
Resting-State fMRI Functional Connectivity:
Big Data Preprocessing Pipelines
and Topological Data Analysis

Angkoon Phinyomark ,Member, IEEE, Esther Ib�a~nez-Marcelo , and Giovanni Petri

Abstract—Resting state functional magnetic resonance imaging (rfMRI) can be used to measure functional connectivity and then

identify brain networks and related brain disorders and diseases. To explore these complex networks, however, huge amounts of data

are necessary. Recent advances in neuroimaging technologies, and the unique methodological approach of rfMRI, have enabled us to

an era of Biomedical Big Data. The recent progress of big data sharing projects with their challenges are discussed. This increasing

amount of neuroimaging data has greatly increased the importance of developing preprocessing pipelines and advanced analytic

techniques, which are better at handling large-scale datasets. Before applying any analysis method on rfMRI data, several

preprocessing steps need to be applied to reduce all unwanted effects. Three alternative ways to get access to big preprocessed rfMRI

data are presented involving the minimal preprocessing pipelines. There are several commonly used methods to examine functional

connectivity. However, they become limited in the analysis of big data, and a new tool to explore such data is necessary. We propose a

number of novel methods rooted in algebraic topology and collectively referred to as Topological Data Analysis to rfMRI functional

connectivity. Their properties for big data analysis are also discussed.

Index Terms—Big data, brain network, functional connectivity, graph theory, preprocessing pipeline, resting-state fMRI,

topological data analysis
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1 INTRODUCTION

THE human brain is a complex network of functionally
and structurally interconnected regions. Although each

region has its own task and function, these different brain
regions continuously share information with each other and
then form a complex integrative network named the brain
network. To understand the organization of the human
brain, one can study the underlying connectivity of different
functional brain regions, or functional connectivity, as well
as physical or structural connectivity in the brain.

Functional connectivity is primarily explored and investi-
gated through resting state functional magnetic resonance
imaging (rfMRI or R-fMRI) and is typically analyzed in terms
of correlation or spatial grouping based on temporal similari-
ties [1]. These approaches are supported by the fact that dur-
ing rest, in the absence of any explicit task, the spontaneous
neuronal activity patterns of multiple brain regions observed
through changes in a blood-oxygen-level dependent (BOLD)
signal (or rfMRI time-series) are not random and unstruc-
tured, but, in contrast, are highly correlated. In other words,
functional connectivity can be explored by measuring the
level of synchronization of rfMRI time-series between
anatomically separated brain regions. These approaches

assume similar patterns of activation can reflect functional
and neuronal communication between brain regions regard-
less of the apparent physical connectedness of the regions.
Functional networks generated using these approaches are
also termed resting-state networks [2].

Since rfMRI relies on the assumption that spontaneous
low frequency BOLD fluctuations (0.01-0.1 Hz) are a mea-
sure of intrinsic activity in the brain, a group of researchers
have questioned whether the fluctuations observed during
the resting-state could be artifacts of other bodily functions
[3]. Although the true neuronal basis of these fluctuations
has not yet been fully understood, there are several sup-
ports for a possible neuronal basis of rfMRI. For instance,
most of the resting-state connected activities tends to occur
along structural networks in the brain [4] as well there is an
association between information derived from rfMRI and
from other measures of neuronal activity [5].

The first and the most fundamental resting-state network
is the so-called default mode network (DMN), first pre-
sented in a seminal rfMRI study of Biswal and colleagues
[4] and later confirmed by a series of studies (e.g., [6], [7]).
Unlike other brain networks that can be observed and iden-
tified by their activation during tasks, DMN is a group of
brain regions that is active during rest, in a baseline or
default mode of the brain, and deactivated during a variety
of cognitive tasks. These studies also suggest that brain
networks which activate or deactivate together during tasks
maintain their signature connectivity at rest. It means that
neuroscientists can study the known functional brain net-
works of both healthy and abnormal brain without the
use of specially designed tasks, which may be unable to be
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completed by young children or patients who cannot per-
form either complex cognitive tasks or long experiments.

Other advantages of employing rfMRI [8] include the sim-
plicity of the procedure, which may offer a better signal-to-
noise ratio (SNR), and its relatively short period of acquisi-
tion time, which allows for increased sample size or big data.
Unlike task-based imaging which typically extracts only one
feature brain network, rfMRI allows us to observe many
brain networks at once (or multi-purpose data sets [8]). With
rfMRI, functional connectivity can also be applied to exam-
ine several hypothesized and believed functional dysconnec-
tivity effects in brain disorders and diseases such as
Alzheimers disease, amyotrophic lateral sclerosis, attention
deficit hyperactivity disorder (ADHD), autism, epilepsy,
Parkinson’s disease, schizophrenia, multiple sclerosis, and
obsessive compulsive disorder (for a review, see [8], [9]).
This information will be useful for clinicians for prognosis,
diagnosis and treatments. Unfortunately, clinical applica-
tions of rfMRI are still at an early stage of development.

Although functional connectivity based on rfMRI can
reveal interesting new findings about the functional connec-
tions of brain regions and networks, huge amounts of data
are necessary to explore these complex networks. Recent
advances in neuroimaging technologies combined with the
unique methodological approach of rfMRI have enabled us
to an era of “Biomedical Big Data”. The 1000 Functional
Connectomes Project [10] and the Human Connectome Proj-
ect [11], both neuroimaging databases, for instance, have
publicly released over 1,000 rfMRI data sets. Here we pres-
ent the recent progress of existing shared rfMRI big data
sets (in Section 2). The increasing amount of shared neuro-
imaging datasets has greatly increased the importance of
developing data preprocessing pipelines and advanced ana-
lytic techniques, which are better at handling large-scale
rfMRI data.

Before applying any analytic technique on rfMRI data,
several preprocessing steps are required in order to: reduce
various artifacts, align the data acquired at different points
in time for an individual subject, establish some correspon-
dence between the brains of different subjects, and so on.
While it is acknowledged in the literature that different
methods and their order in the preprocessing pipelines can
affect the results obtained from statistical group difference
tests and classification models (e.g., [12], [13], [14], [15]),
most studies used their own specific pipeline and no con-
sensus across the studies has been found regarding the
optimal preprocessing pipeline. Here we present state-of-
the-art rfMRI preprocessing pipelines, with a focus on soft-
ware packages designed for large-scale rfMRI data analysis
(in Section 3).

After the rfMRI data has been preprocessed, there are
several commonly used methods for examining functional
connectivity such as seed-based correlation analysis (SCA),
cluster analysis, principal component analysis (PCA), inde-
pendent component analysis (ICA) and graph theory (for a
review, see [1], [16]). However, these traditional methods
encounter limits in terms of their descriptive power when
faced with complex, highly-dimensional datasets describing
interactions between large number of elements, as is often
the case in the analysis of big data. New tools to comple-
ment the exploration and analysis of such data sets are

necessary. Therefore, we lastly propose a set of novel meth-
ods, which are rooted in algebraic topology and collectively
referred to as “Topological Data Analysis” to rfMRI func-
tional connectivity and their properties for big data analysis
are also discussed (in Section 4).

2 BIG RFMRI DATA

Large shared rfMRI data sets are necessary to obtain new
insights and interesting findings in the large-scale organiza-
tion of complex cognitive operations in the human brain.
Besides the fact that some clinical and research questions
cannot be answered using a single small data set since each
sub-population may exhibit different features that are not
shared by others, larger samples are generally preferable in
order to compensate for the large inter-subject and intra-
subject variability typical in rfMRI recordings. There are
many advantages of big data sharing (or Big Value) such
as improving reliability and reproducibility of research
(i.e., increasing statistical power and reducing false-positive
rates), improving research practices, maximizing the contri-
bution of research subjects, backing up valuable data and
reducing the cost of research within the neuroimaging com-
munity [17].

Thanks to the unique methodological approach of rfMRI,
a long-standing interest in acquiring the large-scale func-
tional neuroimaging data sets has been increasingly fulfilled
over the last decade. Recent advances in neuroimaging tech-
nologies as well data storage, management and sharing sys-
tems also enable the unrestricted sharing and open access of
big neuroimaging data involving the projects with special
emphasis on rfMRI data: the 1000 Functional Connectomes
Project [10] and the Human Connectome Project [11]. The
recent progress of these two big data sharing projects is
focused and presented in this section.

2.1 The 1000 Functional Connectomes Project

The 1,000 Functional Connectomes Project (FCP) was
launched in 2009 by gathering rfMRI data from over 1,300
subjects collected independently at 33 international insti-
tutes and centers [10]. All datasets are fully accessible upon
successful registration at http://fcon_1000.projects.nitrc.
org. All datasets are anonymous and demographic informa-
tion provided is limited to age, gender and handedness. No
extensive data preprocessing has been performed for any of
the data sets. However, scripts for further preprocessing of
the data sets are provided as part of the project involving
motion correction, spatial filtering with 6 mm FWHM (full
width at half maximum) and 12 DOF (degrees of freedom)
affine transformation to MNI152 (the Montreal Neurological
Institute of McGill University Health Centre) stereotaxic
space [10].

To demonstrate the feasibility of pooled rfMRI data from
multiple sites, Biswal et al. [10] performed several func-
tional connectivity analyses using two commonly used
methods: SCA and ICA on 1,093 subjects from 24 sites. The
results show evidence of a universal functional architecture
(i.e., the consistent patterns of functional connectivity across
data collection sites) as well age- and sex-related differences
in rfMRI measures-based frequency-domain analysis. These
findings confirm the usefulness of the high-throughput
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rfMRI data. Consequently, data from this project have been
used as a common test bed to evaluate new methods pro-
posed in this field of research (e.g., [18], [19]).

This project served as the parent project for many large-
scale datasets under the International Neuroimaging Data-
Sharing Initiative (INDI) project1: for instance, the Autism
Brain Imaging Data Exchange (ABIDE)2 with 1,026 individ-
uals with autism spectrum disorder (ASD) and 1,130 typical
controls from 17 different sites [20], ADHD-2003 with 383
children and adolescents with ADHD and 491 controls from
8 multiple sites [21], and the Consortium for Reliability and
Reproducibility (CoRR)4 with 1,652 subjects [22]. The ongo-
ing phase of this project is to regularly release (e.g., weekly,
monthly, or quarterly) prospective rfMRI data sets5 such as
the enhanced Nathan Kline Institute-Rockland Sample
(NKI-RS)6 with a current total of 973 subjects [23].

All the FCP datasets are distributed using XNAT7, the
most widely-used imaging informatics platform developed
by the Neuroinformatics Research Group [24]. To support
cloud computing, the FCP data is recently available for
download from an Amazon Simple Storage Service (S3)
bucket8. Further, the data from both FCP and INDI was pre-
processed using different preprocessing pipelines and is
openly shared under the new project, namely, the Prepro-
cessed Connectomes Project. Unfortunately, several limita-
tions for the FCP have been acknowledged, for instance,
rfMRI data is pooled from previously collected data so there
is no prior coordination of data acquisition methods [10].

2.2 The Human Connectome Project

The Human Connectome Project (HCP) was launched in
2010 led by the WU-Minn HCP consortium [11], [25]. In the
first phase of this project, methods for data acquisition and
analysis were developed. The standardized imaging proto-
cols and preprocessing pipelines [26] were then applied in
the second phase when data was being acquired from a tar-
get number of 1,200 subjects at three different institutes. The
subjects being studied are healthy twins and their non-twin
siblings ages 22-35 from varying ethnic groups. All neuroim-
aging data and most of the behavioral data are accessible
upon successful registration at www.humanconnectome.
org. This neuroimaging data includes not only rfMRI but
also diffusion MRI (dMRI) with tractography analysis, task-
evoked fMRI (tfMRI) and magnetoencephalography (MEG).
Getting access to restricted data elements: family structure
(twin or non-twin status), age and handedness requires the
acceptance of the HCP Restricted Data Use Term.

The first subset of the whole target samples were
released on March, 2013. To date, HCP released the entire
data sets for 1,206 subjects for a total of more than 64 tera-
bytes via ConnectomeDB [27], a data management system
based on XNAT. Similar to FCP, the HCP data is also made
available on Amazon S3 to allow users to process and ana-
lyze the data directly through Amazon Web Services

(AWS), a cloud-based data processing. Instead of down-
loading all the datasets, one can also order the data on eight
8-terabyte hard drives (the so-called Connectome in a Box).
In addition, a set of software packages are provided as part
of the projects involving the HCP minimum preprocessing
pipeline scripts [26].

This project currently served as a baseline for many new
large-scale data sharing projects. The new projects are built
upon the HCP by using the same data acquisition and anal-
ysis. For example, the Developing Human Connectome
Project (dHCP)9 is a study of human brain connectivity
from 20 to 44 weeks post-conceptional age; the Baby
Connectome Project (BCP) for children from birth through
five years of age, the Lifespan Human Connectome Project
(L-HCP)10 for different age groups across the lifespan
(4-6, 8-9, 14-15, 25-35, 45-55, 66-75) [28]. In addition to
healthy subjects, more than ten projects are funded to study
connectomes related to human disease.

2.3 Challenges of Big rfMRI Data

Data gathered for the FCP and the HCP does exhibit several
big data quantities (V’s definitions [29]). Although the size
of rfMRI data is not as big as other forms of data (such as
genome sequencing data), these shared large-scale datasets
are big enough that a single computer cannot process them.
In other words, this rfMRI data does exhibit Big Volume.
Many methods for preprocessing rfMRI data and functional
connectivity have been designed when the data size is not
really big. These approaches thus have difficulty in han-
dling the large-scale data (e.g., PCA [30], [31]). Considering
the FCP and the HCP data has only recently been released,
and only few recent methods are able to handle large-scale
rfMRI data, research based on this data is considerably new.
Novel methods capable of analyzing such data should be
developed either by modifying traditional methods that
rely on parallel computing environment or by proposing
new methods that work naturally on a parallel computing
or a cloud computing environment.

Big Variety refers to the diversity of information within a
single big rfMRI dataset (intra-dataset variety) or the diver-
sity of multiple rfMRI datasets (inter-dataset variety). Big
Variety can also occur when rfMRI data is analyzed together
with other neuroimaging data and behavioral data. This is a
critical stage in Big Data research since it is widely acknowl-
edged that no single big data set should be considered to be
true, and thus cross-validation of several imaging modali-
ties is necessary. Thanks to the HCP, it involves multiple
imaging modalities (rfMRI, tfMRI, dMRI, MEG) allowing
investigators to apply multimodal data integration techni-
ques to improve the reliability and robustness of the results
[32]. Big data sharing projects that are focused primarily on
sharing of other MRI data types are the OpenfMRI project11

(which are focused primarily on sharing of tfMRI) and the
Open Access Series of Imaging Studies (OASIS) project12

(which has shared more than 500 subjects worth of struc-
tural MRI data). For the OpenfMRI project, the number of
currently available subjects across 63 datasets is 2,158.

1. http://fcon_1000.projects.nitrc.org/indi/IndiRetro.html
2. http://fcon_1000.projects.nitrc.org/indi/abide/
3. http://fcon_1000.projects.nitrc.org/indi/adhd200/
4. http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
5. http://fcon_1000.projects.nitrc.org/indi/IndiPro.html
6. http://fcon_1000.projects.nitrc.org/indi/enhanced/
7. www.xnat.org
8. https://aws.amazon.com/s3/

9. www.developingconnectome.org
10. http://lifespan.humanconnectome.org
11. https://openfmri.org
12. www.oasis-brains.org
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Furthermore, HCP also provide different types of prepro-
cessed fMRI data ranging from unprocessed NIfTI images,
minimally preprocessed NIfTI images, ICA denoised rfMRI
data to functional connectivity data. This increases the
degree of utility and flexibility to re-analyze the data for
investigators, as compared to coordinate-based data and
statistical maps (which typically included in most neuroim-
aging papers or are available through several data sharing
projects such as BrainMap,13 Neurosynth,14 SumsDB15 and
NeuroVault16).

Big Veracity refers to the noise, incomplete, inconsistent
or erroneous in data. Although big data is very useful in
detection correlations, especially subtle correlations, that
might be missed by analyzing smaller datasets, scientists
are likely to find many statistically significant correlations
every time looking on larger dataset and thus scientists
should be very aware of which correlations are meaningful.
This is due to the fact that in large-scale datasets, large devi-
ations are more attributable to variance (or noise) than to
real information (or signal). Specifically, non-neuronal fluc-
tuation in rfMRI data can increase the apparent functional
connectivity between brain regions (i.e., increasing an
opportunity to find spurious and/or fluke correlations) by
introducing spurious common variance across rfMRI time-
series. Data preprocessing is thus necessary and is a crucial
stage in Big Data research. Several preprocessing steps are
progressively becoming more accepted as standard in the
analysis of rfMRI data, although these advanced techniques
used in data preprocessing pipelines often dramatically
increase the computational burden. A new software suit
that is capable of preprocessing big data using advanced
analytic techniques should be developed. The reduction of
data is another crucial stage especially when dealing with
large-scale data sets with Big Veracity, that is, discriminat-
ing relevant and meaningful features using selection or
extraction methods from the whole set of features which
potentially contains irrelevant, redundant and noisy infor-
mation. These tasks can also be done using Topological
Data Analysis. This approach is not only reducing the effect
of negative elements but also reducing the amount of stor-
age space required.

Big Velocity could come from prospective rfMRI data in a
research setting. Big Velocity also occurs when data is com-
ing in and processing at higher speed such as a real-time
monitoring of a patient’s current condition in a clinical
setting [33].

3 BIG DATA PREPROCESSING PIPELINES

Before applying any rfMRI technique for investigating func-
tional connectivity, several data preprocessing steps need to
be performed to remove all unwanted effects in rfMRI data
and also increase the possibility of observing neural effects.
This large number of inter-connected preprocessing steps
collectively referred to as a pipeline (or workflow). So far
there is no agreement on what constitutes the optimal data
preprocessing pipeline nor how to select the best pipeline

given a specific intended application. Most studies use
their own specific pipeline, often defined by the
experimenters’ personal preference, or by the defaults of
the software package used. No consensus thus has been
found across the studies [12]. Further, it is widely acknowl-
edged that different versions of preprocessing pipelines
can affect the results obtained from statistical group differ-
ence tests and classification models [13]. Three important
characteristics that have been changed from one rfMRI
study to another study are: (1) which preprocessing steps
are applied; (2) in what order; and (3) their values of
parameters involved in certain steps. Due to the large
number of possible combinations, it is difficult to evaluate
all of them on big rfMRI datasets. There have been few sys-
tematic approaches assessing the effect of different prepro-
cessing pipelines applied in rfMRI methods to study
functional connectivity of the brain, particularly in large-
scale datasets [14], [15]. In this paper, we present three
alternative ways to access big preprocessed rfMRI data: (1)
the minimal preprocessing pipelines; (2) the Preprocessed
Connectomes Project; and (3) the software packages for big
rfMRI data. Each of which has its own advantages and dis-
advantages depending on the type of analysis.

3.1 Minimal Preprocessing Pipelines

Although the unprocessed NIfTI (Neuroimaging Informat-
ics Technology Initiative [34]) data is available through data
sharing projects, these projects anticipate that investigators
will prefer to use the preprocessed data obtained from the
minimal preprocessing pipelines developed by their team
members. The principal goal of the minimal preprocessing
pipelines is to provide rfMRI data with a minimum stan-
dard of data quality while the amount of information actu-
ally removed from the data is minimized. This minimally
preprocessed data could be used as the starting point for
any analysis. This is particularly advantageous for investi-
gators who lack sufficient computational resources to pre-
process large-scale datasets.

To obtain optimal results, however, it is important to
apply further preprocessing steps which are dependent on
the rfMRI methods used and/or characteristics of the data
acquisition (in case of applying these pipelines on their own
data). The notable minimal preprocessing pipelines are the
ones implemented in the data sharing projects like the HCP.
Since the HCP minimal preprocessing pipelines [26] are
specially designed to their own specific data acquisition
protocols, any study that would like to use the HCP mini-
mal preprocessing pipelines requires their minimum data
acquisition protocols. The interesting characteristic of the
HCP acquisition system is the use of the fast repetition time
(TR) sampling based multiband pulse sequences. Based on
this approach, all slices acquired in each volume are very
close together (as compared to typical fMRI acquisition sys-
tem) and thus it is not necessary (but still optional) to carry
out slice timing correction in the HCP pipelines.

Specifically, the HCP minimal preprocessing pipelines
for functional preprocessing pipelines consist of correction
of gradient-nonlinearity-induced distortion, realignment of
the time-series to correct for subject head motion, registra-
tion of the fMRI data to the structural data, reduction of the
bias field, normalization of the 4D image to a global mean,

13. www.brainmap.org
14. www.neurosynth.org
15. http://sumsdb.wustl.edu/
16. http://neurovault.org
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masking the data with the final brain mask, and the spatial
smoothing using a novel geodesic Gaussian surface smooth-
ing algorithm with 2 mm FWHM [26]. Preprocessing steps
that may remove significant amounts of information (e.g.,
temporal filtering, significant spatial filtering, nuisance sig-
nal regression, and movement scrubbing) are not included
in these pipelines. For instance, although high frequencies
have been commonly related to nuisance signals [35], some
studies suggest that there is important information con-
tained in high frequencies (0.1 to 0.5 Hz) [36]. Therefore, the
preprocessing steps that still remain a topic of debate are
generally excluded from the minimal preprocessing pipe-
lines. It is interesting that the HCP minimal preprocessing
pipelines include the field map distortion correction step
which in practice is often neglected instead.

For the FCP data, only three simple preprocessing steps
have been performed comprising of NIfTI format conver-
sion, uniform orientation placement and the first-5-time-
points removal. These few preprocessing steps may not be
sufficient to yield the minimum data quality standard, and
further preprocessing steps may be necessary. Further,
besides the minimal preprocessing pipelines implemented
in the data sharing projects, a few software packages pro-
vide the minimal preprocessing pipelines as an option, such
as SPM and C-PAC. Note that the full name of software
tools and packages can be found in Tables 1 and 2. The con-
tributions of these tools and packages have been presented
throughout this section. More details about their principles
as well as the pros and cons can be found in [37] and [38].

3.2 Preprocessed Connectomes Project

The principal goal of the Preprocessed Connectomes Project
(PCP)17 is to provide systematically preprocessed rfMRI
data from the FCP and the INDI databases using different
preprocessing pipelines. This is due to the fact that there is
no consensus on the best preprocessing pipelines in this
research field. Different preprocessing choices will allow
investigators to compare the results and consequently will
lead us to find the best preprocessing strategies later.
Another reason behinds this project is to broaden the
range of investigators who can access to the large-scale
rfMRI data. Each of which was implemented using the
chosen parameters and default settings of commonly used
preprocessing pipeline softwares. All the preprocessed
data is available on the Neuroimaging Informatics Tools
and Resources Clearinghouse (NITRC) and on the Ama-
zon S3 bucket.

It is interesting that the preprocessing steps implemented
by the different common software suits are quite similar

although the specific algorithms and their parameters used
in each of the steps may vary, as can be observed in Table 3.
This is due to the fact that most of them are developed by
integrating several common brain imaging tools for func-
tional and structural preprocessing together. A list of neuro-
imaging tools for general and wide-ranging purposes used
by the preprocessing pipeline and functional connectivity
software packages related to rfMRI analysis is presented in
Table 1. For instance, CCS [49] builds upon a set of three
main available tools: AFNI, FSL and FreeSurfer together
with in-house developed functions while C-PAC [50] is
developed by integrating many functions from three tools
including AFNI, FSL and ANTS. Likewise, a general pur-
pose software tool named SPM has been used as a basis for
building many software suits with more specific purposes
such as BrainVISA, CONN, cPPI, gPPI, SEM, SnPM, and
TDT (for more details, see Table 2).

The first preprocessed data in this project is from the
ADHD-200 data. This data was preprocessed by three differ-
ent pipelines: the Athena pipeline18 (using AFNI and FSL),
the NIAK pipeline19 (using NIAK on CBRAIN), and the
Burner pipeline20 (using SPM). The forthcoming release is
the preprocessed data using the CIVET pipeline21 [71].
It should be noted that the CBRAIN platform22 is a web-
based collaborative research platform that allows investiga-
tors to integrate large neuroimaging data resources, prepro-
cessing and analysis software tools as well as high-
performance distributed computing facilities togetherwithin
a controlled, secure environment [72]. Other datasets from
the FCP and the INDI databases have been added later
including the Beijing Enhanced Diffusion Tensor Imaging
dataset, the Neurofeedback Skull-stripped repository and
ABIDE. For the preprocessedABIDEdata, four different soft-
ware packages were used involving CCS, C-PAC, DPARSF
andNIAK. Besides the default settings used in each software
suit (Table 3), two preprocessing steps that still remain a
topic of debate, i.e., temporal filtering (0.01-0.1 Hz) and
global signal regression, were included and excluded, which
provide four different preprocessing strategies for each pipe-
line. Further, statistical derivatives (e.g., amplitude of
regional homogeneity (ReHo) [73], low frequency fluctua-
tions (ALFF) [74] and fractional ALFF (fALFF) [75]) were

TABLE 1
A List of Neuroimaging Software Tools for General Purposes

Software Full name Programming Languages Availability

AFNI [39] Analysis of Functional NeuroImages C https://afni.nimh.nih.gov/afni/
ANTs Advanced Normalization Tools C++ http://stnava.github.io/ANTs/
FreeSurfer [40] FreeSurfer C/C++/Shell https://surfer.nmr.mgh.harvard.edu
FSL [41] FMRIB Software Library C++/Shell https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
SPM [42] Statistical Parametric Mapping MATLAB/C www.fil.ion.ucl.ac.uk/spm/

17. http://preprocessed-connectomes-project.org

18. www.nitrc.org/plugins/mwiki/index.php/neurobureau:
AthenaPipeline

19. www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
NIAKPipeline

20. www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
BurnerPipelineg

21. www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
CIVETPipeline

22. www.cbrain.mcgill.ca
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also calculated from each of the preprocessing data sets
using the C-PAC software.

3.3 Software Packages for Big rfMRI Data

A number of requirements and features are necessary to be
offered by the pipeline softwares designed to handle large-
scale rfMRI data such as configurable, robust, reliable,
extendable and provenance tracking (e.g., [49], [66]). Cur-
rently, there are some progress toward parallelization for
the three major neuroimaging software tools: SPM, FSL and

AFNI. By performing them with an additional package
(such as Condor) or platform (such as OpenMP), some
functions can then be executed in parallel on several cen-
tral processing unit (CPU) cores or on several computers.
However in common neuroimaging tools (Table 1),
parameters may need to be manually set step-by-step and
subject-by-subject which will be time-consuming and not
suitable for big data analysis. Many preprocessing pipe-
line software suits then have been developed to provide
a user-friendly environment (Table 2). Unfortunately,

TABLE 2
A List of fMRI Preprocessing Pipeline and Functional Connectivity Software Packages

Software Full name Programming Languages Availability

BASCO [43] BetA-Series COrrelation MATLAB www.nitrc.org/projects/basco/
BCT [44] Brain Connectivity Toolbox MATLAB www.brain-connectivity-oolbox.net/
Biananes [45] Scalable fMRI Data Analysis Scala/C https://github.com/rboubela/biananes
BrainNet Viewer [46] BrainNet Viewer MATLAB www.nitrc.org/projects/bnv/
BrainVISA [47] BrainVISA Python/C++ http://brainvisa.info/web/index.html
BROCCOLI [48] Software for Fast fMRI Analysis on

Many-Core CPUs and GPUs
OpenCL/C++ https://github.com/wanderine/BROCCOLI/

CCS [49] Connectome Computation System MATLAB/Python/
R/Shell

https://github.com/zuoxinian/CCS

C-PAC [50] Configurable Pipeline for the Analysis
of Connectomes

Python https://fcp-indi.github.io

CONN [51] Functional Connectivity Toolbox MATLAB www.nitrc.org/projects/conn/
cPPI [52] Correlational Psychophysiological Interaction MATLAB www.nitrc.org/projects/cppi_toolbox/
DPABI [53] a toolbox for Data Processing and Analysis

for Brain Imaging
MATLAB http://rfmri.org/dpabi

DPARSF [54] Data Processing Assistant for Resting-State fMRI MATLAB http://rfmri.org/DPARSF
GAT [55] Graph Analysis Toolbox MATLAB www.nitrc.org/projects/gat/
GIFT [56] Group ICA Of fMRI Toolbox MATLAB http://mialab.mrn.org/software/gift/index.html
gPPI [57] Generalized Psychophysiological Interactions MATLAB www.nitrc.org/projects/gppi
GraphVar [58] A user-friendly toolbox for comprehensive graph

analyses of functional brain connectivity
MATLAB www.nitrc.org/projects/graphvar/

GRETNA [59] GRaph thEoreTical Network Analysis MATLAB www.nitrc.org/projects/gretna/
GTG [60] Graph Theory GLMMATLAB Toolbox MATLAB www.nitrc.org/projects/metalab_gtg/
NBS [61] Network-Based Statistic MATLAB www.nitrc.org/projects/nbs/
NIAK [62] Neuroimaging Analysis Kit MATLAB/Octave www.nitrc.org/projects/niak/
Nilearn [63] Machine learning for Neuro-Imaging in Python Python https://nilearn.github.io
Nipype [64] Neuroimaging in Python: Pipelines

and Interfaces
Python http://nipy.org/nipype

PRoNTo [65] Pattern Recognition for Neuroimaging Toolbox MATLAB/C++ www.mlnl.cs.ucl.ac.uk/pronto/index.html
PSOM [66] Pipeline System for Octave and MATLAB MATLAB/Octave http://psom.simexp-lab.org
PyMVPA [67] MultiVariate Pattern Analysis in Python Python www.pymvpa.org
REST [68] Resting-State fMRI Data Analysis Toolkit MATLAB http://restfmri.net
SEM Structural Equation Modelling MATLAB http://dslink333.dyndns.org/SEM.htm
SnPM [69] Statistical NonParametric Mapping MATLAB http://warwick.ac.uk/snpm
TDT [70] The Decoding Toolbox MATLAB https://sites.google.com/site/tdtdecodingtoolbox/

TABLE 3
Chosen Parameters and Default Settings of Four Different Functional Preprocessing Pipelines for the ABIDE Data

(PC: Principal Components, WM: White Matter, CSF: CerebroSpinal Fluid)

Preprocessing step CCS C-PAC DPARSF NIAK

Drop the first few volumes 4 0 4 0

Slice timing correction Yes Yes Yes No

Motion realignment Yes Yes Yes Yes

Intensity normalization 4D Global
mean to 10,000

4D Global
mean to 10,000

No Non-uniformity correction
using median volume

Nuisance signal regression
(Head motion)

Friston’s 24-parameter
motion signal

Friston’s 24-parameter
motion signal

Friston’s 24-parameter
motion signal

Scrubbing and the 1st PC of
6 parameters and their squares

Nuisance signal regression
(Tissue signals)

Mean WM and
CSF signals

The first 5 PCs from
WM and CSF signals

MeanWM and
CSF signals

MeanWM and CSF signals

Nuisance signal regression
(Low-frequency drifts)

Linear and
quadratic trends

Linear and
quadratic trends

Linear and
quadratic trends

Discrete cosine basis with a
0.01 Hz high-pass cut-off
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only few of them have been mainly designed to prepro-
cess and analyze big data.

Parallel computing capacity may be considered as the
most important feature which developers have paid atten-
tion to. In order to preprocess a total of 418 subjects from
the NKI-RS datasets, for example, the CCS pipeline took
approximately 15,000 CPU h in the Dell Blade Cluster Sys-
tem [49]. Thus pipelines that can execute jobs in parallel on
a multi-core machine or a supercomputer are needed, which
allow us to reduce the total time necessary to complete an
analysis. C-PAC and PSOM are two common big data proc-
essing software packages. These softwares link together
many functions from the common neuroimaging tools into
pipelines that can execute in a single run on high-perfor-
mance computing architectures, after a proper configura-
tion has been set. Bellec et al. [66] tested the performance of
the PSOM framework using the ADHD-200 datasets and
showed that we could reduce the processing time for 198
subjects (with a total data size of 7.7 gigabytes and 5,153
jobs included in the NIAK pipeline) from over a week down
to less than 3 h with 200 computing cores.

PSOM also offers other two important features that
allow us to handle with big data, i.e., fault tolerance and
smart updates. Specifically, PSOM will run each job for
multiple attempts before considering it as a failed job
while all the failed jobs can be automatically restarted
after the pipeline termination by the investigator. Fur-
thermore, if the restart of an analysis is needed, only the
parts of the pipeline that need to be reprocessed or
impacted by the changes will be executed which can be
detected automatically by the toolbox. These two fea-
tures are very useful particularly in the development
phase (e.g., selecting the optimal algorithms and parame-
ters of the pipeline) since the pipelines may be needed to
restart multiple times at several stages. However, this
framework does not focus on pipeline mapping and this
key feature is performed by interfacing PSOM pipelines
to another software tool with powerful pipeline mapping
capabilities such as CBRAIN instead.

Another group of interesting big data processing soft-
ware suits is the one designed to enable the advantages
of parallel computing with a special emphasis on using
inexpensive and powerful graphics processing units
(GPUs). BROCCOLI [48] is one of the softwares in this
group which is written in OpenCL (Open Computing
Language). This makes BROCCOLI able to run the analy-
sis in parallel. To test the parallelization efficiency of
BROCCOLI, Eklund et al. [48] have run several bench-
mark experiments on a number of open access fMRI data-
sets with three different hardware configurations (i.e., an
Intel CPU, an Nvidia GPU, and an AMD GPU). As com-
pared the results for non-linear spatial normalization as
an example with other three major neuroimaging tools,
BROCCOLI with an Nvidia GPU can run 525 times faster
than FSL and AFNI and 195 times faster than AFNI with
OpenMP [48]. The results clearly support that parallel
processing of the rfMRI data can lead to significantly
faster analysis pipelines, which is very important for big
data analysis. However, several limitations of this soft-
ware suit are acknowledged. For instance, BROCCOLI
does not provide a graphical user interface. Since this

software suit is implemented using OpenCL, it performs
best for Nvidia GPUs and thus code optimization for
other hardware platforms (e.g., Intel and AMD) is neces-
sary. Biananes [45] is another software in this group
which uses GPUs to compute the voxel-wise correlation/
connectivity matrix in the highest HCP resolution of all
in-brain voxels. This software also provides a distributed
file reader for 4D NIfTI fMRI data for use in an Apache
Spark environment. By using a scalable platform [45],
[76], [77], we can move data analysis and computational
tasks to cloud service providers, for example the AWS
cloud which can run the Spark Framework with the GPU
accelerated computation.

3.4 Challenges of Data Preprocessing Pipelines

The first two alternative approaches could be consecutively
used as the first and the second starting points for investiga-
tors who would like to perform functional connectivity
analyses on big rfMRI data but do not have enough suffi-
cient computational resources to acquire or preprocess
large-scale data, or those who prefer to focus on data analy-
sis rather than data acquisition and preprocessing. As previ-
ously mentioned the minimally preprocessed data provides
a minimum standard of data quality while greater amount
of information is still contained in the data. If further pre-
processing steps are necessary, preprocessed data from the
PCP that was prepared using the default chosen parameters
and settings of several common preprocessing software
suits would be a safe bet for further data analyses as they
would represent peer-reviewed accepted preprocessing
implementations. Investigators can choose one of the pipe-
lines that is appropriate to their application or even com-
pare the results across the different pipelines.

On the other hand, if investigators have enough resour-
ces to preprocess large-scale rfMRI data, they could use one
of the software packages designed for preprocessing large-
scale rfMRI data as discussed in the third alternative
approach. They could also consider to preprocess their own
data using the minimum preprocessing pipelines and/or
the default preprocessing pipelines from common software
packages as the starting points. However, several modifica-
tions and additional steps may be required to make the
pipeline more suitable to the challenge of unique character-
istics of specific rfMRI data and functional connectivity
analysis methods proposed. For example, the dHCP mini-
mal preprocessing pipelines which are developed based on
the HCP have modified several preprocessing steps in order
to preprocess the data with low and variable contrast and
high levels of head motion in neonate acquisition [78]. To
yield the valid and optimal results for specific application, a
comprehensive investigation of optimal preprocessing steps
and parameter values is necessary.

There are several specific areas in which the preprocess-
ing pipelines need to be improved, and novel methods will
continue to be developed. Since there is currently no solu-
tion to find the best preprocessing pipelines, data prepro-
cessing steps that are consensus across common software
pipelines and/or high-quality peer-reviewed research stud-
ies by using a systematic review and meta-analysis could be
one of the solutions. For instance, most recently, Caballero
and Reynolds [79] suggested some guidelines to choose the
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preprocessing steps and their order. Specifically, the prepro-
cessing pipeline could start by despiking the fMRI data and
then applying a block of operations involving physiological
noise correction, slice timing correction, volume registration
and correction of magnetic field distortions. The choice of
the order within this block is still controversial and they rec-
ommend to integrate these four operations into a unified
framework. Next, the alignment of the subject’s anatomical
image to the functional data could be performed. The final
steps consist of spatial smoothing, and the combination of
nuisance regression, temporal filtering and censoring. The
nuisance regressors can be defined either on anatomical
masks or by data decomposition techniques such as PCA,
kernel PCA and ICA. An additional advantage of data
driven approaches is that it can also reduce multiple noise
fluctuations simultaneously. However, it has been sug-
gested that for example spatial ICA cannot completely
separate physiological noise components. Denoising physi-
ological noise based on external recordings is necessary
prior to ICA decomposition. In future studies, more com-
prehensive investigations are still needed to determine bet-
ter evidence-based recommendations and best practices for
minimal and/or optimal preprocessing pipelines.

Further, as it is acknowledged that data preprocessing
pipelines can affect the final results obtained from statistical
group difference tests and classification models, and there
have been very few systematic studies investigating these
effects, a better understanding of whether andwhich prepro-
cessing steps and parameters affect the results derived from
any analysis method is warranted. This is also very impor-
tant to determine the best, or the optimal, preprocessing
pipelines. For example, Vergara et al. [14] evaluated the
effect of several preprocessing pipelines in the detection of
abnormal functional network connectivity and the classifica-
tion of patient and control using group ICA methods. Four
different pipelines were tested with special emphasis on the
effects of (1) the order of head motion correction: before or
after group ICA applied, and (2) temporal filtering to remove
relatively high frequency content. Both experimental and
simulation data was used. For real data, two different
cohorts were included in the study: one cohort is mild trau-
matic brain injury patients with controls and the other cohort
is smokers and non-smokers. The results of this study show
that data preprocessing pipeline can change the final results.
That is, if motion correction is applied before group ICA,
patient-control group differences are increased as well as
correlationwith behavioral assessments are stronger.

Andronache et al. [15] evaluated the effect of several pre-
processing pipelines in the detection of the DMN using the
SCA and ICA methods. Five different pipelines were tested
by adding several preprocessing steps (e.g., removal of co-
variance with movement parameters, band-pass filtering,
etc.) to the minimum preprocessing pipelines (i.e., realign-
ment, slice timing correction, normalization to MNI space,
and spatial smoothing). Only the real data was used in this
study including patients with disorders of consciousness
and their control counterparts. The results support the
study of Vergara et al. [14] that data preprocessing pipeline
can change the final results. The results of this study also
show that different functional connectivity methods (SCA
and ICA) are affected by data preprocessing pipelines

differently. Although the effect is reduced when extensive
preprocessing steps are applied, it may be due to the fact
that some meaningful variability in the data is removed and
the valid results are not obtained. The effect of preprocess-
ing pipelines on other commonly used or novel analysis
methods should be investigated in future studies.

4 RFMRI TECHNIQUES

Functional Magnetic Resonance provides complex signals to
study the highly variable and entangled activity of the brain.
Being able to parse it and extract meaningful information is
one of the great challenges of neuroimaging research. We can
broadly identify two main types of analysis: one focuses on
identifying functionally independent brain regions, or func-
tional subnetworks, usually associated to specific functions; a
second one focuses instead on the relational among the activi-
ties of sets of regions. Classic examples of the first approach
are decomposition techniques, like ICA and PCA which we
already mentioned in previous sections. Here we put our
focus on the second type. The most relevant examples are
techniques that produce simplified topological representation
(e.g., Mapper [80], [81]), graph-theoretic and network tools
amenable to statistical mechanical treatments [82], and finally
full fledged topological data analysis tools, in particular per-
sistent homology [83]. In the following, we briefly illustrate
themerits of each and their relevance for big data analysis.

4.1 Mapper Algorithms and Data-Driven Methods

Mapper, first introduced by Singh et al. [81], is one of themost
used topological tools (Table 4) for direct data exploration.
Its fundamentally new character, shared with persistent
homology, comes from its algebraic foundation: its recovers
the shape of topological spaces at the mesoscopic scale by
going beyond the standard measures defined on data points’
pair. Given a point cloud dataset, typically in high dimen-
sions, one begins by dividing the space into a set of over-
lapping slices. Within each of these a local clustering
algorithm is performed to partition the points in a set of
separate clusters. Since the slices are overlapping, there
will be common points between adjacent ones. One can
then build a topologically simplified skeleton of the origi-
nal dataset by joining together clusters that belong to
adjacent slices and that have non-empty intersection (i.e.,
that contain some of the same points across the two sli-
ces) [80]. This type of approach is guaranteed to preserve
the overall topology via the gluing of local clusterings.

Mapper lends itself to the analysis of very large datasets,
because the complete problem (e.g., the overall clustering
structure) is subdivided in any number of smaller local prob-
lems (i.e., the clusterings within slices), which can be run in
parallel and that are merged only at the final step. Moreover,
the local clusterings depend only on the distances between
the points in the slices, hence also high-dimensional data are
projected effectively down to a (typically small) distance
matrix. These properties make Mapper a very good tool for
the analysis of large-scale data as this approach can be natu-
rally performed in a framework of big data analysis such as
the Google’sMapReduce paradigm [98].

Despite the useful properties of Mapper, to our knowl-
edge only one recent study has leveraged it for the study of
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rfMRI data. Kyeong et al. [99] used the Mapper algorithm to
investigate the relationship between brain functional con-
nectivity and characteristics of ADHD (from the ADHD-200
datasets). Because ADHD is defined as a single disorder
without subtypes [100], thus the topological network
obtained from the Mapper algorithms is presented as a long
gradual progression. Although this study does not show
the clustering potential of the Mapper algorithm to identify
meaningful subtypes, the resulting topological network of
the Mapper algorithm can significantly distinguish patients
with ADHD from normal control subjects (P -value
< 0:0005). Moreover, the results obtained using the Mapper
algorithm should be the same either the rfMRI data was pre-
processed with or without scrubbing the time points that
showed large head motions since the values of the chosen
objective measure are almost the same (r ¼ 0:99). This study
supports the useful properties of the Mapper algorithms,
and warrants the potential of Mapper for future studies of
brain function connectivity and characteristics of many
brain disorders and diseases.

To discuss this in more details, standard clustering
approaches for rfMRI work by constructing a series of spa-
tially (or ICA-) coherent coarse-grained regions [1] that are
then thought as nodes for a similarity or correlation net-
work. However, Zuo and Xing [101] strongly recommend
voxel-wise analysis because the analysis of the signal aver-
aged from multiple voxel based on anatomical structure can
lead to difficulties in the reliability and interpretation of
derived results. The clustering of activity time-series
obtained during rfMRI is the direct and natural application
of the Mapper algorithm. Thanks to their scalability, Map-
per approaches would be able to address directly high-
resolution voxel-level datasets without the need for any pre-
liminary coarse-graining of the regions or resampling data to
a lower isotropic resolution andwould be able to yield a fully
functional representation. Thus we can use clustering-based
mapper algorithms instead of existing slower methods used

for rfMRI studies: hierarchical clustering [102], spectral clus-
tering, k-means clustering, or fuzzy clustering [103].

Further, clustering is considered as an exploratory data-
driven approach which is used to overcome the limitation
of model-based analyses (e.g., SCA, ReHo, ALFF and
fALFF). Despite serving similar purposes as other common
data-driven methods such as ICA and PCA, a comparison
between several different clustering and ICA methods in a
systematic fMRI study [104] showed that clustering outper-
forms ICA (i.e., the most frequency used method for rfMRI
studies [105]) for classification purposes. While the efficacy
of PCA is strongly dependent on assumptions of linearity,
normality, and high SNR of the rfMRI data, clustering-
based mapper algorithms are free from these assumptions
and have achieved to extract non-trivial qualitative informa-
tion from large-scale datasets (e.g., extracting a previously
unknown subtype of breast cancer with a unique mutational
profile and excellent survival [106]).

Note also that the output of Mapper depends critically on
the chosen slicing of the original dataset. In other words,
choosing the slicing defines what will be the interpretation
of the resulting network. This opens the door to combining
the full set of existing data-reduction and data-analysis
techniques with Mapper. For example, by using the projec-
tions of the dataset along main directions obtained by
(group) PCA, ICA, or similar decomposition techniques
[30], [31], [105], that is using information that is fully con-
tained within the dataset itself; it is however also possible to
augment this information by including in the slicing func-
tion meta-information about the subjects under study, mak-
ing this tool extremely versatile for both data exploration
and feature extraction in large complex datasets.

4.2 Graph Theory and Networks

Graph theory is the mathematics of networks which
describe pairwise relationships [107], as sets of nodes and
links, usually equipped with a weight. Networks, thanks to

TABLE 4
An Overview of Available Softwares for Mapper and Persistent Homology

Software Programming Languages Main Features Ref./URL

MapperTools Python Clean implementation, two-dimensional filters, easy access to
metadata.

[85]

PythonMapper R Clean implementation, ease of use, recently revamped [86]
Javaplex Java Persistent and zigzag homology, various filtrations available,

provides homology generators. Lims.: rather slow
and memory-taxing

[87]

Perseus C++ Based on Morse reductions, various filtrations available. Lims.: no
generators

[88], [89]

jHoles Java Fast preprocessing, weighted network homology. Lims.: single
application, not very versatile

[90], [91]

Dionysus Python/C++ Persistent and zigzag homology, vineyards, various filtrations
available, provides homology generators Lims.: sparsely
documented and compilation issues

[92]

Phat/Dipha C++ Fast, parallel implementation of simplicial and cubical homology.
Lims.: no generators

[93], [94]

Gudhi C++ Multi-field homology, various filtrations available. Lims.:
no generators

[95], [96]

Ripser C++ Fast computation of Vietoris Rips persistence barcodes. Lims.: no
generators

[97]

We provide here a minimal overview and a list of references to existing softwares for TDA, with a short description of the respective advantages and limits. We
refer to [84] for a thorough review including computational performances and scalings with dataset size relevant to big data analysis.
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their expressive power and simplicity, have become over
the last decade one of the most popular tools to describe
both the brain’s physical structure and its patterns of activ-
ity [108]. Indeed, via network representations it has been
possible to uncover a large set of properties of brain func-
tion that previously could hardly be described: among
others, for example, we now know that specific functional
subnetworks correspond to known cognitive and sensory
modalities [109], that the observed robustness of the brain
to lesions and perturbations is rooted in the combination of
small-worldness and strong local clustering coefficient dis-
played by real-world networks [110], or that information in
the brain is processed in tightly integrated modules and
then shared across longer distances via long-range links
[111]. Until recently, most of the research in functional net-
work however focused on small-size parcellations because
they provided anatomically interpretable descriptions and
also facilitated the computation of graph metrics, which can
often be rather cumbersome computationally. This trend is
changing however due to the combined effect of increased
computational power, optimised network analysis libraries
[112], [113] and accurate measurements. For example, the
first tools to analyze large-scale neural network data over
Spark architectures [114], as well as scalable techniques able
to process, analyze, correlate fMRI data at the full-voxel
matrix level [115], are being developed, allowing de facto
the scaling of network techniques to the scale of big data.
Despite their success, networks however can only describe
many-body interactions as the sum of pairwise interactions,
an assumption that is not always verified and that, in some
applications, can provide a biased representation of the sys-
tem under study.

4.3 Persistent Homology

One progressively more popular answer to the need to
describe higher-order interactions is given by another TDA
technique, persistent homology. It yields deeper, quantita-
tive information about the shape of a dataset than that
obtained through Mapper, and allows richer descriptions
than those provided by networks, at the cost of increased
interpretative complexity. Persistent homology works by
building a multi-scale summary of a whole dataset via a
series of progressively finer approximations, called filtra-
tion, of the relation between neighbourhoods of points. Fil-
tration is the key point in order to consider all possible
thresholds, avoiding one of the main cons in graph theory.
In addition, persistent homology is phrased in the language
of simplicial complexes that, by construction, describe
many-body interaction patterns and thus go beyond the net-
work description based on two-point interactions (i.e.,
edges defined on two points, simplices are generic sets of
points) [1]. For this reason, it has found wide application in
neuroscience with direct applications to the study of rfMRI
correlation networks for healthy [116], [117], [118] and
altered [119] or pathological [120] brain states, models of
spatial learning [121], [122], and dynamical functional con-
nectivity [123].

Indeed, even when starting directly from network data,
persistent homology is able to provide information that is
not easily–or sometimes at all–available from the standard
combinatoric or statistical mechanical point of view, e.g.,

topological distances defined via persistence diagram useful
in discriminating between brain network [124] and multi-
scale network descriptions, i.e., that do not require choosing
a threshold, of the functional network yielding discrimina-
tion power that was absent from a pure graph-theoretic per-
spective [119], [125].

Interestingly, once topological features are detected, sta-
tistical mechanical methods can give an important contribu-
tion to their interpretation, e.g., via projections to simpler
representation (e.g., scaffolds [116]), and the modeling of
what should be considered significant structure and what
noise, e.g., by constructing minimal topological random
null models [126], [127], [128].

One of the main limits for the application to large data-
sets is however that persistent homology can be computa-
tionally cumbersome if computed naively. However, recent
algorithmic advances have significant reduced its complex-
ity and parallel algorithms have become available (such as a
spectral sequence algorithm [129], a chunk algorithm [93],
[94] and a number of others (e.g., [130], [131], [132], [133])).
As a result, persistent homology can be now used to
approach very large, high-dimensional data sets, for exam-
ple fMRI data.

Furthermore, there have been recent advances inmethods
to compare the information obtained from persistent homol-
ogy across subjects and groups: the persistence landscape,
introduced by Bubenik et al. [134], allows the direct compari-
son of the persistence profiles of different subjects, while ker-
nelization techniques [135], [136] will allow to apply
machine-learning techniques to the persistent homology.

Persistent homology, while very promising, is still in its
infancy as a branch of data science. It provides a radically
new perspective on how we approach data and brings with
itself a new language grounded in algebraic topology. How-
ever, there are still open challenges in order to fully leverage
its potential in the study of large rfMRI datasets. The first
and most obvious one is the necessity to keep improving
the computational scalability of persistent homology. While
topological simplification via Mapper is cheap and scalable,
it also does not directly yield the quantitative output
that persistent homology provides. It is then paramount
to improve further on the existing implementations, in
particular in the direction of effective simplicial complex
reduction schemes preserving not only the topological
information at the global level, but also the actual localiza-
tion of homology classes [130]. A second challenge is lower-
ing the entry cost for practitioners coming from outside the
TDA community and seeking to apply these techniques to
their specific case studies. Although the required mathemat-
ical background is significant, having user-friendly and well
documented software packages dedicated to the fMRI anal-
ysis would already go a long way in this direction.

5 CONCLUSION

The era of “Biomedical Big Data” has arrived for the rfMRI
research, thanks to the unrestricted sharing and open access
of big neuroimaging data: the 1000 Functional Connectomes
Project and the Human Connectome Project. These large-
scale rfMRI data does exhibit the 5 V’s of Big Data: Volume,
Veracity, Variety, Velocity and Value. Thus, there is an
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urgent need to develop data preprocessing pipelines and
analyses methods for big rfMRI data.

For data preprocessing pipelines, three alternative
approaches to get access to big preprocessed rfMRI data
were presented. If investigators would like to perform anal-
yses on big rfMRI data but lack sufficient resources to
acquire or preprocess them, or prefer to focus on data analy-
sis rather than data acquisition and preprocessing, the first
two approaches: the minimal preprocessing pipelines and
the Preprocessed Connectomes Project are the good starting
points for their own analysis. If investigators have enough
resources to preprocess large-scale data, they can choose
one of the software suits designed for preprocessing big
data. However, a comprehensive investigation of the effects
of data preprocessing steps on the results obtained from
functional connectivity analyses as well as an extensive
development of the new preprocessing software packages
for large-scale data is highly necessary in future studies.

After rfMRI data has been preprocessed, there are several
methods commonly used in rfMRI studies to examine func-
tional connectivity such as SCA, PCA, ICA and clustering
methods. To enable these approaches to identify large-scale
brain networks, recently more sophisticated studies have
been performed. However, we still should consider some
limitations of the existing common methods, and a novel
method is essential for big rfMRI data analysis. We pro-
posed a technique called Topological Data Analysis to rs-
fMRI functional connectivity. Many TDA properties clearly
show the potential of different TDA methods to be used as
big rfMRI data analyses methods. Clinical applications of
rfMRI-based TDA should be explored in future studies.
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