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Ana Belén Rodriguez Gonzélez, Javier Burrieza-Galan, Juan José Vinagre Diaz, Inés Peirats de Castro,
Mark Richard Wilby, and Oliva G. Cantu-Ros

Abstract—In the last years we have seen several studies showing the potential of mobile network data to reconstruct activity and
mobility patterns of the population. These data sources allow continuous monitoring of the population with a higher degree of spatial
and temporal resolution and at a lower cost compared with traditional methods. However, for certain applications, the spatial resolution
of these data sources is still not enough since it typically provides a spatial resolution of hundreds of meters in urban areas and of few
kilometers in rural areas. In this work, we fill this gap by proposing a methodology that utilises GPS data from the usage of different
applications in mobile devices. This approach improves the spatial precision in the location of activities, previously identified with the

mobile network data.

Index Terms—Application usage data, travel demand models, mobile phone data, location of activities, big data analytics.

1 INTRODUCTION

ETAILED knowledge of human activity and in par-
Dticular of population’s distribution and dynamics is
key for public policy planning and services provision in
domains like transport, health and urban planning, among
others. Traditionally, the analysis of population’s distribu-
tion and mobility has been based on data from surveys
(e.g., census, travel surveys, etc.). This approach has the
disadvantage of being expensive, thus providing small
datasets and, in most cases, a static picture of the population
distribution.

Advances in information and communication technolo-
gies and data analysis techniques have opened new possi-
bilities for the study of population’s activity dynamics [1]
and for the detection of conflicts in urban areas [2]. In
the last ten years, we have seen different examples of
population’s activity-mobility analysis leveraging on geo-
graphically located big data sources. These enable the con-
tinuous collection of activity and mobility data with high
spatio-temporal resolution, opening the door to longitudinal
studies that monitor short and long-term changes in citi-
zens’ behaviour [3]. A variety of studies have demonstrated
the potential of: Bluetooth sensors for traffic monitoring
[4], [5], estimating presence at mass events [6], [7] and
analysing urban structure [8]; ticketing and smart card
data for monitoring mobility patterns in public transport
[9], [10] and estimating exposure to advertising [11]; mobile
crowdsensing for resilient parking search [12]; and mobile
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network data (MND) for analysing urban structure [13],
[14], [15], traffic and mobility monitoring [16], [17], [18],
monitoring urban dynamics [19] and estimating exposure to
pollutants [1], [20] among other examples of data sources
and applications.

From the mentioned data sources MND are particularly
interesting for the analysis of population’s dynamics thanks
to their large samples sets for most population segments
and their constant data generation along one or a sequence
of days [1], [20]. However, these data present some limi-
tations. Their spatial and temporal resolution is heteroge-
neous among areas and users and, in some cases, can be con-
sidered coarse for some types of analyses [21]. The temporal
resolution of the records depends on the frequency of use of
the mobile device; most users typically generate a register
every 15-20 min at least. On the other hand, the spatial
information depends on the network structure, defined by
the positions of the antennas. They are typically spaced from
dozens to hundreds of meters in urban environments, and
up to a few kilometers in rural areas, where the mobile
network is less dense. In most cases, it is assumed that
the device is connected to the closest antenna and, hence,
it can be located within its coverage area. This coverage
area corresponds to a complex geographical region, which
overlaps with adjacent regions by design. Consequently,
they are commonly approximated by Voronoi polygons for
simplicity, which result from dividing the space with a
tessellation of Voronoi, whose seeds are the antennas.

On the contrary, the spatial information obtained from
mobile apps is much more precise, since it corresponds to
GPS data [22]. However, this information provides small
sample sets and is discontinuous in time. GPS tracking
shows a high battery consumption and, consequently, apps
tend to use it only when they are active. For this reason, we
can find users with intermittent traces.

In this paper we propose and demonstrate a methodol-
ogy to refine the location of users performing an activity (ex-
tracted from MND), using mobile apps records as ancillary
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data. This methodology takes advantage of the strengths
found in each data source: the continuous longitudinal
information of large data sources and the detailed spatial-
temporal information of small sample sets, available for
specific moments of the day.

2 RELATED WORK

In this section we review previous research devoted to the
analysis of the population’s distribution from the analysis
of MND. More precisely, based on the analysis of mobile
phone records. Mobile phone records are produced every
time the mobile phone’s user interacts with the network.
These records contain information about the position and
the time at which the interaction took place.

Before proceeding with the review, it is important to
clarify a distinction between user location and activity lo-
cation. The user location refers to the position of the user
(specifically, the mobile device) at the moment the record
occurs, independently of whether the user is in transit or
performing an activity. We understand an activity as the
action that motivates the users” displacement. The activity
location refers to that position where the users are located
while performing an activity. The identification of activi-
ties requires a longitudinal processing these records. There
are different methodologies for identifying activities from
MND [23]. This section will concentrate on the location
estimation of both single registers or activities and will not
focus on the methodologies followed for activities” identifi-
cation.

The majority of studies that use MND to analyse pop-
ulation dynamics estimate the users’ position at a Voronoi
polygon level and, most commonly, in a subsequent step,
they assign the users in each polygon to one of the zones
of a predefined zoning system (e.g., census tracks, trans-
port zones, regular grids, etc.) that intersect the polygon.
Depending on the scope of the study it may be the case
that the spatial accuracy of the Voronoi polygon level may
be enough. [1] compare the dynamic population densities
obtained from call detail records (CDRs) from Portugal
and France with the dynamic densities obtained from the
census data applying a dasymetric model with ancillary
data from land use, OpenStreetMap-derived infrastructure,
satellite nightlights and slope among others. In this work,
the authors conclude that, even considering the Voronoi
polygons as the minimum spatial granularity, the results
obtained with CDRs are superior in accuracy compared with
those obtained with the dasymetric models applied to the
census.

Different methodologies are adopted when a higher,
than a Voronoi polygon, level of spatial accuracy or the
adoption of a specific zoning system is needed for the anal-
ysis. These may be based on distance, land use or densities
criteria. In [24], activity patterns were inferred from CDRs of
one million users in San Francisco (USA) based on hidden
Markov models. This work discriminates between primary
and secondary activities and assign them to Transportation
Analysis Zones (TAZs). In [25], a methodology is proposed
to generate origin-destination (OD) matrices using MND
from 2.87 million users in Dhaka (Bangladesh). Spatially,
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the OD matrices are determined from tower-to-tower transi-
tions in a certain time window and then associated to nodes
of the traffic network, by geographical proximity.

[17] reconstructed the activity-travel patterns of one
day of 10% of the population of the metropolitan area of
Barcelona (Spain) from MND of one month in autumn,
2019. In this work, the location of all activities, except for
Home activity, is randomly distributed inside the identified
Voronoi area. Residence location (home activity) is assigned
probabilistically to one of the census tracks intersecting
the Voronoi area identified as home. The probability to be
assigned to each track is a function of the socio-demographic
characteristics (age, gender) of the user and of the popula-
tion in the different intersecting census tracks. [19] studied
the population dynamics of Madrid (Spain) during a pre-
COVID-19, COVID-19 and post COVID-19 period based
on the longitudinal analysis of MND. In this work, the
assignation of activities from Voronoi polygon to the specific
zone was made using a probabilistic function based on land
use information and activity type (e.g., users performing a
work activity will have a higher probability to be assigned to
those zones inside the polygon with a predominant business
and offices land use). This required not only to identify
the different activities the user performs but also the type
of activity. The exploitation of land use data as ancillary
data to refine location of activities obtained from MND is a
commonly observed practice [23], [26].

Other works, estimate the users’ position applying tri-
angulation algorithms to consecutive records connected to
different antennas. This methodology tries to increase the
precision of the spatial location of the records. [27] analyzed
more than 8 billion mobile phone records of 2 million users
in Boston (USA), whose position was estimated by triangu-
lation, to identify users’ activities, incorporating surveys as
ancillary data. A location precision of 300 meters was stated
in this work. [28] also used mobile records which position
was approximated by triangulation to monitor mobility in
the state of Massachusetts (USA). In this work, no explicit
validation of location’s accuracy is presented. [11] analysed
data from CDR in Singapore registered on 5000 towers
for 14 days in March/April, 2011. In the study, mobility
patterns are extracted and types of activities are inferred,
with transport planning purposes. The activities” location is
estimated at area level.

To the best of our knowledge, none of the previous
works used GPS data from mobile apps in order to refine
the spatial accuracy of activities extracted from MND. On
the other hand, we can consider the work of Blasco et
al. [29] as a predecessor of the work we present here, given
that activity-mobility diaries extracted from mobile phone
data are enhanced with information coming from mobile
phone apps data for the detailed reconstruction of the users’
itinerary inside the Palma de Mallorca Airport (Spain).

3 DATA SETS

This study is based on the use of multiple big data sources.
Each data source provides partial information for the analy-
sis we want to perform. What we need to do is fuse the data
in a systematic and unbiased way. In this work, we will
concentrate on the integration of geographical information.
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Primarily from a geographical perspective, we use a
MND database, provided by one of the largest mobile net-
work operator in Spain, which serves as a basis to identify
activities. The geographical information is augmented using
a database of application usage on mobile devices, provided
by Pickwell, a company that records location and use on each
mobile device subscribed. It is important to note the relative
scales of these data sources. The MND data provides a mas-
sive sampling of users, whilst the Pickwell database, which
is much smaller, has a much more detailed representation of
the geographical distribution of users, albeit intermittently.

3.1 Mobile Network Data

These data consist of a set of anonymised mobile phone
records generated by the users in Madrid (Spain) in August,
2019. This data was obtained through a collaboration agree-
ment with one of the three main Mobile Network Operators
(MNOs) in Spain, with a market share of more than 20 %.
The homogeneous penetration of the MNO in virtually all
socioeconomic groups of the population, together with the
size of the sample set, grants a good representativeness of
the whole Spanish population.

The records include call detailed records (CDRs) pro-
duced every time the user interacts with the network, which
include making or receiving a call, a message or an Internet
data connection, as well as passive events coming from
network probes. Among other information, each record con-
tains an anonymised identifier of the user, a timestamp and
the ID of the cell or tower to which the device is connected
at that particular moment.

In addition to the CDRs, the data provided by the MNO
includes the position of the different cells. This produces
an indication of the geographical position of the user at
certain moments within the day. The records do not provide
the exact location of the users. Users could be located
anywhere inside the coverage area of the cell to which they
are connected.

Ancillary data of land use and census information is
used for the identification of activities performed in a single
day by the users of the network which have at least one
stay in Madrid the studied day. The ancillary data has the
following characteristics. Land use data was obtained from
the Directorate General for Cadastre in Spain. The databases
define the surface area m? of each type of land use. These
data are updated every 6 months and the data set we used
corresponds to the update of January 24, 2020. For exploita-
tion purposes, this data was discretised in the following
way: the Spanish territory was divided in a regular square
mesh (125 meters side). For each square, the predominant
land use is assigned to it. Census data for 2019 was obtained
from the National Institute of Statistics. This data has been
used as the sampling frame for expanding the sample of the
MNO customers.

3.2 App Usage Data

The Pickwell database contains 346 GB of information on
the use of more than 500 applications across all the corre-
sponding mobile devices. It was collected in Spain during
the month of August, 2019. In total, there are 1591 954 031
records, each of which consists of 16 fields. Among these,

Fig. 1. Voronoi polygons in Madrid’s metropolitan area.

the relevant ones for this study are: mobile device iden-
tifier, timestamp, and longitude and latitude coordinates.
2371218 devices were monitored during the study period.
Below, we show a typical record as an illustrative example:

id: 80352571-ca26-4685-bcd9-b48940d592a9
ts: 03/08/2019 09:49:15

lon: -3.8109977

lat: 40.358947

As it provides detailed information about the location of
the devices, it can be used as a model of the geographical
distribution of those devices. We consider that the devices
in this database and those in the MND set are typically the
same. In this respect, for each hour in the day, we have
studied the number of devices that show activity in the
MND set and app usage in the Pickwell database, obtaining
a correlation coefficient of 0.86. However, we do not have
information connecting specific devices between these two
databases.

3.3 Study Area

This study focuses on the metropolitan area of Madrid,
Spain (see Fig. 1). This region has a surface area of 904 km?
in which 787 Voronoi polygons are defined, representing the
mobile cell areas in the MNO network.

In this scenario, 42 097 627 activities were identified at
a Voronoi polygon level, and 114 527 692 application uses
are available to locate those activities inside the polygons,
which amount to 25 GB of the original database.

3.4 Ethical issues

The use of MND and location data from mobile apps in-
herently opens a set of ethical issues to be considered. For
this reason, the authors representing their corresponding
institutions signed an agreement that protects the users
data privacy and restricts the use of the data provided by
Pickwell to scientific research. Specifically, (i) the data set is
restricted to August 2019; and (ii) the data have only been
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used within this particular work and accessed by the re-
search team. In addition, MND data has been anonymized.
The activity registers contain no personal information and
cannot be tracked longitudinally; therefore, individuals can-
not be identified.

4 METHODOLOGY
4.1 Identification of Activities

The extraction of activity information from mobile phone
records followed previous works reported in [18], [19], [20].
This is summarised in the sequence of steps: i) Data pre-
processing and cleaning: filtering errors in the raw data
in order to ensure the quality of the results. ii) Sample
selection: selecting those users with such level of mobile
phone activity that makes it possible to reconstruct their
activity patterns in an accurate and reliable way; after this
selection phase, we are left with a sample set that repre-
sents approximately 15% of the population of Spain. iii)
Identification of activities, by the longitudinal analysis of
CDRs: we define an “activity” as an interaction or set of
interactions with the environment that takes place in the
same location and motivates an individual to move there;
and a “trip” as a sequence of one or more journeys (“stages”
or “legs”) between two consecutive activities. This way, a
trip has a main purpose determined by the activity at origin
and/or destination. Different criteria applied to the analysis
of several days are used to identify activities and distinguish
them from stops between two legs of a single trip based on
frequency of appearance, time of appearance and length of
stay in the observed locations. The information associated to
each activity includes its location, the start and end times,
and the type of activity: home, work, study, other frequent
activities and non-frequent activities. This classification is
based on the analysis of the user’s longitudinal behavioral
patterns during several weeks/months (e.g. the place of
residence of each user is identified as the place where the
user more often sleeps). iv) Activities location: once an
activity is extracted at an antenna level, a layer of land
use information is used to refine the estimation of the user
position inside the antenna coverage areas, approximated
by the Voronoi tessellation. Users are assigned to different
areas served by the same antenna through a probabilistic
method that takes into account the type of land use (resi-
dential, commercial, industrial, etc.) and the type of activity.
The assignment is made in two steps: first, the identified
activities are associated to one of the regular squares (125
meters side) intersecting the Voronoi polygon; second, an
actual longitude and latitude are assigned at random within
the square element. This method of assigning spatial loca-
tions will be enhanced by the algorithms we propose in this
paper. v) Expansion of the sample to the total population:
in order to extract meaningful indicators, the sample is
expanded to the total population of Spain. The expansion
factor is calculated at a district level as the ratio between the
number of residents of the district, according to the census
information, and the sample of users assigned to the given
district. vi) Finally, the sample is filtered once again to keep
only those users performing at least one activity in the study
region.

4.2 Location of Activities

We have developed a two-stage algorithm to merge the
statistically relevant geographical data with the imprecise
location definition of the CDR'’s. In the first step, algo-
rithm 1, we build a distribution function of the geographical
extent of users. In the second, algorithm 2, we use this
distribution function to assign a statistically likely detailed
position to each activity identified with the mobile phone
data.

The size and representativeness of the two data sets pro-
vide sufficient ground to reasonably affirm the existence of
correlations between them. This fact allows us to relate both
data sets and fuse them in order to generate a statistically
valid result for the location of activities.

Our starting point is the Pickwell data set, which takes
the form of a set of tuples (4, 7, t, . ..). Only the identifier, i,
the position, ' and the time, ¢, are important for this study.
The identifier ¢ is defined as the index i € I where [ is
the set of all devices and m; is a label associated with the
device i. The raw data, as always, has inconsistencies due to
incorrectly registered data and missing records, so we must
process them to eliminate these problems. In addition, as
outlined in Section 4.1, there are certain restrictions we need
to apply to the population distribution model. Specifically,
we need to restrict the model to users that confine them-
selves to a restricted region for the duration of the activity.

4.2.1 Filter Algorithm

To process the data, we define three separate filters that are
applied to the data once it has been partitioned into ordered
subsets. Each subset is defined by the time-ordered set of all
the records corresponding to identifier ¢. So for each device
1, we have the set of events for this particular device

Ei = {(m4, pe,te) | 0 < e < |&]} (1)

where |;] is the cardinality of the set and it is time ordered
by the constraint t(e) < ¢(e+1), Ve. This simply defines the
trajectory followed by the device.

We now apply the following set of filters to these subsets.

o minimum size filter: Eliminates small subsets.

o maximum speed filter: Eliminates physically unfeasible
movements.

o stationarity filter: Restricts the records to cases where
the device is reasonably stationary.

The minimum size filter imposes a minimum size to
subsets, |E;| > N; if the subset does not meet this criterion,
it is discarded.

As the set of events corresponds to the trajectory fol-
lowed by the device, we know that subsequent records must
correspond to geographical positions showing a physical
separation corresponding to some feasible velocity. Thus,
we define a maximum speed, V, to cover the straight line
separation between two subsequent records. If a new record
does not match this criterion, it is directly removed and the
next event is checked. If the result is valid, the algorithm
moves on to the next element in the list and is tested against
the next record. If, at any point, the condition |&;| < N is
met, the entire subset is removed.

The stationarity filter ensures we select only events
where devices are reasonably stationary, i.e., their motion
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is restricted to a few meters, for example, inside a work-
ing place or residence. The records are grouped into sub-
clusters, based on their location. Each sub-cluster is built by
starting with the next available record, and then checking
subsequent records in order. If the record’s coordinates lie
inside a bounding box defined by a maximum diagonal dis-
tance, D, it is added to the sub-cluster. Otherwise, the sub-
cluster is considered complete and the test value becomes
the starting point for the next sub-cluster. Any sub-cluster
with a size below N is removed from the data set. This
effectively eliminates points where the device is in transit.

For each subset &;, this processing results in a set of
time stamped locations, £/, which represent the population
distribution, satisfying our stationarity condition as well as
reflecting the real underlying population distribution. We
can reconstruct the entire data source by taking the union of
the filtered event sub sets, £’ = U; €.

As a whole, the procedure defines a 3-parameter algo-
rithm, whose pseudo-code is presented in Algorithm 1.

4.2.2 Allocation Algorithm

The second stage, algorithm 2, constructs a function, based
on &', that can generate a statistically accurate position
vector P, for a given activity identified in the CDR data,
given the Voronoi polygon and the corresponding time
window.

The CDR data segregates the study area into a group
of Voronoi polygons, each one denoted by v;, with j =
1,2,...,J, where J is the total number of polygons.

Let I'; represent the border of the polygon v;. We now
subdivide £’ into the time ordered sub sets of the Voronoi

polygon profile U;
Uj = {(mq, g, tq) | Py ST} @

where all symbols maintain their usual meaning and ¢ is
defined as an integer index in the range 0 < ¢ < |Uj]
and has the property t(¢) < t(q + 1), Vq. This effectively
associates all records that occur in the region I'; with the set
U;. The time ordering allows further subdivisions into time
windows. The union of the subsets reconstructs the original
set, so we have U = UjU; and &' =U

These subsets effectively define the population density
functional in the region I';. In theory, we would have to
discretize the space, calculate the density of measurements,
at each discrete point, then construct a functional approxi-
mation. Once we had a complete functional, we would then
need to invert it to be able to generate coordinates on de-
mand. Fortunately, this complexity is not necessary. We can
use the measurements themselves to generate approximate
coordinates on demand.

The subsets U; contain a collection of positions that quite
naturally form a distribution that matches the one we wish
to emulate. So, to generate a statistical significant coordinate
we just need to select one of the contained points at random
in an unbiased way. Consequently, the next step is to define
this selection process.

We define two position selection processes: (1) Random
position, which randomly selects one position among the
total set of locations. (2) Random device, which randomly
selects a device among the total set of devices.

Algorithm 1 Filter algorithm

Input:
E: raw app usage data
N': minimum number of records per location
V' instantaneous speed threshold
D: diagonal distance threshold
Output:
E&': cleaned app usage data

1: procedure FILTER( E, N,V, D)

2 &+ o

3 foreach &; € £ do

4: W@ > speed filter
5: Z+— O

6 K; ‘(‘%l

7 if K; < N then

8 continue

9: else

10: W {(mi,ﬁl,tl)}

11: W« |W|

12: fork =2to K, step 1 do

13: 6 = pk — pw |

14: T=1tr —tw

15: v=2

16: if v <V then

17: W — WU {(mi, pr, tr)}
18: W« W]

19: end if
20: end for

For simplicity, let us denote here:
W= {<miaﬁwvtw) | 0<w< W}/
Way = {(mi, P, tw) | # < w <y}, and
A, , being the diagonal distance of the minimum
bounding box that contains all the coordinates of

the set W, .
21: Z+— 0 D> stationarity filter
22: a<+1
23: b+ 1
24: forw =2 to W step 1 do
25: if Ay <D then
26: b+ w
27 else
28: if [Wyp| > N then
29: Z—ZUWap
30: end if
31: a<—w
32: b+ w
33: end if
34: end for
35: if [W,| > N then
36: Z4—=ZUWqp
37 end if
38: end if
39: E«E&uz
40: end for
41: return £’

42: end procedure
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Fig. 2. Example of app usage records removed by the filter algorithm.

The activity data taken from the CDR'’s creates a set A
of records of the form (v;,a,,t!,tf'), where z is an index
between 0 < z < |A|, a, is the activity type, and ¢! and t¥'
are the start and end times of the activity, respectively. This

quite naturally forms a collection of subsets
Ay = {00zt t8) [0 < 2 < 4]} ©)

each subset containing all the activities in a given Voronoi
polygon, v;. Again it can be time ordered by imposing the
condition t{ < ¢!, V2.

Now, to assign a location to the activities, we take a
specific activity (vj,a,t.,tI’), then create the subset H
from U; by taking only the events that fall within the time
window [t1,tE]. If H = 0, it is replaced by the Voronoi
polygon profile (set of records associated with each Vononoi
polygon in the application usage database). Either position
selection algorithms can be used to assign a position to the
activity record.

The pseudo-code for the allocation algorithm is pre-
sented in Algorithm 2.

5 RESULTS

In this section, we show some illustrative results of the
performance of the developed algorithms.

5.1

First, some results are shown at the individual level; subse-
quently, global results are included.

The device with identifier:
eb40a292-764b-40b7-ae62-cb1d100dce84,
generated 264 records on 08/01/2019, in approximately half
an hour (between 05:40:07 and 06:05:13). The spatial location
of those records is shown in Fig. 2. Clearly, the device is
moving and, after applying the filtering algorithm, there is
no record associated with that device on that day in the

clean database.

At the other end, the device:
6fbf0£f24-cae5-49ef-9bb2-0dce3a008048,
generated 257 records on 08/01/2019, in slightly less than
40 minutes (between 14:48:51 and 15:26:06). All those
records share the same longitude and latitude coordi-
nates (—3.7047205, 40.3786122) and are kept in the clean

database, once the filtering algorithm is applied.
Globally, we can explore the records associated with all
devices for a full day, and compare the locations before and

Filter Algorithm

Algorithm 2 Allocation algorithm

Input:
U: cleaned app usage data
A: not located activity data
: allocation method
Output:
A': located activity data

1: procedure ALLOCATE(U, A, 1))

2 Ao

3 for j =1to J step 1 do > each polygon
4: for z = 1to Z; step 1 do © each activity in polygon
5 M {uy(q) € Uy | t1(2) < t(a) < tr(2))

6: if H = @ then

7 H <+ U B> replace by profile
8 end if

Let us denote here:

H={h(s)]|0<s<S}

with h(s) = (m(s), ps,ts) and S = [H]
Selecting only one usage per device (the first), let us
denote:

Hu = {hu(r)[0<r<R
with hy(r) = (m(r

) *( ) ( )) and R = [Hy|
and m(r) # m(r’) Vr,
9: switch ¢ do
10: case “random record”
11: s* < randi(9)"
12: A AU {(vj,a., tLtE, p(s*)}
> where p(s*) C h(s) € H
13: end case
14: case "random device”
15: r* < randi(R)"
16: A’ <—A’U{(vj,az,ti,tf,ﬁ(r*))}
> where p(r*) C hy(r) € Hy
17 end case
18: end switch
19: end for

20: end for
21:  return A’
22: end procedure

t randi(X) denotes a random integer between 1 and X.

after applying the filtering algorithm. We will use as an
example the day 08/05/2019. That day, 4296 798 records
appear in the original database, of which 2 632 268 (61.26%)
remain in the clean database. Both cases are drawn in Fig. 3.
As we can observe, the majority of records are located
on roads, clearly shown in Fig. 3a, correspond to moving
devices. Once filtered, those records are no longer found in
the database, Fig. 3b.

5.1.1 Allocation Algorithm

The results of the allocation algorithm are illustrated with
several examples. In Fig. 4, we show the location of activities
in a certain Voronoi polygon. As a gold standard to compare
against, in Fig. 4a activities are located considering land
use data, which is the approach used [19] in the absence
of any other data source. In this case, the assignment of
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(a) Raw app usage data.

(b) Cleaned app usage data.

Fig. 3. App usages recorded on 05/08/2019: (a) before and (b) after applying the filter algorithm.

specific coordinates (longitude and latitude) to each activity
detected by the mobile phone base station uses the following
weighted algorithm: the Voronoi polygon associated to the
base station is divided into squares of 125 meters. An a
priory weight for each type of use is assigned to each square.
In reality, activities tend to be located in regions associated
with the highest intensity of that type of activity, for exam-
ple residential, commercial, industrial, etc. The assignment
is then made in two steps: first, a square element of 125
meters is selected at random based on the weight value
from the associated activity. Second, an actual longitude and
latitude is assigned at random within the square element.

The Voronoi polygon included in the example in Fig. 4
has uniform land uses. As a consequence, the coordinates
assigned considering land uses are distributed at random
(see Fig. 4a). On the other hand, when the application usage
data is employed (Fig. 4b and Fig. 4c) the activities are
concentrated in certain areas, which match those showing
the greatest presence of mobile devices. In addition, the
two proposed allocation methods (register-based, in Fig. 4b;
device-based, in Fig. 4c) generate similar results.

Finally, Fig. 5 includes the results of locating activities
within a Voronoi polygon with non-uniform land uses. The
conclusions are similar to those of the previous example. In
this case, the difference in land use concentrates activities
in certain zones but, within those zones, the distribution
is completely random (see Fig. 5a). On the contrary, we
avoid this randomness employing application uses to locate
activities (Fig. 5b and Fig. 5¢).

6 VALIDATION

To the best of our knowledge, there are no previous works in
the state-of-the-art that propose refining the spatial accuracy
of activities extracted from MND using GPS data from
mobile apps, which blocks the possibility of performing
a quantitative assessment of the proposed methodology.
Considering this issue and in the absence of a ground-truth
to check the validity of the results obtained, we opted to

carry out an event-based validation, following an approach
similar to that used in [30] and [31]. We will use two case
studies: a special calendar event and a specific region with
atypical activities.

6.1 Case Study 1: Fiestas de la Paloma

The Fiestas de la Paloma is a summer celebration located in
the neighborhood of La Latina, between August 14 and 18,
2019, with different cultural activities carried out in public
spaces, from eight in the afternoon till dawn.

In the first place, we select the activities carried out
during the days of the festivities, between eight in the
afternoon and six in the morning of the following day
(908 activities). Then, we locate these activities using two
approaches considering (i) land use, and (ii) usage data of
mobile applications. Fig. 6 shows the results of each case.
As we can observe, employing land use results in an even
distribution of activities throughout the Voronoi polygon.
However, applying the proposed algorithm, most activities
are concentrated around three leisure areas: the Jardin de las
Vistillas, the Plaza de la Paja, and the Mercado de la Cebada,
which correspond to the three main settings where the
festive events took place.

Next, we analyze the activities carried out on those same
days, but at other times; specifically, between 09:00 and 15:00
(103 activities). The location results for the two methods
(land use and app usage) are shown in Fig. 7. As expected,
the proposed algorithm locates the activities in certain areas,
without a uniform spatial distribution, showing no bias
corresponding to nightlife activities.

Lastly, we analyze the same night time slot, but in the
previous week (see Fig. 8). As we can observe, the concen-
tration around the leisure areas related to the festivities is
no longer present.

6.2 Case Study 2: University Campus

In the second case study, we analyze activities in a uni-
versity area. Since the month of August is a non-teaching

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3366088

IEEE TRANSACTIONS ON BIG DATA, VOL. X, NO. X, X/X 20XX 8

(a) Location based on land use. (b) Location based on app usage (method 1). (c) Location based on app usage (method 2).

Fig. 4. Example of location of activities for a Voronoi polygon with homogeneous land use.

(a) Location based on land use. (b) Location based on app usage (method 1). (c) Location based on app usage (method 2).

Fig. 5. Example of location of activities for a Voronoi polygon with non homogeneous land use.

(a) Location based on land use.  (b) Location based on app usage. (a) Location based on land use.  (b) Location based on app usage.

Fig. 6. Case Study 1 (I): from 14/08/2019 (Wed.) to 18/08/2019 (Sun.); = Fig. 7. Case Study 1 (ll): from 14/08/2019 (Wed.) to 18/08/2019 (Sun.);
at night, from 20:00 to 06:00 next day. during daytime, from 09:00 to 15:00.

period, we can a priori expect little or no presence of people  As we can observe in Fig. 9, the algorithm concentrates most
in the educational centers, along with greater activity in the  f the activities in the swimming pools of the Complutense
recreational areas of the campus. University and only a few in the educational centers. The

First, we select the activities carried out throughout the other two accumulation points are the San Carlos Clinical
month during the day, from 10:00 to 20:00 (18 700 activities). Hospital and the access to the subway (Ciudad Universi-
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(a) Location based on land use.  (b) Location based on app usage.

Fig. 8. Case Study 1 (Ill): from 07/08/2019 (Wed.) to 11/08/2019 (Sun.);
at night, from 20:00 to 06:00 next day.

(a) Location based on land use.  (b) Location based on app usage.

Fig. 9. Case Study 2 (I): August 2019; during daytime hours, from 10:00
to 20:00.

taria).

Second, we look at the activities carried out throughout
the month at night, from 22:00 to 08:00 in the following
day (3 854 activities). Now (see Fig. 10), the concentration
around the pools of the Complutense University disappears,
but those corresponding to the San Carlos Clinical Hospital
and the access to the subway (Ciudad Universitaria) remain,
at a lower level.

(a) Location based on land use.  (b) Location based on app usage.

Fig. 10. Case Study 2 (ll): August 2019; at night, from 22:00 to 08:00
next day.

7 CONCLUSION

In this paper we have presented a methodology to refine the
location of activities detected with mobile phone records,
using GPS data from mobile apps as ancillary information.
This methodology can be used to improve the spatial ac-
curacy of the location of activities generated by any data
source with some degree of uncertainty using whichever
data source that can provide precise geographical location,
thus extending the applicability of this work.

Future research lines in this field will focus on applying
the proposed methodology to new data sets in order to
prove its applicability and scalability. In addition, we will
refine previous developments in the transportation area
using the enhanced information about users’ locations to
improve the accuracy in the extraction of origin-destination
matrices in both urban and interurban scenarios.

In the absence of a ground truth, we have validated the
proposed methods using two case studies in which a higher
activity level was expected to happen in specific locations,
but not observed using the data set directly obtained from
the mobile network data. The performance of the proposed
algorithms shown through this validation demonstrates
that, despite the reduced sample size and the discontinuous
temporal granularity of the data from mobile apps, they
have a great potential to improve the spatial granularity of
the information obtained from other larger but less spatially
accurate data sources, like mobile network data.

This opens the door for the reconstruction of highly
detailed activity-travel diaries, through the fusion of mobile
network and mobile apps data. Among the wide variety of
sectors that would potentially benefit from these findings,
transportation and urban planning would enrich the exist-
ing knowledge about citizen’s mobility in order to optimize
the services they provide, at a minimal cost.
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