple-output (MIMO)
channel for 5G, the clustering parameters include the eleva-
tion angle and the azimuth angle [2]. A cluster indicates a
group of multipath components (MPCs) with similar
parameters [3], and the clustering can considerably simplify
the process of modeling. Therefore, a clustering method cor-
responding to the multipath propagation characteristics is
necessary.

Fig. 1 shows the clustering phenomenon of channel mul-
tipaths. The left side is the base station (BS), and the right

side is the mobile station (MS). Each circle with many dots
represents one scattering region causing one group of prop-
agation multipaths with similar properties, called a cluster
[4]. In 3D MIMO channels, a cluster of MPCs is defined as a
group of multipaths with similar parameters, including the
delay (t), azimuth angle of arrival (AOA), azimuth angle of
departure (AOD), elevation angle of departure (EOD), and
elevation angle of arrival (EOA) [2]. A clustering algorithm
corresponding to the propagation characteristics of the
channel multipaths will improve the model precision. Addi-
tionally, the clustering also has a significant impact on chan-
nel capacity. According to [5], the capacity of unclustered
models will be overestimated if the multipaths of the chan-
nels are truly clustered. Moreover, a cluster-nuclei-based
channel model method is proposed in [6], where clustering
is an important signal processing procedure.

A number of algorithms have been proposed for channel
multipath clustering, such as the visual inspection of mea-
surement data [7], which has shown that the difference
between the average tap angle spread (AS) and the cluster
AS decreases when the channel bandwidth decreases. There
are also many automatic clustering algorithms [3] such as
the clustering characteristics in [8], where a novel initializa-
tion is proposed. The elevation angle is considered in the
clustering with the 3D MIMO channels in [9], and a modi-
fied definition of the multiple component distance (MCD) is
introduced in [2]. For the above-mentioned clustering algo-
rithms, the K-means rule is employed to find the possible
clustering, and then, the Calinski-Harabasz (CH) index [10]
is utilized to evaluate the clustering results. The clustering
mechanism and the K-means evaluation index are all
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distance based. However, the distance alone cannot capture
the propagation characteristics of the channel multipaths.

We introduce a Gaussian mixture model (GMM) to
facilitate the clustering using more statistical characteris-
tics of the channel multipaths [11]. The GMM formed by
taking linear combinations of K basic Gaussian distribu-
tions and each of the Gaussian distributions in the GMM
is called a component, which has its own mean and
covariance. By using a sufficient number of Gaussian
distributions and adjusting the means, covariances and
coefficients, the GMM can approximate any continuous
density function very closely [12]. Utilizing the covari-
ance and mean information, the GMM can effectively
capture the inner relationship hidden in the dataset.
Because of its numerous advantages, the GMM has been
popular in various areas, including feature selection [13],
change detection [14], object detection [15] and classifica-
tion [16], [17], [18].

When attempting to find the maximum log-likelihood
or a posteriori estimation of the GMM parameters,
the expectation-maximization (EM) algorithm [19] is a
preferable choice among modern statistical signal proc-
essing approaches. It iterates between calculating the
log-likelihood expectation (E-step) and maximizing the
log-likelihood (M-step). However, one potential issue
with the EM algorithm is that the covariance matrices
can become singular. Moreover, to determine the optimal
number of components, the EM algorithm must resort to
cross-validation algorithms. Therefore, we turn to the
variational Bayesian (VB) inference algorithm [20]. The
VB-GMM cannot only determine the number of the com-
ponents automatically but also substantially reduce the
computational complexity of the EM-GMM.

The validity criteria in the K-means community are
mainly based on the distance, although this lacks suffi-
cient statistical characteristics to evaluate the clustering
results. The scattering property of the channel multipaths
obeys a Gaussian distribution, which is consistent with
the GMM clustering mechanism. Thus, the clusters
selected under the distance-based criteria may not reflect
the propagation properties of the channel multipaths.
Based on the above analysis, a compact index (CI) that
can be used to evaluate the clustering results based on
the means and variances is proposed. The CI can reveal
the inherent property of the multipath propagation and
provide an appropriate explanation of the clustering

results. Benefiting from the combination of the GMM
clustering mechanism, the multipath propagation mecha-
nism and the CI validation index, a better performance
is expected. In general, we find that the three compo-
nents are closely related, and they can be used together
to facilitate the clustering.

The contributions of our work are as follows:

� The GMM is introduced to the channel multipath
clustering to reveal the information hidden in the
channel.

� The EM algorithm is employed to optimize the GMM
parameters in the channel multipath clustering.

� The VB inference is employed to both enhance the
searching ability of EM and conveniently determine
the optimal number of components conveniently.

� Considering the mean and variance of the dataset,
the CI validation index is proposed, which can more
evaluate the clustering results reasonably.

� Benefiting from the proposed CI, we can find a close
relationship among the GMM clustering mechanism,
the multipath propagation characteristics and the CI
validation index. In other words, CI conformed to
the GMM clustering mechanism, and the preferable
clustering result can reflect the multipath propaga-
tion characteristics more effectively in the sense of
compactness.

The remainder of this article is organized as follows.
Section 2 briefly introduces the related work. In Section 3,
the GMM, the GMM optimization methods and the validity
index of the clustering results are presented. Synthetic and
outdoor-to-indoor (O2I) channel measurement data are
employed to demonstrate the advantage of the GMM in
Section 4. Finally, Section 5 concludes the paper with direc-
tions for future work.

Notation. Bold uppercase and lowercase letters are
used to represent matrices and vectors, and ð�ÞT denotes
the transpose of ð�Þ. trð�Þ denotes the trace of a matrix.
The upper-right corner marked with bracket represents
the ith assessment of the variable. In this paper, when
we use pð�; uuÞ, it is implied that uu are parameters and as
a function of uu, it is called the likelihood function. In
contrast, it is implied that uu are random variables when
we use pð� j uuÞ.

2 RELATED WORK

2.1 The K-Means Clustering Algorithm

In the channel, one of the most widely used clustering
algorithms is the K-means algorithm [3]. The K-means
algorithm finds K cluster centroids, and then, it iteratively
groups the multipaths such that the distance sum of
the respective multipath is minimized over all clusters. The
MCD, which denotes the similarity of the multipaths in the
delay and angular aspects, is generally adopted in K-means
algorithm. The total MCD between the ith (i ¼ 1; 2; . . . ; N)
and jth (j ¼ 1; 2; . . . ; N) multipath is given by

MCDij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCD2

Rx;ij þMCD2
Tx;ij þMCD2

t;ij

q
; (1)

Fig. 1. Multipath clustering phenomenon between the BS and MS.

224 IEEE TRANSACTIONS ON BIG DATA, VOL. 6, NO. 2, APRIL-JUNE 2020



where

MCDTx=Rx;ij ¼ 1

2

sin ui cosfi

sin ui sinfi

cosfi
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@
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A�

sin uj cosfj

sin uj sinfj

cosfj

0
@

1
A

������
������; (2)

MCDt;ij ¼
ti � tj
�� ��
Dtmax

� tstd

Dtmax
; (3)

tstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðti � �tÞ2
vuut ; (4)

where ui and fi are the azimuth and elevation of the ith
multipath, respectively, Dtmax is the maximum difference of
the delay, tstd is the standard deviation of the delay, ti is the
delay of the ith multipath; and �t is the mean value of the
delay. The operation procedure of the K-means clustering
[3] is illustrated in Table 1.

2.2 Validity Index of the Clustering

The K-means algorithm assigns a multipath to a certain
cluster according to the distance. Well reasoned, it validates
the results using the distance. There are many validity indi-
ces that use the distance, for instance, the CH index, the
Davies-Bouldin (DB) index, the Jaccard coefficient (JC), and
the Fowlkes and Mallows index (FMI) [10]. Generally, these
validity indices reach a uniform conclusion on evaluating
the solution. Here, we only analyze the CH index as an
example. The CH is defined as

CHðKÞ ¼ trðBBÞ=ðK � 1Þ
trðWWÞ=ðL�KÞ ; (5)

which corresponds to the ratio between the traces of the
between-cluster scatter matrix BB and the within-cluster scat-
ter matrix WW . A high CH value indicates a compact cluster-
ing result from the perspective of MCD. By means of the
MCD formula (1), trðBBÞ and trðWW Þ are given as

trðBBÞ ¼
XK
k¼1

Lk �MCD2ðcck;�ccÞ; (6)

trðWWÞ ¼
XK
k¼1

X
j2Ck

MCD2ðxxj; cckÞ; (7)

where Lk is the number of multipaths corresponding to the
kth cluster, cck is the kth cluster centroid, xjxj represents the
jth multipath, and

�cc ¼
PN

j¼1 Pj � xxjPN
j¼1 Pj

; (8)

whereN is the number of MPCs.
In the K-means algorithm, when determining the optimal

number of clusters, the algorithm has to operate on an
increasing number of clusters and choose the optimal com-
ponent K with cross-validation methods [9]. This can sub-
stantially increase the computational burden. In contrast,
for the CH validity index, the MCD alone may not effec-
tively reflect the similarity of the channel multipaths. More-
over, we prefer the clusters whose members are close to
each other with a small variance, which indicates the com-
pactness of the cluster [21]. We search for solutions in the
next section to overcome the above problem.

3 PROPOSED METHOD

3.1 The Gaussian Mixture Model

To implement the clustering with the mean and covari-
ance structure of the channel multipaths and further
determine the number of components without resorting
to cross-validation, we introduce the GMM [11]. The
GMM is a generative model that assumes that all the
data consist of several Gaussian distributions in varying
proportions. Moreover, the GMM is able to approximate
any given dataset with high accuracy and can be inter-
preted as a soft clustering community whereby each
multipath belongs to more than one cluster from the per-
spective of probability. Furthermore, it can be solved by
various algorithms. Therefore, the GMM has been widely
used in clustering.

A graphical model is illustrated in Fig. 2, where nodes
indicated by circles correspond to random variables and
nodes indicated by squares correspond to the parameters of
the model. Doubly circled nodes represent observed ran-
dom variables, while nodes with a single circled represent
hidden random variables. The hidden random variable Z
represents the component that has been selected to generate
an observed sample xx, i.e., to assign the observed value xx to
the observed random variable XX. The node distributions
can be expressed as below.

TABLE 1
Operation Procedure of the K-Means Clustering

Input data: The maximum iteration number rmax

and the pre-set number of clustersK.
Initiation: ObtainK initial cluster centroids
cc
ð0Þ
1 ; . . . ; cc

ð0Þ
K randomly.

Loop body:
1. Calculate the distances between the multipaths
and the cluster centroids as formula (1).
2. Assign each multipath component to the nearest cluster
centroid and store the label.

3. Recalculate the cluster centroids as

cc
ðrÞ
k ¼

P
j2cðrÞ

k

Pj�XXjP
j2cðrÞ

k

Pj
;where cc

ðrÞ
k is the kth

cluster centroid in the rth loop.

4. If cc
ðrÞ
k ¼ cc

ðr�1Þ
k for all k ¼ 1; . . . ;K, then exit

the loop; otherwise, r ¼ rþ 1.
Output: The label for each multipath component and
the cluster centroids.

Fig. 2. Graphical model for GMM.
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In the graphical model, the distributions of the nodes [23]
are

PrðZ ¼ kÞ ¼ pk; (9)

and

pðXX ¼ xxjZ ¼ kÞ ¼ pkðxxÞ ¼ Nðxx;mkmk;SkSkÞ; (10)

where pp are the mixing coefficients, Nðxx;mkmk;SkSkÞ is the
Gaussian probability density function, and mkmk and SkSk repre-
sent the mean and covariance matrix, respectively. The
detailed expression of the Gaussian probability density
function is as follows:

NðxxÞ ¼ expð� 1
2 ðxx� mmkÞTSS�1

k ðxx� mmkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞD detSkSk

q : (11)

Then, the joint probability density function (pdf) of XX
and Z is

pðXX;ZÞ ¼ pðXX jZÞpðZÞ: (12)

Then, we can obtain the marginal probability function

pðXX ¼ xxÞ ¼
XK
k¼1

pðXX ¼ xx jZ ¼ kÞpðZ ¼ kÞ

¼
XK
k¼1

pkpkðxxÞ;
(13)

where the density of the kth component is pkðxxÞ ¼ Nðxx;mkmk;
SkSkÞ, in which the pk are the weights (mixing coefficients),
k ¼ 1; 2; . . . ; K. Then,

pðxxÞ ¼
XK
k¼1

pkNðxx;mkmk;SkSkÞ: (14)

With the above distributions, we can compute the poste-
rior probability using the Bayes theorem [23] as follows:

pðk jxxÞ ¼ pðxx jZ ¼ kÞpðZ ¼ kÞ
pðxxÞ

¼ pkNðxx;mmk;SSkÞPK
‘¼1 p‘Nðxx;mm‘;SS‘Þ

:

(15)

The posterior, indicating which Gaussian distribution
each channel multipath had come from, is sometimes
referred to as the responsibility. By assigning each multi-
path xx to the component of the maximum posterior, we can
cluster the datasetXX intoK components.

Two optimization algorithms are introduced in the next
section to search for the parameters of the GMM.

3.2 Training the GMM

3.2.1 EM for GMM Training

By adjusting the means and covariances of the GMM, it is
expected to fit the channel multipaths well. To estimate the
parameters of the GMM, the maximum log-likelihood

function is solved by the EM algorithm, which is a numeri-
cally iterative algorithm [23]. The parameter set of the
model is QQ ¼ fpk;mkmk;SkSkgKk¼1, and the log-likelihood of the
dataset is as follows:

LðQQ;XXÞ ¼
XN
i¼1

log
XK
zðiÞ¼1

pðxxðiÞ j zðiÞ;mm;SSÞpðzðiÞ;ppÞ
0
@

1
A: (16)

The maximum likelihood estimation can therefore be
obtained from the posterior probability (16) and parameter
updating formulas (17), (18), (19), and (20) [23] as follows:

vv
ðiÞ
k ¼ pðxðiÞ j zðiÞ ¼ k;mm;SSÞ � pðzðiÞ ¼ k;pÞPK

‘¼1 pðxðiÞ j zðiÞ ¼ ‘;mm;SSÞ � pðzðiÞ ¼ ‘;pÞ ; (17)

pk ¼ 1

N

XN
i¼1

vv
ðiÞ
k ; (18)

mmk ¼
PN

i¼1 vv
ðiÞ
k xxðiÞPN

i¼1 vv
ðiÞ
k

; (19)

SSk ¼
PN

i¼1 vv
ðiÞ
k ðxxðiÞ � mmkÞðxxðiÞ � mmkÞTPN

i¼1 vv
ðiÞ
k

: (20)

For a detailed derivation of (17), (18), (19), and (20), refer
to [23]. The calculation of v

ðiÞ
kv
ðiÞ
k is generally referred to as the

E-step, which calculates the values of the hidden variable
zðiÞ

;
s. With exactly known zðiÞ

;
s, we can update the parame-

ters of our model in the M-step. The operation procedure of
the EM-GMM clustering is illustrated in Table 2.

However, one potential issue with the EM algorithm is
that the covariance matrix may become singular, i.e., a
Gaussian distribution responds for a single channel multi-
path, and its variance along some principal axis tends to
zero. Another drawback of the EM algorithm for GMM
training is that it must resort to cross-validation methods to
determine the optimal number of components. Considering
these aspects, Bayesian theory is introduced for training the
GMM.

TABLE 2
Operation Procedure of the EM-GMM Clustering

Input: The maximum iteration number rmax and
the multipath parameter matrixXX.
Initiation: Set the number of multipaths N , the dimen-
sionality of feature vectors d, and the mixturesK used
to generate data.

Loop body: 1. E-step: Calculate the posterior
probability vv

ðiÞ
k as formula (17).

2. M-step: Re-estimate the parameters using
data samples weighted by the posterior probabilities
as formulas (18)–(20).
3. If the maximum iteration number rmax or the
termination condition is reached, the iterations
are ceased; otherwise, r ¼ rþ 1.

Output: The parameter sets of each GMM component.
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3.2.2 Variational Bayesian for GMM Training

For convenience, we rewrite (14) as

pðxxÞ ¼
XK
k¼1

pkNðxx;mkmk; T kTkÞ: (21)

To provide a convenient expression, we use the precision
(inverse covariance) matrices TkTk rather than the covariance
matrices SkSk. By imposing conjugate priors on the parame-
ters of pp, mm and TT , the Bayesian GMM is obtained [22]. For a
more detailed description, the Dirichlet prior is used for pp
with parameters ak

Dirðpp ja1;a2; . . . ;aKÞ ¼
G
PK

k¼1 ak

� �
QK

k¼1 GðakÞ
�
YK
k¼1

p
aJ�1
k ; (22)

where GðxÞ is the Gamma function. Acting as parameters of
the Gamma function, the same parameter ak is chosen for
each of the components. The parameter ak can be inter-
preted as the effective prior number of observations associ-
ated with each component of the mixture. If ak is small,
then the posterior distribution will be influenced mainly by
the dataset rather than by the prior [22]. The Gaussian-
Wishart prior for ðmm; TT Þ is

pðmm; TT Þ ¼
YK
k¼1

pðmmk; TTkÞ ¼
YK
k¼1

pðmmk jTTkÞpðTTkÞ;

where pðmmk jTTkÞ ¼ Nðmmk;mm0;b0TTkÞ and pðTTkÞ is the Wishart
distribution

WðTTk j n; VV Þ

¼ jTTkjðn�d�1Þ=2exp trð� 1
2VV TTkÞ

� �
2vd=2pdðd�1Þ=4jVV j�n=2Qd

i¼1 Gððnþ 1� iÞ=2Þ
;

(23)

where n and VV denote the degrees of freedom and the scale
matrix, respectively. The Wishart distribution is the multi-
dimensional generalization of the Gamma distribution.
Because significant correlations may exist between datasets,
we use the Wishart prior to capture these correlations.

The graphical model is shown in Fig. 3. The VB-GMM is
obtained by imposing a Dirichlet prior distribution on pp

and a Gaussian-Wishart prior distribution on (mm; TT ). In
contrast to Fig. 2, with the introduction of conjunction

priors, the set h ¼ ðZ;pp;mm; TT Þ becomes random variables.
aa; hh; UU;mm, and bb serve as parameters that are specified in
advance. The posterior of pðh jxxÞ is not easily computed.
Thus, a variational inference of qðh jxxÞ based on the Bayes-
ian model is introduced.

A necessary calculation is conducted in [23], and the
result is as follows:

qðZÞ ¼
YN
n¼1

YK
k¼1

r
zkn
kn ; (24)

qðppÞ ¼ Dirðpp ja1;a2; . . . ;aKÞ; (25)

qðmm; TT Þ ¼
YK
k¼1

qðmkmk jTkTkÞqðTkTkÞ; (26)

qðmkmk jTkTkÞ ¼
YK
k¼1

Nðmkmk;mkmk;bkTkTkÞ; (27)

qðTT Þ ¼
YK
k¼1

W ðTkTk; hk; UkUkÞ; (28)

where hk and UkUk are parameters of the Wishart distribution
representing the degrees of freedom and scale matrix,
respectively. For details on the updating of the parameters,
refer to [22], [24].

Formula (24) corresponds to the E-step, and (25), (26),
(27), and (28) corresponds to the M-step. By performing sev-
eral iterations of the E-step and M-step, we can obtain the
best variational lower bound. Compared with EM-GMM,
VB-GMM does not allow for a singular solution. Another
advantage is that it is possible to determine the optimal
number of components directly using VB-GMM. According
to this variational methodology, an approximation to the
posterior of the hidden variables given the observations is
used. Based on this approximation, Bayesian inference is
possible by maximizing a lower bound of the likelihood
function [23]. This methodology allows for inference in
complex parameter models, providing significant improve-
ments compared with EM. Moreover, when the conditional
pdf of the hidden variables is unknown, the problem can
only be solved by the Bayesian method. The operation pro-
cedure of the VB-GMM clustering [23] is illustrated in
Table 3.

3.3 Novel Validity Index of the Clustering

In the K-means framework, we use the distance-based
validity indices to evaluate the clustering results. Neverthe-
less, one problem with the distance-based validity is that
the MCD distance lacks sufficient statistical characteristics,
and distance alone may not effectively reflect the similarity
of the channel multipaths. Moreover, we would also like to
search for clusters whose members are close to each other
with small variance [21]. Furthermore, it is expected that
the clustering results could correspond to the multipath
propagation property. Specifically, on the one hand, under
the GMM rule a Gaussian distribution is employed to fit the
multipaths. Thus, the multipath parameters in the same
cluster obey a Gaussian distribution. On the other hand,
the multipath diffusion characteristic obeys a Gaussian

Fig. 3. Graphical model for VB-GMM.
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distribution. Considering those aspects, we propose the CI,
which is described as follows:

CI ¼ trðBBÞ=ðK � 1Þ
trðWWÞ=ðL�KÞ �

XK
k¼1

SS2
k

 !�1

; (29)

S2
k ¼ 1

Lk

XLk

j¼1

ðxj � �xÞ2; (30)

where S2
kS
2
k is the variance of the kth cluster and �x is the mean

value of the multipaths in the kth cluster. We can easily find
that the former portion is the CH index. Then, both the
means and variances of the clusters are considered in the
CI. If a multipath has the same distance to two cluster cent-
roids at the same time, we choose the cluster centroid with
smaller variance under the CI, whereas it would cause con-
fusion under the CH. Contributing to the proposal of CI, we
can find a close relationship among the clustering mecha-
nism of GMM, the propagation characteristics of the chan-
nel multipaths and the CI validity index.

4 VALIDATION RESULTS

To compare the clustering algorithm between the GMM and
K-means techniques, a synthetic dataset and O2I channel
measurement data are employed.

4.1 Validation Based on Synthetic Datasets

Synthetic datasets are often employed to validate the cluster-
ing performance. In this experiment, we use four synthetic
datasets with different means and covariance matrices to ver-
ify the performance of the clustering algorithms. In the
2-dimensional space ðx; yÞT , 6,000 data points are generated

by four Gaussian distributions, with means ð�1; 1ÞT ,
ð1:6; 1:6ÞT , ð�1:6;�1:6ÞT and ð1;�1ÞT and 2-by-2 covariance

matrices ð0:3 0
0 0:3Þ, ð0:1 0:05

0:05 0:1Þ, ð0:2 0:1
0:1 0:2Þ and ð0:15 0:1

0:1 0:15Þ. The original

datasets are illustrated in Fig. 4, and the final clustering per-

formances of the two algorithms are illustrated in Fig. 5.
As shown in Fig. 5, the K-means technique obtains a cha-

otic clustering result, whereas the GMM clustering can
retrieve most of the primary dataset. The CI values are 2,586
for GMM and 1,798 for K-means. The simulation results
indicate that the K-means-based clustering may fall into
local optimal values with a high probability, leading to poor
clustering performance. Conversely, the GMM-based clus-
tering has a higher ability to discover distributions, patterns
and correlations in large datasets, which is necessary for the
channel multipath clustering.

TABLE 3
Operation Procedure of the VB-GMM Clustering

Input: The maximum iteration number rmax and the
multipath parameter matrix XX.
Initiation: Set the number of multipaths N , the dimensio-
nality of feature vectors d, and the prior parameters aa,
b;mm; n; VV .

Loop body: 1. E-step: Calculate the responsibility
of the expectation as formula (24).
2. M-step: Update the parameters as formulas
(25), (26), (27), and (28).
3. If the convergence condition is satisfied, the
iterations are ceased; otherwise, r ¼ rþ 1.

Output: The parameter sets of each VB component and the
number of components.

Fig. 4. Primary distribution for the synthetic datasets.

Fig. 5. Performance comparison of the two algorithms.
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4.2 Validation Based on the O2I Channel
Measurement Data

4.2.1 Measurement Scenario

In the measurement, the Elektrobit Prosound Sounder is uti-
lized to detect the channel information [25]. The basic
parameters are illustrated in Table 4. As shown in Fig. 6, at
the transmitting (Tx) side, a dual-polarized uniform planar
array (UPA) with 32 elements is used. A dual-polarized
omni-directional array (ODA) with 56 elements is employed
at the receiving (Rx) side. The layouts of the antenna arrays
at the Tx and Rx sides are illustrated in Figs. 6a and 6b,
respectively. The antenna parameters are shown in Table 5.

The measurement is conducted in the main building of
the Beijing University of Posts and Telecommunications
(BUPT). It is an O2I scenario where the Tx is fixed on a
lower building covered with plasterboard on the surface.
On the Rx side, the antenna array is fixed on a trolley at a
height of approximately 1.8 m. The measurement scenario
is shown in Fig. 7.

4.2.2 Parameter Settings

After some necessary signal pre-processing using the space-
alternating generalized expectation maximization (SAGE)
algorithm [26], we obtain 74 multipaths as the input of the
clustering. In the K-means-based, EM-GMM and VB-GMM
clustering algorithms, the dimension of the data is set to 5,

i.e., ðt;fRx;fTx; uRx; uTxÞ, where fRx, fTx, uRx, and uTx are
EOA, EOD, AOA, and AOD, respectively. In the EM and
VB algorithms, the input data are arranged in column vec-
tors as XX ¼ ðxx1; xx2; . . . ; xxNÞ, where xxj ¼ ðxj;1; xj;2; . . . ; xj;MÞT
denotes the data vector of the jth (j ¼ 1; 2; . . . ; N) multipath.
The diagonal covariance matrix is designated for the Gauss-
ian components.

4.2.3 Clustering Comparisons between EM-GMM and

K-Means

Clustering Comparison of EM-GMM and K-means under the CI
Index. In this section, we will compare the CI of the EM-
GMM and K-means-based clustering from 3 to 20 clusters.
A total of 30 Monte Carlo simulations are used. In the chan-
nel clustering area, a high CI value corresponds to a prefera-
ble clustering performance. The graph is illustrated in Fig. 8,
and the internal small block diagram is the enlargement of
the cluster from 3.5 to 4.5. As shown in Fig. 8, the CI values
of the EM-GMM clustering are mostly higher than those of
K-means. A conclusion can be drawn that the EM-GMM
clustering can obtain more favorable clusters with a large
mean-to-variance ratio. A large CI corresponds to a compact
clustering result, which conforms to the scattering proper-
ties of the channel multipaths. The clustering mechanism of
GMM is consistent with the propagation characteristics of
channel multipaths. Thus, the CI can select a favorable clus-
tering result.

Clustering Comparisons of EM-GMM and K-means in the
Visual Aspect. We choose 3 parameters with the largest vari-
ance, ðt;fRx;fTxÞ, for the visualization. Fig. 9 shows the

TABLE 4
Sounder Parameters

Parameters Values

Carrier Frequency [GHz] 3.5
Bandwidth [MHz] 50
Transmit Power [dBm] 37
Chip Frequency [MHz] 127
Code Length [ns] 40
Cycle Duration [ms] 9.28
Channel Sampling Rate [Hz] 26.983

Fig. 6. Layout of the measurement antenna.

TABLE 5
Antenna Parameters

UPA ODA

Number 32 56
Polarization Dual Dual
Space 0.5 wavelength 0.5 wavelength
Azimuth �70� � 70� �180� � 180�
Elevation �70� � 70� �55� � 90�

Fig. 7. Measurement scenario.

Fig. 8. CI values of different clusters in a snapshot.
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visualization comparison of EM and K-means in 6 clusters,
where the same cluster are colored the same.

As shown in Fig. 9a, the K-means-based technique
obtains chaotic clustering result, particularly among ð�1; 1Þ
in the AOA. The result cannot clearly reveal the inner

structural characteristics of the channel multipaths. Con-
versely, the EM-GMM clustering algorithm obtains clearer
and more compact clusters in Fig. 9b. From the visual
aspects, we find that the EM-GMM clustering algorithm can
obtain more favorable results.

4.2.4 Determining the Optimal Number of Components

Using VB-GMM

In the Bayesian setting, we marginalize all possible parame-
ters. The variational inference is solved by the EM algorithm,
which yields an iterative solution that guarantees an increase
in the dataset likelihood. However, EM is an optimization
algorithm that depends on the initialization [27]. Thus, if the
true posterior distribution is multimodal, variational inference
tends to approximate the distribution in the neighborhood of
one of the nodes and ignores the others [22]. A convenient
approach to select an optimal value for componentK is treat-
ing the mixing coefficients pp in formula (21) as parameters.
Then, the lower bound is maximized as a point estimation
with respect to pp. The re-estimation equation is then

pk ¼ 1

N

XN
n¼1

rnk: (31)

In VB-GMM, if some components drop into the same
area in the data-space, then there is a tendency that the
model will eliminate the redundant ones [23], i.e., setting
the mixing coefficients of the redundant components to
zeros. Therefore, we always initialize a model with a large
number of components and let competition eliminate the
redundant ones. In the simulation, the initialized compo-
nent is 15. An uninformative distribution obtained by
setting the parameters to small values is set in this paper,
i.e., a ¼ 10�6 and b ¼ 10�5. The degrees of freedom h are 6.
If ½Lðrþ 1Þ � LðrÞ�=LðrÞ < 10�8, then the iterations are
ceased, where L is the log-likelihood of the dataset and r is
the number of iterations. In this way, we find that the opti-
mal number of components is 6, and some of the parameters
are listed in Table 6.

The components that provide insufficient contributions
to the channel multipaths will make their mixing coeffi-
cients zero during the optimization. Therefore, the corre-
sponding components are removed from the model. This
method allows one to use a large K for the initiation. Subse-
quently, the surplus portion is pruned out from the model
automatically.

Although the EM-GMM can obtain more favorable
results than K-means, in Fig. 9b, the blue cluster occupies a
large scope in the AOA. In the O2I scenario, there are
numerous types of scatterers indoors, and the scattering
characteristics of the multipaths obey a Gaussian distribu-
tion, making the blue cluster unreasonable. Conversely,

Fig. 9. clustering result comparison of the three algorithms in visual
aspect.

TABLE 6
The Optimal Solution of the Bayesian Model

Component 1 2 3 4 5 6

p 0.122 0.014 0.135 0.103 0.479 0.148
y 15.030 7 16.003 13.585 41.437 16.945
a 9.040 1.010 10.013 7.595 35.447 10.955
b 9.040 1.010 10.013 7.595 35.447 10.955
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Fig. 9c shows that the phenomenon is largely alleviated.
Moreover, the clustering chaos in the red circle of Fig. 9b is
not found under VB-GMM. Furthermore, as the scattering
characteristics of the multipaths obey a Gaussian distribu-
tion, we expect that the clusters are ball-like as in Fig. 9c,
not bar-like as in Fig. 9b. The conclusion can be drawn that
VB-GMM can effectively capture the internal relationships
between the multipaths. Thus, it can obtain clustering result
in accordance with the O2I scenario.

The CI value in VB-GMM is 18.3, which is higher than the
value of 15 in EM-GMM. The log-likelihoods (the larger the
better) of the dataset for formula (16) are �592 for VB-GMM
and �1255 for EM-GMM. Overall, VB-GMM can not only
search for the optimal number of components but also
increase the fitting accuracy of the GMM to the channel
multipaths. We compare the CI values of the three algo-
rithms, and the clustering results are illustrated in Fig. 10.

As shown in Fig. 10, the VB-GMM clustering algorithm
obtains the maximumCI values among the three algorithms,
and the CI values of EM are higher than those of K-means. A
consistent conclusion can be drawn from the CI values and
the visualization, namely, VB-GMM can obtain the best clus-
tering results corresponding to the propagation property of
the channel.

5 CONCLUSIONS AND FUTURE WORK

We showed that the K-means clustering algorithm imple-
ments clusteringwith theMCD,which cannot reveal the hid-
den information effectively or correspond to the propagation
characteristics of the channel multipaths reasonably. To
effectively reveal the propagation characteristics of the chan-
nel multipaths, a GMM is introduced to fit the channel multi-
paths. Initially, the EM algorithm is utilized to search for the
posterior estimation of the GMM parameters, therein gener-
ating the EM-GMM clustering. Considering the mean and
variance of the multipaths in the clustering, the EM-GMM
clustering can obtain more favorable clustering results than
K-means. Then, VB is introduced to enhance the searching
ability of EM and further to directly determine the optimal
number of components. In addition, to select the results cor-
responding to the propagation characteristics of the channel
multipaths, the CI validation index is proposed. Benefiting
from the propossd CI, we can find strong relationships
among the multipath propagation characteristics, the GMM

clustering mechanism and the CI validation index. The
validation results illustrate that the VB-GMM clustering
method can not only obtain more reasonable results from a
quantitative aspect but also determine the optimal number
of components without resorting to cross-validation. In the
visualization, the VB-GMM clustering results reasonably
correspond to the multipath propagation characteristics in
the O2I scenario. With the clustering results of VB-GMM, we
have sufficient confidence to obtain a channel model with
high precision. We introduce the GMM to the 3D MIMO
channel in the O2I scenario, but it can also be extended to
massiveMIMO channel or other scenarios.

Some essential conditions for obtaining preferable results
are necessary in using the GMM. The GMM will fit the mul-
tipaths well under the condition that abundant multipaths
are used. Typically, the number of multipaths used in the
GMM needs to be larger than the number of model parame-
ters. When the dataset to be fitted is proportional datasets
or normalized histograms [28], the GMM doer not perform
well. Thus, neither EM-GMM nor VB-GMM can obtain
good preferable performances on proportional datasets or
normalized histograms. Because the three algorithms all
easily fall into local optima, a Monte Carlo simulation is
used in this paper. Moreover, the K-means and EM-GMM
clustering algorithms may lead to overfitting, which can be
avoided in teh VB-GMM clustering algorithm.
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