
IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024 595

Core Maintenance on Dynamic Graphs:
A Distributed Approach Built on H-Index

Qiang-Sheng Hua , Member, IEEE, Hongen Wang , Hai Jin , Fellow, IEEE,
and Xuanhua Shi , Senior Member, IEEE

Abstract—Core number is an essential tool for analyzing graph
structure. Graphs in the real world are typically large and dynamic,
requiring the development of distributed algorithms to refrain
from expensive I/O operations and the maintenance algorithms to
address dynamism. Core maintenance updates the core number of
each vertex upon the insertion/deletion of vertices/edges. Although
the state-of-the-art distributed maintenance algorithm (Weng et
al.˜2022) can handle multiple edge insertions/deletions simultane-
ously, it still has two aspects to improve. (I) Parallel processing
is not allowed when inserting/removing edges with the same core
number, reducing the degree of parallelism and raising the number
of rounds. (II) During the implementation phase, only one thread
is assigned to the vertices with the same core number, leading
to the inability to fully utilize the distributed computing power.
Furthermore, the h-index (Lü, et al. 2016) based distributed core
decomposition algorithm (Montresor et al. 2013) can fully utilize
the distributed computing power where all vertices can be pro-
cessed in parallel. However, it requires all vertices to recompute
their core numbers upon graph changes. In this article, we pro-
pose a distributed core maintenance algorithm based on h-index,
which circumvents the issues of algorithm (Weng et al.˜2022). In
addition, our algorithm avoids core numbers recalculation where
the numbers do not change. In comparison to the state-of-the-art
distributed maintenance algorithm (Weng et al.˜2022), the time
speedup ratio is at least 100 in the scenarios of both insertion
and deletion. Compared to the distributed core decomposition
algorithm (Montresor et al. 2013), the average time speedup ratios
are 2 and 8 for the cases of insertion and deletion, respectively.

Index Terms—Core maintenance, distributed algorithm,
dynamic graphs, h-index.

I. INTRODUCTION

K -CORE is a crucial instrument for analyzing the cohesion
of graphs. The k-core of a graph is a maximal induced

subgraph in which each vertex has at least k neighbors. Core
number of vertex v equals the maximum k in all k-core sub-
graphs containing vertex v. For an edge e = (u, v), the core
number of e equals the minimum of u and v’s core numbers.

Manuscript received 19 February 2023; revised 16 November 2023; accepted
25 December 2023. Date of publication 11 January 2024; date of current version
4 September 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2022ZD0115301, and in part
by the National Natural Science Foundation of China under Grant 61832006.
Recommended for acceptance by N. Cao. (Corresponding author: Qiang-Sheng
Hua.)

The authors are with the National Engineering Research Center–Big
Data Technology and System Lab, Key Laboratory of Services Computing
Technology and System, Key Laboratory of Cluster and Grid Computing,
School of Computer Science and Technology, Huazhong University of Sci-
ence and Technology, Wuhan 430074, China (e-mail: qshua@hust.edu.cn;
hewang@hust.edu.cn; hjin@hust.edu.cn; xhshi@hust.edu.cn).

Digital Object Identifier 10.1109/TBDATA.2024.3352973

Numerous applications, such as detecting community in
temporal networks [18], [19], finding impactful spreaders in
highly complicated networks [20], [21], exploring the collective
emotions in social networks [26], analyzing large-scale soft-
ware systems [24], [25], anticipating the features of biology
networks [23], and visualizing big networks [22], have made
extensive use of k-core.

As a result of the popularity of networking, real graph ap-
plications exhibit the following characteristics: (1) some graphs
might be too large to fit a single machine’s memory; (2) most
graph applications are dynamic, meaning the insertion/deletion
of vertices/edges is frequent. For the memory issue, we can
turn to distributed algorithms; for the dynamism of graphs,
we typically employ maintenance techniques which try not to
recompute all vertices’ core numbers upon graph changes.

The previous algorithms for core maintenance can be cate-
gorized as follows: (I) the centralized sequential algorithms [2],
[3] process a single edge at a time; (II) the centralized parallel
algorithms [5], [4], [6] can simultaneously process several edges;
(III) the distributed algorithms [8] process one edge at a time;
(IV) the distributed algorithm [9] can simultaneously process
multiple edges. It is important to note that (I) and (III) share
similar ideas, as do (II) and (IV), but (III) and (IV) are specifi-
cally tailored for optimization in a distributed environment.

It is obvious that the parallelism of single-edge process-
ing algorithms is low, thus we will focus on the issues of
distributed multi-edge processing algorithm [9]: (I) when the
inserted/deleted edges have the same core number, they need to
be tackled sequentially; (II) in the implementation phase, only
one thread is assigned to the vertices with the same core number,
leading to the waste of distributed computing power since there
are only a few core numbers for a large graph. For example,
the graph KONECT1, a social friendship network consisting of
people and their friendship ties, has 59.2 million vertices from
multiple connected components, but the maximum core number
is 17, which means that when we have more than 17 processors,
the computing power cannot be fully utilized.

Due to the above two issues, the distributed core mainte-
nance algorithm [9] has a relatively low parallelism. Mean-
while, the distributed core decomposition algorithm [10] based
on h-index [1] could be highly parallel since all vertices can
work simultaneously. H-index reflects the connection between

1https://networkrepository.com/socfb-konect.php

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3909-5719
https://orcid.org/0009-0003-5765-4785
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0001-8451-8656
mailto:qshua@hust.edu.cn
mailto:hewang@hust.edu.cn
mailto:hjin@hust.edu.cn
mailto:xhshi@hust.edu.cn
https://networkrepository.com/socfb-konect.php

596 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 1. Dashed lines represent the inserted edges. The number atop each vertex
represents the alteration of the vertex’s core number.

degree and core number, which is applied in distributed core
decomposition [10] and shared-memory core maintenance [28].

The distributed core decomposition algorithm consists of two
steps: (I) initialization: each vertex’s h-index is set to its degree;
(II) convergence: each vertex updates its h-index based on its
neighbors’ h-indices. Convergence ends when all vertices’ h-
indices no longer change, and now each vertex’s h-index equals
its core number.

Now, a natural question is how well the distributed core
decomposition algorithm performs on the core maintenance
of dynamic graphs. Surprisingly, according to Figs. 10 and
11 in Section VI, we found that when there are a batch of
inserted/deleted edges, directly applying the distributed core
decomposition algorithm may have a much better performance
than the distributed core maintenance algorithm. The following
examples will give the readers a concrete feeling of the above
discussions.

Core Maintenance [9]: (I) the algorithm requires that edges
with the same core number cannot be processed simultaneously.
Take Fig. 1 as an example, in the beginning stages, the core
numbers of e1, . . . , e4 are 1, and the core numbers of e5, e6, e7
are 2; therefore, only two edges (one from {e1, . . . , e4} and
the other from {e5, e6, e7}) can be tackled simultaneously. In
addition, when there are a significant number of inserted/deleted
edges, the preprocessing will also incur non-negligible over-
head; (II) also in Fig. 1, when we insert e1, the core number
of v4 changes to 2. Then if we insert e2, the core numbers of
v3, v4, v5, v7, . . . , v11 will change from 2 to 3. We can see that
v3, v4, v5, v7, . . . , v11 have the same core number. Therefore,
the updates of these vertices can only be sequential.

Core Decomposition [10]: after e1, . . . , e7 have been added,
by using the distributed decomposition algorithm, we only need
one round to recompute the core numbers. Furthermore, if we
have 11 processors (the graph in Fig. 1 has 11 vertices), all
vertices can work in parallel. Note that, if we only insert one edge
e1, the distributed core decomposition will take four rounds. The
results can be verified in the same way as Table II in Section V-B.
The reason for the above anomaly is due to the folowing fact:
the algorithm initializes its h-index as its degree, when only e1 is
inserted, the vertices have larger differences between their core
numbers and degrees. The lower the initial h-indices are, the
faster the algorithm converges.

In summary, the distributed core maintenance algorithm [9]
suffers from limited parallelism, while the distributed core

decomposition algorithm [10] involves redundant re-
computation of core numbers for unchanged vertices, resulting
in a higher initial h-index. Thus, there is a need to devise
a more efficient distributed core maintenance algorithm that
enhances parallelism and minimizes the initial h-index and
re-computation of core numbers for unchanged vertices.

In this paper, we propose a method for incorporating the h-
index [1] into core maintenance by adjusting its initial value.
For edge insertion in the graph, we leverage the insights from
previous algorithms [2][4] and derive an upper bound of the core
numbers. This upper bound is then used to initialize the h-index.
The theoretical perspective of this upper bound ensures that the
initial h-index is kept as low as possible, as it represents the
maximum core number achievable for each vertex.

Regarding edge deletion from the graph, our analysis demon-
strates that the core number before the graph update acts as the
upper bound in this scenario. This approach ensures that the
initial h-index is appropriately set, minimizing computational
overhead and improving the efficiency of the core maintenance
algorithm.

The following summarizes our contributions:
� We present thorough theoretical analyses on core numbers

change to get lower upper bounds of initial h-index under
various scenarios.

� We devise h-index based distributed core maintenance al-
gorithms that can handle multiple edges with the same core
number. Both a global updating technique and a pipelined
traversal-based technique are designed to obtain a lower
initial h-index.

� Extensive experimental results on real-world graphs pro-
vide evidence that our distributed algorithms are stable,
scalable, highly parallel, and efficient.

The remainder of the article is structured as follows: Section II
provides some key definitions. We introduce the system model
and the distributed graph processing systems in Section III. In
Section IV, we will introduce the asynchronous h-index algo-
rithm. The distributed core maintenance algorithm for insertion
and deletion will be introduced in Section V. The findings of
our comprehensive experiments are reported in Section VI. In
Section VII, we discuss related work. Section VIII concludes
the paper.

II. PRELIMINARIES

We focus on an unweighted and undirected graph G =
(V (G), E(G)), where V (G) represents the set of vertices and
E(G) represents the set of edges in G. dG(v) represents vertex
v’s degree in G, and neb(v) represents the set of neighbors of
vertex v in G. δ(G) represents the minimum vertex degree in G.
We say a graph H is a subgraph of graph G, if V (H) ⊆ V (G)
and E(H) ⊆ E(G).

Definition 1 (k-core). A k-core of G is a maximal induced
subgraph H where δ(H) ≥ k.

Definition 2 (Vertex-core). If v is included in a k-core and no
(k + 1)-cores include v, v’s core number equals k. We call it
CG(v).

HUA et al.: CORE MAINTENANCE ON DYNAMIC GRAPHS: A DISTRIBUTED APPROACH BUILT ON H-INDEX 597

TABLE I
SUMMARY OF NOTATIONS

Definition 3 (Edge-core). For an edge e = (u, v) in G, we
call its core number as CG(e) = min{CG(u), CG(v)}.

Definition 4 (Superior Edge [4]). For an edge e = (u, v), if
CG(u) ≤ CG(v), we say edge e is a superior edge of vertex u.

Definition 5 (Superior Degree [6]). The superior degree of
a vertex v in G is equal to the number of its superior edges,
denoted as sd(v).

Definition 6 (Number of Inserted Superior Edges). Suppose
S is the inserted edges set. For an edge e = (u, v), e ∈ S, if e is
a superior edge of vertex v, then e is an inserted superior edge of
v. For a vertex v, we call its number of inserted superior edges
as nise(v). Obviously, if v is not in V (S) (the set of all vertices
in S), nise(v) = 0.

Definition 7 (h-index [1]). The h-index reflects the relation-
ship between the vertex degree and the core number. It is
initialized with the degree of a vertex, and finally converges
to the core number. The h-index is defined as the largest integer
h for which the vertex has at least h neighbors whose h-indices
are greater than or equal to h. For a vertex v in G, vertex v’s
h-index at round i is called hi(v). From [1], we can infer that
if h0(v) ≥ CG(v), then h∞(v) = CG(v). When the number of
rounds is not specified, denote hi(v) as h(v).

Definition 8 (Superior edges set [4]). Suppose S is the in-
serted/deleted edges set. If vertex v ∈ V (S), and v only has at
most one superior edge in S, we call S a superior edges set.

Definition 9 (Reachable Tree). Suppose S is the in-
serted/deleted edges set to G, e = (u, v) is an edge in the set S,
and CG(u) ≤ CG(v). The reachable tree of vertex u demands
that the core number of each vertex on the tree equals CG(u).
In addition, for each vertex x in the reachable tree, there exists
at least one path in the tree connecting x to u.

III. SYSTEM OVERVIEW

A. System Model

The pregel-like [11] distributed graph processing system
model is adopted where there are n fully connected machines
and each machine holds a subgraph of the input graph G with
N vertices. The calculation is based on the Bulk Synchronous
Parallel(BSP) model [31], which is executed asynchronously
within the machine and synchronously between the machines.

Each machine is allowed to perform the following operations:
(1) for a vertex u in G locating on machine i, suppose v is a
neighbor of u and v is located on machine j, machine i can send
the core number of u to machine j; (2) each machine is able to
save the core numbers sent by other machines in the last round.

B. Distributed Graph Processing Systems

Numerous pregel-like distributed graph processing sys-
tems exist, including Power-Graph [15], GraphX [14], Power-
Lyra [13], Gemini [12], and D-Galois [16]. D-Galois and Gemini
have the best performance among them [12][16]. These graph
processing systems all fit our system model. Since Gemini has a
smaller code size and an easier-to-use interface than D-Galois,
we choose it to implement our distributed algorithms. Following
is a brief introduction to Gemini [12].

1) Graph Partition:
� Vertices partition: they are evenly distributed to each

machine based on the vertex’s id. Suppose there are p
machines, vertex vi is placed on machine � i

N/p�.
� Edges partition: if vertex u is located on machine i, and
u is an endpoint of the undirected edge e, then e is placed
on machine i.

2) Vertex and Edge Functions: Gemini [12] offers the vertex
and edge functions to implement the distributed algorithm. The
work_list is a set of vertices that need to be computed.
� Vertex Function: the function performs vertex programs

for the vertices in the work_list. If vertex v is located on
machine i, then machine i will execute the vertex program
of v. For a vertex v, we can access the most recent data of
its neighbors on the same machine using Gemini.

� Edge Function: the function performs edge programs for
edges of vertices in the work_list. Gemini’s edge function
is separated into sparse and dense modes. Sparse mode
edge function broadcasts the messages of the vertices in
the work_list before executing programs, whereas dense
mode executes the program first and then aggregates the
message. Therefore, for a vertex v, we must employ sparse
mode edge function to guarantee the vertex to receive all
of v’s neighbors’ raw messages.

C. Round and Message Complexities

We evaluate the distributed algorithm with round and message
complexities. The round complexity means the number of BSP
super-steps. The message complexity is the total number of
messages delivered in the system. Each message in our system
consists of O(logN) bits, where N represents the number of
vertices.

IV. DISTRIBUTED ASYNCHRONOUS H-INDEX ALGORITHM:
THE SUBROUTINE OF CORE MAINTENANCE

In this Section, we will present the asynchronous H-Index
algorithm, which serves as a fundamental component of the
core maintenance algorithm. The subsequent process of the core
maintenance algorithm invokes this algorithm to determining the
upper bound of the h-index.

598 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 2. An illustrating graph showing the difference between the asynchronous
H-Index algorithm and core decomposition algorithm.

The distributed core decomposition algorithms [10] are also
built on the h-index, but it assumes that all vertices’ h-indices are
updated synchronously. However, the number of machines is far
smaller than the number of vertices in the graph, indicating that a
portion of the processing of vertices is sequential. For a vertex v,
we can access the most recent data of its neighbors on the same
machine using Gemini. We propose an asynchronous H-Index
algorithm based on this observation. The difference between the
asynchronous and the synchronous algorithm is that the latter
calculates using data from the last round. The asynchronous
algorithm, in contrast, utilizes the most recent data in the current
round. Consequently, the asynchronous algorithm can converge
more rapidly.

Let h(v) be the h-index of vertex v during the convergence
process. We have the following (1) where neb(v) represents the
set of neighbors of vertex v. In each round, each vertex in the
work_list will update its h-index based on this equation.

h(v) = max
k≥0

{k : | {u ∈ neb(v) : h(u) ≥ k} | ≥ k} (1)

The detailed distributed asynchronous H-Index algorithm is
listed in Algorithm 1. Each machine is allocated an array named
h of size |V (G)|. Theh array is initialized ash0(v) of all vertices
in G, and the work_list is the set of vertices with h-indices
greater than or equal to their core numbers. In the distributed
core decomposition algorithm, h0(v) is initialized as dG(v), but
we only require h0(v) ≥ CG(v). In line 5, Each vertex updates
its h-index according to (1) (Algorithm 2). The vertex is added to
the send_list when its h-index changes (lines 6-8). For a vertex
v, send_list.set(v) means adding v into send_list. If vertex u
and vertex v are located on the same machine, and u executes
the vertex program first, then v will use the latest h(u) when
implementing the vertex program.

After all vertices’ h-indices have been updated, the algorithm
synchronizes the h-indices of the vertices in the send_list to all
machines (line 12). For a vertex v in send_list, only neighbors
with larger h-indices than h(v) are possible to change, thus the
algorithm adds these neighbors to the new work_list (lines 13-
15). When all the vertices’ h-indices remain unchanged, it means
that send_list is empty; thus we can deduce new work_list is
empty which means the algorithm terminates.

We will give an example to demonstrate the difference be-
tween the asynchronous H-Index algorithm and distributed core
decomposition algorithm. For the graph in Fig. 2, as shown in
Table II, the synchronous distributed core decomposition algo-
rithm requires three rounds. Assuming the execution order in the

Algorithm 1: Async-H-Index(G, h, work_list).

Algorithm 2: computeH(neb(v), h(v)).

TABLE II
THE EXECUTION OF DISTRIBUTED CORE DECOMPOSITION FOR

THE GRAPH IN FIG. 2

H-Index algorithm is v1, v2,..., v7. In this instance, the vertex
program is executed only once per vertex to get the final result,
so the asynchronous H-Index algorithm needs one round. The
worst-case scenario for the asynchronous H-Index algorithm
is that the neighbors’ h-indices have not been updated in the
same round of calculation. Hence, the asynchronous H-Index
algorithm will use the last round’s h-indices. For this case, the
asynchronous H-Index will degenerate into the synchronous
version.

HUA et al.: CORE MAINTENANCE ON DYNAMIC GRAPHS: A DISTRIBUTED APPROACH BUILT ON H-INDEX 599

V. DISTRIBUTED CORE MAINTENANCE

This section will introduce our distributed core maintenance
algorithms, including the incremental core maintenance and
decremental core maintenance algorithms.

A. Incremental Core Maintenance

The state-of-the-art distributed core maintenance algo-
rithm [9] cannot handle edges with the same core number
simultaneously. Our core maintenance algorithms do not have
the above limitation and they are based on Algorithm 1. We add
all vertices whose core numbers may change to the work_list,
attempting to determine the initial h-indices of these vertices.

As mentioned before, the challenges are to make the initial
h-indices as low as possible and to identify the vertices whose
core numbers may change. Suppose the inserted edges set is S.
For a vertex v in V (GI(S)) where GI(S) is the new graph after
inserting S, if h0(v) = CG(v) is true, it means that the vertex
v’s core number remains unchanged. Otherwise v needs to be
added to the work_list.

In the insertion case, it is apparent that a candidate for the
initial h-index is the vertex’s degree. However, this trivial so-
lution makes the core maintenance algorithm the same as the
core decomposition one. We desire the initial h-indices to be
as tight as feasible, ideally equal to the vertex’s updated core
number. A naive idea is to update the initial h-indices based
on the set of candidates in the TRAVERSAL algorithm [2].
This could be a viable solution when the insertion set has only
one edge. However, when the insertion set contains multiple
edges, we can only insert these edges sequentially to obtain the
correct candidate set, which diminishes parallelism. An efficient
algorithm to calculate initial h-indices is needed to overcome the
issue.

Before introducing our algorithm, we need to present some
theoretical findings about the initial h-indices.

1) Theoretical Basis: The following is the characteristic of
the superior edge set that will be used in the subsequent analysis.

Lemma 1 ([4]). Given a graph G = (V (G), E(G)), when a
superior edges set S is inserted into graph G, and each edge in
S has the same core number α. the change of each vertex’s core
number is at most one.

Now we know the change in vertices’ core numbers when the
superior edge setS with core numberα is inserted into the graph
G. Then we will analyze the change in vertices’ core numbers
when an ordinary edge set with core number α is inserted into
the graph G.

Lemma 2. Suppose S is the inserted edges set, and each
edge in S has the same core number α. Denote Vα = {v :
CG(v) = α, v ∈ V (S)}, m = maxv∈V (S) nise(v). There ex-
ists a set Sα ⊆ S satisfying the following conditions. After Sα

is inserted into G, each vertex’s core number changes at most
one. If S − Sα is not empty, then we have CGI(Sα)(e) = α+ 1,
e ∈ S − Sα, and maxv∈V (S−Sα) nise(v) ≤ m− 1.

Proof. First, we select a superior edges setSE1 fromS where
SE1 satisfies the following two conditions: (I) each vertex in Vα

needs to select a superior edge; (II) if vertex v ∈ Vα, and v has
multiple superior edges, then only the one with the lowest core

number can be selected. From Lemma 1, we know that after
SE1 is inserted, the change of each vertex’s core number is at
most one.

Now the vertices in Vα can be divided into two categories:
(1) the vertices whose core numbers increased by one; (2) the
vertices with unchanged core numbers. For vertices of category
(2), we select SE2 from S − SE1 in a similar way as selecting
SE1 from S. If SE2 + SE1 is inserted into G, only the core
number of the vertex whose core value is α may be changed by
at most one. We repeat this process until the core number of each
vertex v (v ∈ Vα) has been changed, or v does not have superior
edges. We call the selected edges set Sα. Since each vertex
selected at least one superior edge, thus maxv∈S−Sα

nise(v) ≤
m− 1. If S − Sα is not empty, for edge e = (u, v) ∈ S − Sα,
CGI(Sα)(e) = min(CGI(Sα)(u), CGI(Sα)(v)) = α+ 1.

Lemma 2 analyzes the partition of the edge set after inserting
the edge set S with the core number α into the graph G. This
conclusion will be utilized later to establish the upper bound of
the vertices’ core numbers. As the calculation of the upper bound
aims to initialize the h-index and the initial value is denoted as
h0(v).

Lemma 3. Suppose S is the inserted edges set, and each edge
has the same core number α. Denote m = maxv∈V (S) nise(v).
For a vertex v in graph GI(S), we have:

h0(v) =

⎧⎪⎨
⎪⎩

CG(v), CG(v) < α

α+m, α ≤ CG(v) < α+m

CG(v), CG(v) ≥ α+m.

(2)

Proof. From Lemma 2, we know that we can select no more
than m times of the set like Sα until S is empty. Suppose S =
{Sα, Sα+1, . . . , Sα+m−1}. First, when we insertSα intoG, only
vertices whose core numbers equal α may be increased by one.
We call the set of vertices whose core numbers may increase at
this time as Vα. When Sα+1 is inserted, the vertices whose core
numbers equal α+ 1 may be increased by one. Thus the core
number of vertex v in Vα may be increased twice. We can further
deduce that when Sα+m−1 is inserted, if CG(v) = α+ i (0 ≤
i < m), v’s core number may be increased bym− i times. Thus
if α ≤ CG(v) < α+m, h0(v) = α+ i+m− i = α+m. In
other cases, the core numbers remain unchanged, so the h0(v)
equals CG(v).

Lemma 3 analyzes the upper bound of the vertices’ core
numbers after inserting the edge set S with core number α into
graphG. However, in practical applications, the inserted edge set
often contains edges with different core numbers. Therefore, the
following analysis will provide an upper bound of the vertices’
core numbers after an unrestricted edge set is inserted into
graph G.

Lemma 4. Suppose S is the inserted edges set,
x = mine∈S CG(e), and y = maxe∈S CG(e). We di-
vide S according to the core numbers of edges
where S = {Sx, Sx+1, . . . , Sy−1, Sy}. Denote mi =
maxv∈V (Sx+i) nise(v) (0 ≤ i ≤ y − x), and tj =
max0≤i≤j(mi − j + i) (0 ≤ j ≤ y − x). For a vertex v in

600 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

graph GI(S), we have:

h0(v) =

⎧⎪⎨
⎪⎩

CG(v), CG(v) < x

CG(v) + tCG(v)−x, x ≤ CG(v) < y + ty−x

CG(v), CG(v) ≥ y + ty−x.
(3)

Proof. We first insert Sy into G. From Lemma 3, we know
the core numbers of vertices whose core values satisfy y ≤
CG(v) < y +my−x may be changed at most to y +my−x.
Then, when we insert Sy−1, if vertex v’s core number changes,
we conclude y − 1 ≤ CG(v) < y − 1 +my−1−x is true, and v’s
core number will not exceed y − 1 +my−1−x. We can discover
that the core numbers of vertices equalling y are affected by
the insertion of Sy−1. For a vertex v satisfying y ≤ CG(v) <
y +my−x, it may change tomax(y +my−1−x − 1, y +my−x).
Since a vertex v with core number k will be affected by the
insertion of edge sets Sk, Sk−1, . . ., Sx, v’s core number will
not exceed max(k +mk−x, k − 1 +mk−1−x, . . . , x+m0) =
k +max0≤i≤k−x(−k + x+ i+mi) = k + tk−x. For a vertex
v satisfying x ≤ CG(v) < y + ty−x, its updated core number
must be equal to or smaller thanCG(v) + tCG(v)−x. For a vertex
v, ifCG(v) < x orCG(v) ≥ y + ty−x, from Lemma 3, we know
its core number will not change.

Based on Lemma 4, we can directly calculate the initial h-
indices based on the core numbers of G before insertion. Since
this method needs to access all vertices in the graph, we call it
the Global algorithm.

2) Global Algorithm: At the beginning of the algorithm, we
setwork_list asV (S). Then, we find the minimum core number
(corresponding tox in Lemma 4) and the maximum core number
(corresponding to y in Lemma 4) of the inserted edges (lines
4-5). For a vertex v ∈ V (S), we update its nise(v) (lines 6-8).
Since the vertices are evenly distributed on different machines,
we need to synchronize and take the minimum (maximum) value
to get the correct result (lines 9-10). In line 12, t is an array and
t(j) corresponds to tj in Lemma 4. We update t according to
Lemma 4 (lines 11-16). For a vertex v, if its core number has
been changed, we add v to the new work_list (lines 18-21). We
compute the final core numbers of all vertices using Algorithm 1.

Performance Analysis. The Global algorithm has an addi-
tional round than Algorithm 1. Notably, the complexity of
Algorithm 1 is predicated on two distinct parameters, namely,
h0(v) and work_list, both of which are derived from Lemma 4.
Consequently, in analyzing the performance of the Global algo-
rithm, it becomes necessary to employ the parameters explicated
in Lemma 4.

Theorem 5. Given a graph G = (V (G), E(G)), for
a vertex v ∈ V (G), h0(v) is calculated according
to Lemma 4. The round complexity of Algorithm 3
is O(

∑
v∈V (G),x≤CG(v)<y+ty−x

CG(v) + tCG(v)−x −
CGI(S)(v)).

Proof. In the worst case, just one vertex’s h-index changes
per round, and the changing size is one. The needed number of
rounds of vertex v is h0(v)− CG(v) = CG(v) + tCG(v)−x −
CGI(S)(v) while x ≤ CG(v) < y + ty−x. In other case, h(v)
will not change. Since only one vertex’s core number changes in

Algorithm 3: Global(GI(S), h, work_list).

each round, the total number of rounds needed for Algorithm 1 is
the sum of the number of rounds required for each vertex. So the
total round is bounded by

∑
v∈V (G),x≤CG(v)<y+ty−x

CG(v) +

tCG(v)−x − CGI(S)(v).
Theorem 6. Given a graph G = (V (G), E(G)), for a vertex

v ∈ V (G), h0(v) is calculated according to Lemma 4. Suppose
there are n machines in total, the message complexity of Al-
gorithm 3 is O(

∑
v∈V (G),x≤CG(v)<y+ty−x

(n− 1) ∗ (CG(v) +

tCG(v)−x − CGI(S)(v))).
Proof. For a vertex v ∈ V (G), only when h(v) de-

creases, v will be added to send_list. In the worst case, v
will be added to send_list with h0(v)− CG(v) = CG(v) +
tCG(v)−x − CGI(S)(v) times. In Gemini, if v is in send_list
and is located on machine i, then Gemini will send h(v)
to all machines except machine i. Because there are n ma-
chines in total, the number of messages v sent is (n−
1) ∗ tCG(v)−x. So the message complexity of Algorithm 3
is bounded by

∑
v∈V (G),x≤CG(v)<y+ty−x

(n− 1) ∗ (CG(v) +

tCG(v)−x − CGI(S)(v)).
In Algorithm 3, we update the initial h-indices according to

Lemma 4 that requires to access all vertices in the graph (line
18). The vertices whose core numbers have been changed are
connected to the insertion edges. But Algorithm 3 does not take
advantage of this observation. Take Fig. 3 as an example, after
e = (x1, y1) is inserted into the graph, Algorithm 3 will set all
vertices’ initial h-indices to 2, resulting in multiple iterations.

HUA et al.: CORE MAINTENANCE ON DYNAMIC GRAPHS: A DISTRIBUTED APPROACH BUILT ON H-INDEX 601

Fig. 3. e = (x1, y1) is the edge to be inserted. The left number on top/bottom
of each vertex represents its core number before e’s insertion. The right number
on top/bottom of each vertex represents its initial h-index calculated by the
Global algorithm after e’s insertion.

If we want to take advantage of the above observation, we need
to traverse from the insertion edges to find connected vertices.
The traversal reduces the number of rounds for convergence but
also has additional overhead to find initial h-indices. We will
design an algorithm that takes advantage of the connectivity
observation, and our inspiration comes from the TRAVERSAL
algorithm [2]. Our algorithm will perform multiple TRAVER-
SALs in a pipelined fashion.

3) Pipeline Algorithm: The TRAVERSAL algorithm is fre-
quently used to design multiple-edge processing algorithms for
core maintenance [3], [5], [6], [9]. Suppose edge e = (u, v)
is an inserted edge, CG(e) = k, and CG(u) ≤ CG(v). The
TRAVERSAL algorithm traverses the reachable tree of vertex
u. Suppose the current traversed vertex is v. If sd(v) > CG(v),
and CG(v) = CG(u), the algorithm will add v to the candidate
set, which is a set of vertices whose core numbers may change.
If sd(v) ≤ CG(v), which indicates that vertex v cannot be
contained in (k + 1)-core, the algorithm will start eviction from
vertex v and evict the vertices that cannot become (k + 1)-core
owing to vertex v. When no vertices need to be evicted, the
core numbers of the remaining vertices in the candidate set are
increased by one.

Suppose we insert the edges set S into G, and each vertex’s
core number changes by at most one. In this case, we can
run multiple TRAVERSALs concurrently without impacting
the final result [3]. However, a vertex may be traversed by
more than one TRAVERSAL, making it more difficult to judge
whether we can add this vertex to the candidate set. To solve
this issue, [3], [5], [6], [9] require a core number corresponds to
a TRAVERSAL. Performing in this way undoubtedly reduces
parallelism. Since we only care about the initial h-indices, we
will not perform the eviction. If we do not evict vertices in the
candidate set, we can determine whether a vertex can be added
to the candidate set when it is first traversed. When a vertex
v ∈ V (G) is first traversed, only if sd(v) > CG(v), v will be
added to the candidate set.

For a vertex v, we directly increase v’s initial h-index by one
when v is added to the candidate set. We can find that when
two TRAVERSALs starting from the same vertex are separated
by one round, the candidate set will also be updated correctly.
So we can execute the TRAVERSAL algorithm in a pipelined
fashion.

The detailed algorithm is listed in Algorithm 4. In the begin-
ning,work_list is set toV (S). The algorithm computesnise(v)
of each vertex v ∈ V (S) (lines 1-4) where nise(v) represents
the maximum number of TRAVERSALs starting from vertex v.

Algorithm 4: Pipeline(GI(S), h, work_list).

The preH array is the copy of the h array in the last round
(line 5). The work_list is a set of vertices that need to be
calculated in the current round (line 6). The send_list is a set
of vertices whose h-indices change in the current round (line 7).
The re_list is a set of vertices that need to be calculated in the
next round (line 7). The change_list is a set of vertices whose
h-indices changed (line 18).

We start a Breadth-First-Search (BFS) from the vertices of
V (S) to find the candidate set. If a vertex v ∈ V (S) is still
possible to start BFS from this vertex and the number of rounds
is even, we increaseh(v) by one, and add v to re_list, send_list
and change_list (lines 14-19). If the number of rounds is odd,
we only add v to re_list to separate the TRAVERSALs starting
from vertex v (line 11-12). For the vertex v where nise(v)

602 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

Algorithm 5: computeSd(neb(v), preH).

= 0 and sd(v) > h(v), we increase h(v) by one and add v into
send_list and change_list (lines 23-26).

For vertex v ∈ send_list, we add its neighbors with the same
core number to re_list (lines 26-30). It should be noted that
the h(v) has been changed in the current round. We only need
to add vertex v’s neighbors whose h-indices are the same as
h(v)− 1 and have not changed in the current round to re_list
(lines 29-30). We compute the final core numbers of all vertices
using Algorithm 1 (line 35).

Performance Analysis. The Pipeline algorithm necessitates a
traversal process to update the initial h-index, thus warranting
an additional analysis of the complexity associated with the
computation of the initial h-index. It is worth noting, however,
that despite this modification, the initial h-index in this algorithm
still conforms to the conditions outlined in Lemma 4, thereby
implying that the complexity of the convergence stage is akin to
that of the Global algorithm.

Theorem 7. Suppose S is the inserted edges set, the
round complexity of Algorithm 4 is O(maxv∈V (S)(2 ∗
nise(v) +D(Tree(v))) +

∑
⋃

v∈V (s)Tree(v)(n− 1) ∗
(CG(v) + tCG(v)−x − CGI(S)(v))).

Proof. Initially, an investigation will be conducted into the
number of rounds needed for determining the initial h-index. For
a vertex v ∈ V (S), v will start at most nise(v) times TRAVER-
SALs.maxv∈V (S) 2 ∗ nise(v) rounds are required to ensure that
all vertices in V (S) no longer perform TRAVERSAL. Only
vertices whose core numbers equal h(v) can be reached and
will change their core numbers. Therefore, the round complexity
is bounded by maxv∈V (S)2 ∗ nise(v) +D(Tree(v)). Tree(v)
represents the union of the reachable trees of TRAVERSALs
starting from vertex v, and D(Tree(v)) refers to the depth of
Tree(v).

The number of rounds analysis in the convergence phase
is similar to the Global algorithm, except by replac-
ing work_list with

⋃
v∈V (s)Tree(v). So the total round

is bounded by maxv∈V (S)(2 ∗ nise(v) +D(Tree(v))) +∑
⋃

v∈V (s)Tree(v)(n− 1) ∗ (CG(v) + tCG(v)−x − CGI(S)(v)).
Theorem 8. Suppose S is the inserted edges set, and

there are n machines. The message complexity the Al-
gorithm 4 is O(

∑
⋃

v∈V (s)Tree(v)(n− 1) ∗ (2 ∗ tCG(v)−x +

CG(v)− CGI(S)(v))).
Proof. Primarily, an assessment will be undertaken regarding

the number of messages necessary for computing the initial h-
index. According to Lemma 4, for a vertexv ∈ V (G), the change
of vertex v’s core number cannot exceed CG(v)− tCG(v)−x −

Algorithm 6: Decremental(GD(S), h, S).

CG(v) = tCG(v)−x. In the worst case, each vertex v will change
tCG(v)−x times. For each change, the message of v will be sent
to n− 1 machines, so the message complexity is bounded by∑

⋃
v∈V (s)Tree(v)(n− 1) ∗ tCG(v)−x.

The number of messages analysis in the convergence
phase is similar to the Global algorithm, except by replacing
work_list with

⋃
v∈V (s)Tree(v). So the total number of mes-

sages is bounded by
∑

⋃
v∈V (s)Tree(v)(n− 1) ∗ (2 ∗ tCG(v)−x +

CG(v)− CGI(S)(v)).

B. Decremental Core Maintenance

Similarly, processing deletion needs two steps: (1) compute
the initial h-indices; (2) convergence. However, since the core
numbers before deletion have already been treated as initial
h-indices, it is unnecessary to compute the initial h-indices.
Now we face the challenge of identifying which vertices need
to perform convergence. The Global algorithm and the Pipeline
algorithm add the vertices whose core numbers may change to
the work_list. But for deletion, we cannot rapidly determine
the vertices whose core numbers may change. In fact, we need
only to add the vertices in V (S) to the work_list.

Lemma 9. Given a graphG = (V (G), E(G)), if the edges set
S is deleted from G, we add vertex v ∈ V (S) into work_list,
and h(v) is set as CG(v). After we implement Algorithm 1, we
have h(v) = CGD(S)(v), where v is a vertex in GD(S).

Proof. According to Algorithm 1, if all vertices in GD(S) are
added to the work_list, we conclude h(v) = CGD(S)(v) is true
after implementing Algorithm 1. We conduct one convergence
for each vertex in V (G) and assume the set of vertices whose
h-indices change is V1. Similarly, if the work_list is V (S), we
do one convergence for vertex v ∈ V (S), and add the vertices
whose h-indices change into the vertices set V2. Next, we will
prove that V1 = V2.

Since V (S) ⊆ V (G), we need to examine two cases: (I)
suppose a vertex v ∈ V (G) and v ∈ V (S). If v is added to V1,
due to the same calculation, v must also be added to V2; (II)
suppose a vertex v ∈ V (G) and v /∈ V (S). If u is a neighbor of
v and h(u) = CG(u), we know no neighbors of v (v /∈ V (S))
are added or eliminated, so h(v) will not change. Therefore,
V1 = V2 is true. So whether the work_list is V (S) or V (G),
Algorithm 1 already has the same state in the second round.

Performance Analysis. The Decremental algorithm resembles
the Global algorithm, except for the variation in the value
inputted into Algorithm 1. Thus, to determine the analysis
results of the Decremental algorithm, it suffices to substitute
the parameters of the analysis of the Global algorithm.

HUA et al.: CORE MAINTENANCE ON DYNAMIC GRAPHS: A DISTRIBUTED APPROACH BUILT ON H-INDEX 603

TABLE III
DATASETS

Fig. 4. Core numbers distribution for datasets.

Theorem 10. Suppose the edges set S is deleted from
the graph G, the round complexity of Algorithm 6 is
O(

∑
v∈V (GD(S))(CG(v)− CGD(S)(v))).

Theorem 11. Suppose the edges set S is deleted from
the graph G, the message complexity of Algorithm 6 is
O(

∑
v∈V (GD(S))((n− 1) ∗ (CG(v)− CGD(S)(v)))).

VI. EXPERIMENT

Our experiments were performed on a 5-machine high-
performance cluster connected through a private network
(100 Gbps bandwidth). Each machine hosts two Intel Xeon Gold
5117 CPUs (each with 28 cores) and 256 GB of DRAM. As
mentioned, our algorithms are implemented with Gemini. The
source code of the experiment can be found here2.

The algorithms read two files from the disk: the original
graph and the inserted/deleted edges. We remove these edges
from the original graph to test the Decremental algorithm and
then reinsert them to test the Global and Pipeline algorithms.
In addition, we disregard the loading time of the file and only
calculate the execution time of the algorithms.

Datasets: Table III displays twelve datasets from the real
world that may be viewed and downloaded through NDR3 and
SNAP4. DBLP, SKI, LJ, KON, OK, and FRI are static, whereas
others are temporal. To satisfy our algorithm’s requirements,
we convert the directed graphs contained in the datasets to undi-
rected graphs, with the corresponding transformation of attribute
within Table III. Fig. 4 illustrates the distribution of core numbers
in the above datasets. For most datasets, the core numbers of
more than ninety percent of the vertices are less than 100.

2https://qiangshenghua.github.io/papers/distributedcore.zip
3https://networkrepository.com/index.php
4http://snap.stanford.edu/data/

Fig. 5. Stability of algorithms (the average time spent on each edge across
various datasets).

A. Stability Evaluation

Practical applications often involve the core maintenance
of numerous graphs. Hence, a crucial inquiry is whether an
algorithm’s performance remains stable when applied to distinct
datasets. In this subsection, we evaluated the stability of our
algorithms using eight datasets, namely AR, EUR, FG, KON,
FRI, OK, SKI, and SO. For the edge set of insertion and deletion,
we opted for i‰of the corresponding dataset, where 1 ≤ i ≤ 5.
Notably, for temporal graphs, we chose the most recently up-
dated edges, whereas for static graphs, we randomly selected the
set of edges. The experiment was conducted on four machines,
with 48 threads per machine. The experimental outcomes are
depicted in Fig. 5, with the x-axis representing the size of the
inserted/deleted edge set and the y-axis indicating the average
cost time on each edge.

Fig. 5(a), (b), and (c) illustrate that the ratio of the maximum
average time spent per edge to the minimum average time at a
given x-coordinate is less than 16. Furthermore, as the magnitude
of the inserted/deleted edge set escalates, the average time per
edge diminishes, signifying that our algorithm performs better
under larger edge sets. This is attributed to the superior parallel
processing capabilities of the h-index upon which our method
is based.

Concurrently, we discovered that in the evaluation of the
Decremental algorithm, the average time expended on each edge
for some datasets (AR, FG) does not exhibit a complete reduction
with the expansion of the deleted edge set. Consequently, we
investigated the number of rounds involved in the deletion case
for four datasets, AR, EUR, FG, and SKI, as illustrated in
Fig. 5(d). Our findings revealed that the number of rounds had
undergone significant alterations for the AR and FG datasets.
As the calculation of vertices within each round of the Decre-
mental algorithm is small, the impact of the number of rounds
on performance is more pronounced. Hence, the Decremental
algorithm’s cost time does not decline entirely with the increase
in the deleted edge set.

https://qiangshenghua.github.io/papers/distributedcore.zip
https://networkrepository.com/index.php
http://snap.stanford.edu/data/

604 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 6. Scalability of algorithms (time or rounds required for different graph
sizes).

B. Scalability Evaluation

In this subsection, we evaluated the algorithms’ scalability
by adjusting the graph size. Our assessment focused on five
datasets: EUR, FRI, KON, OK, and SKI. Specifically, we cre-
ated new datasets based on the original datasets, with the size
of 6.25%, 12.5%, 25%, 50%, and 100% of original datasets,
and selected 1‰edges of the corresponding graph for inser-
tion/deletion. The experiment was conducted on four machines,
with 48 threads per machine. The experimental findings are
presented in Fig. 6, where the x-axis denotes the size of the
produced graph, and the y-axis indicates the time or number of
rounds cost by the algorithms.

According to the data depicted in Fig. 6(a) and (c), it can be
observed that with an increase in the size of the graph, both
the Global and Pipeline algorithms demonstrate a proportional
increase in their respective cost time. This outcome aligns with
our expectations, given that processing large graphs requires
more time. Moreover, we investigated the number of rounds cost
by Global and Pipeline algorithms, shown in Fig. 6(b) and (d),
which indicated that the number of rounds exhibits no substantial
correlation with the graph size. As demonstrated in Fig. 3, the
number of rounds primarily depends on the graph’s structure.

In distributed algorithms, the number of rounds and the
cost time are typically positively related, but the experimental
findings do not always conform to this norm. This is because in

Fig. 7. Parallelism of algorithms (execution time under varying numbers of
threads or machines).

the Global algorithm and the Pipeline algorithm, a substantial
number of vertices must be calculated during the initial few
rounds of convergence, necessitating more time. As such, the
time spent during each round is non-uniform.

As depicted in Fig. 6(e) and (f), the cost time of executing the
Decremental algorithm is positively correlated with the number
of rounds required. This can be attributed to the fact that during
each round of the Decremental algorithm, fewer vertices are
computed, resulting in a more consistent time spent during each
round. Consequently, for the Decremental algorithm, the cost
time is primarily contingent on the number of rounds rather
than the graph size.

C. Parallelism Evaluation

In this subsection, we conducted experiments to investigate
the impact of the number of threads and machines on the perfor-
mance of the algorithms. We utilized four data sets: DBLP, EUR,
KON, and OK. For each of these data sets, we selected 1‰of
edges as the edge set to be inserted/deleted. Specifically, we
tested the algorithms on four machines and adjusted the number
of threads per machine to 2, 4, 8, 16, and 32. Additionally, we
fixed the number of threads to 48 and varied the number of
machines from 1 to 5. The experimental results are presented
in Fig. 7, where the x-axis represents the number of threads or

HUA et al.: CORE MAINTENANCE ON DYNAMIC GRAPHS: A DISTRIBUTED APPROACH BUILT ON H-INDEX 605

Fig. 8. Comparison with the shared memory algorithms (Insertion).

machines, and the y-axis represents the time required to execute
the algorithms.

Based on the results shown in Fig. 7(a), (c) and (e), it can be
observed that the execution time of the algorithms generally
decreases as the number of threads increases. However, for
the relatively small graphs DBLP and EUR, using 32 threads
results in a longer execution time than 16 threads do for the
algorithms. This is because increasing the number of threads
can not only reduce computational overhead, but also increase
management overhead, so using more threads is not always the
optimal solution.

From Fig. 7(b), (d) and 7(f), it can be observed that the time
taken to execute the algorithm displays two trends as the number
of machines increases. In the case of larger graphs, OK and
KON, the time required initially decreases and then stabilizes
slightly rises. However, for smaller graphs such as DBLP and
EUR, the execution time continuously increases as the number
of machines increases. This can be attributed to the fact that the
increase in the number of machines not only increases the pro-
cessing power, but also leads to higher communication overhead.
The execution time of the algorithm is the sum of calculation and
communication time. More processors are generally required for
large graphs to reduce the calculation time, hence leading to the
initial decrease in execution time. On the other hand, adding
more machines increases the communication overhead for
smaller graphs, resulting in a slight increase in the overall time.

D. Comparisons With Existing Algorithms

This subsection presents a performance evaluation of three
algorithms: the Global algorithm (GA), the Pipeline algorithm
(PA), and the Decremental algorithm (DA). Furthermore, they
are compared with shared memory parallel algorithms and pri-
vate memory distributed algorithms.

The following evaluation compares our algorithms against
shared memory parallel algorithms, including shared memory
parallel hypergraph core maintenance algorithms using h-index
(GPA) [28], parallel algorithms based on joint edge sets (FA) [6],
and parallel algorithms based on superior edge sets (SA) [4].
The pregel-like algorithm GPA is implemented with Gemini
to ensure a fair evaluation. For FA and SA algorithms, their
approach is unsuitable for pregel-like, and thus we directly use
their source codes. This evaluation was conducted on a single
machine with 48 threads.

In this evaluation, we utilized four data sets: AR, BC, FG, and
OK. For the temporal graphs, the most recent i‰edges are se-
lected for insertion/deletion, where 1 ≤ i ≤ 5. For static graphs,
we randomly select i‰edges. The results of our experiments are
presented in Figs. 8 and 9. The x-axis represents the size of the
inserted/deleted edge set, while the y-axis denotes the cost time
ratio of various algorithms over either the Pipeline algorithm or
the Dcremental algorithm.

Based on the results shown in Figs. 8 and 9, our algorithms
outperform the other algorithms in all cases. For the insertion
case, the maximum speedup ratio of our algorithm is 4, compared
to GPA. Similarly, compared to FA and SA, the maximum
speedup ratio of our algorithm is 8 and 1000, respectively. The
experimental results also demonstrate that as the set of inserted
edges increases, the speedup ratio of our algorithm compared
to FA and SA also increases. This observation suggests that
our algorithms are more suitable for handling multi-edge inser-
tion/deletion due to their basis on the h-index, which exhibits
better parallelism. Additionally, our algorithm’s speedup ratio
is relatively stable compared to the GPA algorithm, which is
also based on the h-index.

In most cases examined, we observed that the Pipeline al-
gorithm outperforms the Global algorithm, except for BC. It
is noteworthy that both the Pipeline algorithm and the SA
algorithm are implemented based on the TRAVERSAL algo-
rithm. Our examination revealed that the SA algorithm con-
sumes considerable time on BC, indicating that the graph
traversal process takes a significant amount of time, thus
contributing to the increased time required by the Pipeline
algorithm.

Additionally, the performance comparison is extended to
private memory distributed algorithms, which includes the
distributed core decomposition algorithm (STATIC) [10], and
the state-of-the-art distributed core maintenance algorithm
(DBCA) [9]. These two pregel-like algorithms are implemented
with Gemini to ensure a fair evaluation. This evaluation was
conducted on four machines, with 48 threads per machine.
In this evaluation, we utilized four data sets: LJ, OK, SO,
and YG.

Based on the results shown in Figs. 10 and 11, our proposed
algorithms consistently demonstrate the lowest execution time.
Specifically, compared to the DBCA algorithm, our algorithms
achieve a speedup ratio of over 100 in cases involving inser-
tion and deletion. Additionally, as the size of the edge set for

606 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 9. Comparison with the shared memory algorithms (Deletion).

Fig. 10. Comparison with the distributed algorithms (Insertion).

Fig. 11. Comparison with the distributed algorithms (Deletion).

insertion and deletion increases, the speedup ratio of DBCA
also increases, indicating that our algorithm is better suited for
handling multi-edge insertion and deletion. It is worth noting that
the average speedup ratio achieved by our algorithm compared
to DBCA is greater than the average speedup ratio achieved
compared to FA and SA. The reduction in parallelism by DBCA
can be attributed to its need to conform to the distributed environ-
ment. Although its underlying principles share similarities with
FA and SA, DBCA has established more stringent criteria for
the edge set of insertion and deletion in order to accommodate
the distributed setting.

Our algorithms achieve the average speedup ratio of 2 and 8
for insertion and deletion, compared to the STATIC algorithm.
As the size of the insertion/deletion edge set increases, the
speedup ratio decreases, as expected. This is because the mainte-
nance algorithm requires more time to process larger edge sets,
bringing it closer to the performance of the static decomposition
algorithm.

VII. RELATED WORK

There are two different versions of distributed core decom-
position algorithms: (I) the peeling algorithms [8], [17]: these
algorithms first remove the vertices with the lowest degrees, then
repeat the process until all vertices have been removed. The core
number of v is equal to the degree of v when it is removed;
(II) the h-index [1] based algorithm [10]: each vertex updates
its core number based on its neighbors’ core numbers. When
there are no vertices whose core numbers change, the algorithm
terminates. Compared with the peeling algorithm, the h-index
based algorithm has a higher degree of parallelism and is more
suitable for distributed environments.

Since most graph applications are dynamic, core maintenance
attracts increasing attention. Sariyuce et al. [2] found that the
vertices’ core numbers may change by one when a single edge
is inserted/deleted. Based on this, a centralized single-edge core
maintenance algorithm was proposed. Zhang et al. [3] presented

HUA et al.: CORE MAINTENANCE ON DYNAMIC GRAPHS: A DISTRIBUTED APPROACH BUILT ON H-INDEX 607

an order-based technique for accelerating the centralized single-
edge core maintenance algorithm.

Wang et al. [4], Jin et al. [5], and Hua et al. [6] devised
parallel multi-edge algorithms based on centralized single-edge
algorithms [2]. They have various requirements for the in-
serted/deleted edges sets. If the inserted edges sets do not fulfill
the requirements, then the edges sets will be partitioned into mul-
tiple eligible edges sets which will be performed sequentially.
Gabert et al. [28] proposed an h-index-based shared memory
and parallel core maintenance algorithm on hypergraphs, which
differs from our algorithm in computing the initial h-index.

Considering that centralized algorithms may have the mem-
ory issues, Wen et al. [7] proposed centralized I/O efficient
single-edge algorithms. Although this method can somewhat
alleviate the memory issue, distributed algorithms might be
alternative solutions when the graph size is too large. Using a
technique similar to [2], Aridhi et al. [8] constructed distributed
single-edge processing algorithms based on various distributed
systems. When there are multiple inserted/deleted edges, the
above algorithms become inefficient. Weng et al. [9] presented
a distributed algorithm that can simultaneously handle multiple
edges with different core numbers.

VIII. CONCLUSION

This article aims to tackle the core maintenance problem
in a distributed manner. Existing distributed core maintenance
algorithms [8], [9] are all based on traversal and cannot simul-
taneously process the edges with the same core number, which
leads to a quick increase in the cost time when multiple edges
are inserted/deleted.

Inspired by the h-index [1] based distributed core decomposi-
tion algorithm [10] which can circumvent the above issues and
have a high degree of parallelism, we propose two h-index based
distributed core maintenance algorithms: the Global algorithm
and the Pipeline algorithm. Note that directly applying the
distributed core decomposition algorithm in dynamic graphs
will entail all vertices’ recalculations upon graph changes. Our
distributed core maintenance algorithms can avoid this issue by
presenting two techniques to identify the vertices whose core
numbers may change and to reduce the initial h-indices in the
convergence stage. The Global algorithm calculates the initial
h-indices without considering the graph connectivity and the
Pipeline algorithm takes advantage of it. The Pipeline algorithm
outperforms the Global Algorithm in most cases, but under-
performs the latter in graphs with a time-consuming traversal
processing. Compared to the state-of-the-art distributed mainte-
nance algorithm [9], in the case of both insertion and deletion,
the time speedup ratio is more than 100.

There are also some potential points in our work which
warrant further research. First, the algorithm introduced in this
paper is inspired by the TRAVERSAL algorithm [2] in cases
of single edge insertion/deletion. We notice that there are also
some other algorithms with excellent performance which have
not been employed in a distributed manner, such as the order-
based algorithm proposed in [3]. Exploring the parallelization of
these presents an intriguing avenue for future research. Another

possible future work is to find more efficient methods to lower
the initial h-index in the convergence step to further reduce the
cost time. The hierarchical core definition [27] which reflects
the connectivity of the k-core subgraph might be a potential
direction. Note that maintaining the hierarchical core numbers
will also bring additional overheads. Finally, efficient distributed
core maintenance algorithms for dynamic hypergraphs [28],
[29], [30], [32] have been receiving an increasing attention.
Extending our methods to hypergraphs is a tempting direction.

REFERENCES

[1] L. Lü et al., “The h-index of a network node and its relation to degree and
coreness,” Nature Commun., vol. 7, no. 1, pp. 1–7, 2016.

[2] A. E. Sarıyüce et al., “Incremental K-core decomposition: Algorithms and
evaluation,” VLDB J., vol. 25, no. 6, pp. 425–447, 2016.

[3] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in Proc. IEEE 33rd Int. Conf. Data Eng., 2017,
pp. 337–348.

[4] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q. -S. Hua, “Parallel algorithm
for core maintenance in dynamic graphs,” in Proc. IEEE 37th Int. Conf.
Distrib. Comput. Syst., 2017, pp. 2366–2371.

[5] H. Jin, N. Wang, D. Yu, Q. -S. Hua, X. Shi, and X. Xie, “Core maintenance
in dynamic graphs: A parallel approach based on matching,” IEEE Trans.
Parallel Distrib. Syst, vol. 29, no. 11, pp. 2416–2428, Nov. 2018.

[6] Q.-S. Hua et al., “Faster parallel core maintenance algorithms in dynamic
graphs,” IEEE Trans. Parallel Distrib. Syst, vol. 31, no. 6, pp. 1287–1300,
Jun. 2020.

[7] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/O efficient core graph
decomposition at web scale,” in Proc. IEEE 32nd Int. Conf. Data Eng.,
2016, pp. 133–144.

[8] S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis, “Distributed
k-core decomposition and maintenance in large dynamic graphs,” in Proc.
10th ACM Int. Conf. Distrib. Event-Based Syst., 2016, pp. 161–168.

[9] T. Weng, X. Zhou, K. Li, P. Peng, and K. Li, “Efficient distributed
approaches to core maintenance on large dynamic graphs,” IEEE Trans.
Parallel Distrib. Syst, vol. 33, no. 1, pp. 129–143, Jan. 2022.

[10] A. Montresor, F. D. Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” IEEE Trans. Parallel Distrib. Syst, vol. 24, no. 2, pp. 288–
300, Feb. 2013.

[11] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135–146.

[12] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-centric
distributed graph processing system,” in Proc. 12th USENIX Symp. Oper-
ating Syst. Des. Implementation, 2016, pp. 301–316.

[13] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, “PowerLyra:
Differentiated graph computation and partitioning on skewed graphs,”
ACM Trans. Parallel Comput., vol. 5, pp. 1–39, 2019.

[14] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I.
Stoica, “GraphX: Graph processing in a distributed dataflow framework,”
in Proc. 11th USENIX Symp. Operating Syst. Des. Implementation, 2014,
pp. 599–613.

[15] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:
Distributed graph-parallel computation on natural graphs,” in Proc. 10th
USENIX Symp. Operating Syst. Des. Implementation, 2012, pp. 17–30.

[16] R. Dathathri et al., “Gluon-async: A. bulk-asynchronous system for dis-
tributed and heterogeneous graph analytics,” in Proc. 28th Int. Conf.
Parallel Architectures Compilation Techn., 2019, pp. 15–28.

[17] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decomposi-
tion of networks,” 2003, arXiv:cs/0310049.

[18] H. Qin, R.-H. Li, G. Wang, X. Huang, Y. Yuan, and J. X. Yu, “Mining
stable communities in temporal networks by density-based clustering,”
IEEE Trans. Big Data, vol. 8, no. 3, pp. 671–684, Jun. 2022.

[19] L. Lin, P. Yuan, R.-H. Li, and H. Jin, “Mining diversified Top-r lasting
cohesive subgraphs on temporal networks,” IEEE Trans. Big Data, vol. 8,
no. 6, pp. 1537–1549, Dec. 2022.

[20] M. Kitsak et al., “Identification of influential spreaders in complex net-
works,” Nature Phys., vol. 6, no. 11, pp. 888–893, 2010.

[21] C.-Y. Huang, Y.-H. Fu, and C.-T. Sun, “Identify influential social net-
work spreaders,” in Proc. IEEE Int. Conf. Data Mining Workshop, 2014,
pp. 562–568.

608 IEEE TRANSACTIONS ON BIG DATA, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2024

[22] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “Large
scale networks fingerprinting and visualization using the k-core decom-
position,” in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 41–50.

[23] G. D. Bader and C. W. Hogue, “An automated method for finding molecu-
lar complexes in large protein interaction networks,” BMC Bioinf., vol. 4,
no. 1, pp. 1–27, 2003.

[24] P. Meyer, H. P. Siy, and S. Bhowmick, “Identifying important classes
of large software systems through K-core decomposition,” Adv. Complex
Syst., vol. 17, no. 07–08, 2014, Art. no. 1550004.

[25] H. Zhang et al., “Using the K-core decomposition to analyze the static
structure of large-scale software systems,” J. Supercomput., vol. 53,
pp. 352–369, 2010.

[26] X. Xiong, G. Zhou, Y. Huang, H. Chen, and K. Xu, “Dynamic evolution of
collective emotions in social networks: A case study of sina weibo,” Sci.
China Inf. Sci., vol. 56, no. 7, pp. 1–18, 2013.

[27] Z. Lin, F. Zhang, X. Lin, W. Zhang, and Z. Tian, “Hierarchical core main-
tenance on large dynamic graphs,” in Proc. VLDB Endowment, vol. 14,
no. 5, pp. 757–770, 2021.

[28] K. Gabert, A. Pinar, and Ü. V. Çatalyürek, “Shared-memory scalable k-
core maintenance on dynamic graphs and hypergraphs,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops, 2021, pp. 998–1007.

[29] B. Sun, T.-H. H. Chan, and M. Sozio, “Fully dynamic approximate k-core
decomposition in hypergraphs,” ACM Trans. Knowl. Discov. Data, vol. 14,
no. 4, pp. 1–21, 2020.

[30] Q. Luo, D. Yu, Z. Cai, X. Lin, and X. Cheng, “Hypercore maintenance
in dynamic hypergraphs,” in Proc. IEEE 37th Int. Conf. Data Eng., 2021,
pp. 2051–2056.

[31] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[32] Q.-S. Hua, X. Zhang, H. Jin, and H. Huang, “Revisiting core maintenance
for dynamic hypergraphs,” IEEE Trans. Parallel Distrib. Syst., vol. 34,
no. 3, pp. 981–994, Mar. 2023.

Qiang-Sheng Hua (Member, IEEE) received the
BEng and MEng degrees from the School of Com-
puter Science and Engineering, Central South Uni-
versity, China, in 2001 and 2004, respectively, and
the PhD degree from the Department of Computer
Science, The University of Hong Kong, China, in
2009. He is currently a professor with the Huazhong
University of Science and Technology, China. He is
interested in the algorithmic aspects of parallel and
distributed computing.

Hongen Wang received the BE degree from the
Huazhong University of Science and Technology, in
2020. He is currently working towards the master’s
degree with the School of Computer Science and
Technology, Huazhong University of Science and
Technology. His research interests include dynamic
graph algorithms and distributed computing.

Hai Jin (Fellow, IEEE) received the PhD degree from
the Huazhong University of Science and Technology
(HUST), in 1994. He is a professor with the School
of Computer Science and Technology, Huazhong
University of Science and Technology. He was a
postdoctoral fellow with the University of Southern
California and The University of Hong Kong. His re-
search interests include HPC, grid computing, cloud
computing, and virtualization.

Xuanhua Shi (Senior Member, IEEE) received
the PhD degree in computer engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2005. He is currently a professor
with the National Engineering Research Center for
Big Data Technology and System Services Com-
puting Technology and System/Services Computing
Technology and System Lab, Huazhong University
of Science and Technology (China). From 2006, he
worked as an INRIA postdoctoral with PARIS team
at Rennes for one year. His research interests cloud

computing and Big Data processing. He published over more than 100 peer-
reviewed publications, received research support from a variety of governmental
and industrial organizations, such as National Science Foundation of China,
Ministry of Science and Technology, Ministry of Education, European Union,
Alibaba, ByteDance, Intel and so on. He is a senior member of CCF.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

