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Abstract— Existing literature on planning for electric vehicle
charging station (EVCS) fails to consider uncertain factors in
power systems, such as load fluctuations and the impact of
EV integration. Consequently, using deterministic power flow
(DPF) algorithms for EVCS planning is unreliable. To address
this, we propose a probabilistic model for EV charging loads
and introduce a novel dynamic system voltage stability (DSVS)
index. We then present an effective optimization model for EVCS
site and size planning using stochastic power flow (SPF). Our
model aims to maximize capital gains on investment costs of
EVCS, minimize yearly EV users’ average wait time and distance
to charge costs, and minimize the DSVS index. To simplify
the problem, we use the super efficiency data envelopment
analysis (SEDEA) method to determine objective weights and
transform the multiobjective optimization problem into a single-
objective one. Finally, we jointly solve the model using the
voronoi diagram and adaptive differential evolution optimization
algorithm (ADEOA). We verify the effectiveness of our proposed
method using a case study with the IEEE 33-node distribution
network topology diagram and a planning area diagram.

Index Terms— Dynamic system voltage stability (DSVS), elec-
tric vehicle charging station (EVCS), site and size planning,
stochastic power flow (SPF), super efficiency data envelopment
analysis (SEDEA), voronoi diagram.

NOMENCLATURE

i Electric vehicle (EV) index.
t Time segment index.
P i

t , P i
t−1 Charging power of the i th EV at time t

and t − 1.
SoCi

exp Expected state of charge (SoC) of the
i th EV.

SoCi
t , SoCi

t−1 SoC of the i th EV at time t and t − 1.
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Bi Battery capacity of the i th EV.
η Charging efficiency.
Pmax Maximum charging power.
f1 Annual profit of EV charging station

(EVCS).
F s Annual electricity sales cost.
Fc Annual construction cost.
Fp Annual electricity purchase cost.
Fom Annual operating and maintenance costs.
j EVCS index.
NEVCS Total number of EVCS.
E j,t

EVCS Total charging energy of the j th EVCS at
time t.

C t
sal Electricity sales cost at time t.

D Days per year.
T Hours per day.
pe,t

sl Expected charging power of the slow EV
supply equipment (EVSE) at time t.

σ t
sl Standard error of the slow EVSE at

time t.
Z∂/2 Confidence level value.
pe,t

fa Expected charging power of the fast
EVSE at time t.

σ t
fa Standard error of the fast EVSE at time t.

N j
sl Number of slow EVSE in the j th EVCS.

N j
fa Number of fast EVSE in the j th EVCS.

Cfixcons Fixed construction cost.
P j

EVCS Total construction cost of the EVSE of the
j th EVCS.

Cconssl Construction cost of each slow EVSE.
Pfa Rated charging power of fast EVSE.
Cconsfa Construction cost of each fast EVSE.
C j

land Land price in the j th EVCS.
r Discount rate.
o Payback period.
C t

pur Energy purchase cost at time t.
Conversion factor.

f2 EV user’s charging convenience.
Fw Annual EV user waiting time cost.
Fd Annual EV user distance traveled to

charge cost.
N j

EV Total number of EVs in the j th EVCS.
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τs Proportion of EV users choosing slow
charging.

Ts Working hours for slow charging mode.
Tsc Average charging duration time for slow

charging.
Cque Queuing time cost for EV user which is

the average hourly income.
W j

que j th EVCS’s average queuing time.
C EV charging times per day.
τf Proportion of EV users choosing fast

charging.
ρ Average utilization for this queueing sys-

tem which represents the fraction of the
service capacity used.

P0 EVSE idle rate representing the system is
empty at any particular time.

λ Average rate of customer’s arrival at the
station.

ε Average system service rate.
Tf Working hours for fast charging mode.
k Fast EVSE index.
X j Abscissa position of the j th EVCS.
Y j Ordinate position of the j th EVCS.
x i

j Abscissa position of the i th EV in the j th
EVCS.

yi
j Ordinate position of the i th EV in the j th

EVCS.
b Average EV energy consumption per kilo-

meter.
IP Injected power vector of node active and

reactive power.
G Power injection function.
U State vector composed of node voltage

amplitude and phase angle.
m, n Grid node index.
1Wm,t Injected active power disturbance of node

m at time t.
1Qm,t Injected reactive power disturbance of

node m at time t.
Wm,t Injected active power of the mth node.
Qm,t Injected reactive power of the mth node.
Um,t , Un,t Voltages of the nth and the mth node at

time t , respectively.
Nnode Total number of nodes.
Gmn Real part of the nodal admittance matrix.
δmn Phase angle difference between node m

and n.
Bmn Imaginary part of the nodal admittance

matrix.
1Um,t Voltage disturbance at node m at time t.
Jt Jacobian matrix at time t.
1W L

m,t Baseload disturbance of the mth node at
time t.

1W EVCS
j,m,t Charging power disturbance of the j th

EVCS on the mth node at time t.
B j

m Boolean value, value is 1 when j connect
into the mth node, else it is 0.

W e
m,t Expected value of node injected

power of the mth node at time t.
W L

m,t Expected value of baseload of the
mth node at time t.

W EVCS
j,m,t Expected charging power of the

j th EVCS on the mth node at
time t.

U e
m,t Expected value of node voltage of

the mth node at time t.
X Random variable.
l Raw moment order index.
al(X) lth-order raw moment of X.
h Random variable index.
ph Probability of X = x l

h.
x l

h Discrete point data in the lth order.
K l(1Wm,t ) lth-order cumulant of the injected

active power of the mth node at
time t.

K l(1Um,t ) lth-order cumulant of the node
voltage of the mth node at time t.

µ Mean value.
C l(1Um,t ) Coefficient of the lth-order cumu-

lant of the node voltage of the mth
node at time t.

ϕl(1Um,t ) lth derivative of the standard
normal distribution function with
respect to 1Um,t .

I DSVS Dynamic system voltage stability
(DSVS) index.

U upp
m,t Upper voltage boundary of the mth

node at time t.
U low

m,t Lower voltage boundary of the
mth node at time t.

U N Nominal voltage.

m,t , m,t ξm,t , ϱm,t Slack variable.
f3 System’s minimum dynamic volt-

age stability index.
s Output index.
z Input index.
v Decision-making unit (DMU)

index.
βv,z Weight coefficient of the zth out-

put value of the vth DMU.
yv,z zth output value of the vth DMU.
αv,s Weight coefficient of the sth input

value of the vth DMU.
xv,s sth input value of the vth DMU.
ϑv Efficiency value of the vth DMU.
ω1, ω2, ω3 Weight coefficients.
βv,1 Weight coefficient of the output of

the vth DMU.
αv,1, αv,2 Weight coefficients of the input of

the vth DMU, respectively.
max f1, min f2, min f3 Fixed values with respective opti-

mal solutions without considering
the other two objective functions.
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fv,1, fv,2, fv,3 Optimal solutions obtained by the opti-
mization algorithm after the vth input and
output weight vector.

U min Minimum values of the node voltage
amplitude.

U max Maximum values of the node voltage
amplitude.

Pmax
m,t Maximum access power allowed by the

mth node at time t.
Rmax Maximum EVCS service radius.
W max

q Maximum waiting time.
Psl Rated charging power of slow EVSE.
d(x, Gu) Euclidean distance between x and Gu .
d(x, G j ) Euclidean distance between x and G j .
Gu, G j Location of the uth and the j th EVCSs.
x Location of each EV.

I. INTRODUCTION

DUE to weather and battery technology limitations, the
actual cruise range of most EVs on the market is between

70% and 80% of the standard operating range. In some cases,
it may be less than 50%, which easily affects drive mileage,
causing charging anxiety, negative purchase intention, and
consumption enthusiasm of potential EVs customers [1], [2].
Due to the current economic and technical factors, it is
difficult to make substantial progress in battery life in the
short term. Therefore, to promote EV development, it is nec-
essary to build sufficient EVCSs. However, under the current
national EV stimulus subsidy policy, many stakeholders build
EVCSs and EVSEs without comprehensive planning. This
act ignores essential factors such as the consistency between
layout, infrastructure location, and the distribution of charging
demand, thus resulting in a low average utilization rate of
EVSE of about 4% [3]. Because of this, it is necessary to
build an optimization model for the site and size planning
of EV charging facilities to improve the construction of the
charging infrastructure service network.

Planning the site and size of EVCSs involves multiple
stakeholders. These stakeholders comprise EVCS owners and
operators, property owners and managers, EV manufacturers,
government agencies, utility companies, or distribution com-
panies (DisCos). Among these groups, charging station own-
ership and operation can be attributed to EV manufacturers,
utility companies, and individuals and companies involved in
managing and owning the charging stations.

At present, the factors researchers consider when creating
an optimization model for siting and sizing planning of
EVCSs is incomplete. Some studies, such as those referenced
in [4] and [5], consider the fixed cost of charging station
construction and the cost of transportation charging to min-
imize the total yearly cost. The balance of power flow is
considered the constraint to building an optimal allocation
algorithm of EVCSs. Ugirumurera and Haas [6] present a
methodology to determine the optimal resource size that
minimizes the charging system’s investment costs. Yan and
Ma [7] formulate the optimal component sizing problem of the
charging station to mitigate the entire system’s economic cost.
Hussain et al. [8] determine the optimal energy storage

system (ESS) capacity using the annualized ESS cost, penalty
cost for buying power during peak hours, and resilience viola-
tions. Luo et al. [9] and Zhou et al. [10] propose an optimiza-
tion model to jointly deploy EVCSs and distributed generation
(DG) resources by minimizing annualized social costs, i.e.,
investment, operation, fuel and carbon emission, purchase
of electricity, and EV battery degradation. Duan et al. [11]
propose a collaborative planning method for the distribution
network of EVCS. The upper model sets the charging station’s
capacity to maximize the annual social comprehensive benefit,
and the lower model sets the charging station’s location to min-
imize the distribution network planning cost. Guo et al. [12]
propose a multiobjective EVCS planning model to minimize
pollutant costs (PM10, SO2, NOx , and CO2) and social costs.
However, these studies only consider the interests of operators,
ignoring the impact of EV users’ convenience and the power
grid’s reliability on EVCS planning. Most EV users prefer to
charge their vehicles based on the proximity principle in real
life, which means the layout of charging stations will affect the
spatial distribution of EV charging requirements. Additionally,
if only social costs are considered, it can negatively impact the
reliability of power grid operation. There is a mutual coupling
relationship between these three factors (operator interests,
EV user convenience, and the reliability of power grid), and
neither is indispensable.

Ji et al. [13] proposed an approach to efficiently determine
the locations and sizes of solar energy-assisted charging sta-
tions for an urban area. The approach considered construc-
tion cost, solar energy fluctuation, and user requirements.
Parastvand et al. [14] modeled the traffic flow over the
EV network as a complex network and used figure prop-
erties to determine the optimal site and size for EVCSs,
which minimized waiting times at the charging stations.
Chen et al. [15] developed an algorithm that determined the
charging station location by minimizing the travel cost of
EV users, while the maximum charging load of the charging
station in a week determined the capacity. Liu and Bie [16]
proposed an allocation model that minimized the annual cost,
which included the charger investment cost, land purchase
cost, grid reinforcement cost, and EV user queuing time.
Ren et al. [17] formulated an EVCS allocation problem that
minimized the construction and operation cost and the wastage
cost in EV user charging. Zhu et al. [18] addressed the EVCS
location and sizing problem by minimizing the EVCS’s cost
(installing cost and management cost) and the EV user’s cost
(station access cost and charging a cost). Although these
references consider the interests of operators and EV users,
they fail to address the impact of charging stations on the
stability of grid operation. Large-scale EV operations can
inevitably impact the grid’s operation and, in severe cases,
cause grid collapse. Therefore, the planning of the charging
station and its impact on the grid must be considered.

Deb and Gao [19] formulate the EVCS placement problem
by minimizing the social cost, penalty paid cost for voltage
deviation, and travel time cost. Hashemian et al. [20] pro-
pose a mixed-integer linear programming model that con-
siders the social cost, queueing, and travel cost, cost of
installing volt-ampere (VA) capacity for stations, and costs
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of purchasing active and reactive power from the upstream
network to solve the fast charging station’s allocation problem.
Zhang et al. [21] propose a multicriteria-oriented method for
efficiently deploying EVCS infrastructure to solve the nonde-
terministic polynomial (NP)-complete problem by minimizing
queueing time and grid loss. Erdinc et al. [22] propose a
method to plan the optimal location of EVCSs with max-
imum capacity by considering the safety and stability of
the distribution network. Wang et al. [23] present a mul-
tistage collaborative planning model for the coupled EVCS
infrastructure and power distribution network to minimize
the distribution system’s investment cost and energy loss
while maximizing the annually captured traffic flow. Awasthi
et al. [24] present an optimal placement strategy of EVCS
by considering the construction cost of EVCS and grid power
quality parameters. In [25], an optimization-based algorithm
is proposed to specify the optimum size of the storage system
in the charging station by minimizing the cost of the storage
system and the impacts of station operation on the power grid.
Henrique et al. [26] formulate a two-stage approach to mini-
mize the grid loss and maximize the proximity of charging
stations to the load centers. Although the above literature
considers investors, EV users, and the power grid at the same
time, it ignores uncertain factors in the system. In real life,
numerous uncertainties exist in existing power grid systems,
such as the randomness of system parameters, load profiles,
and EV user charging behavior, and these uncertainties can
significantly impact the results of EVCS planning.

Zeb et al. [27] use the arrival time, departure time, and
traveled distance of EVs to build a probabilistic model of
charging behavior and select the location of the EVCS with
the objective function of minimizing the social cost and grid
loss cost. Amini et al. [28] and Kazemi et al. [29] proposed an
approach for simultaneously allocating distributed renewable
resources (DRRs) and EV parking lots by minimizing grid
loss and cost. The authors considered the capacity credit
of DRRs and parking lot hourly electricity demand. Fan
et al. [30] modeled DG and load uncertainties and proposed an
optimal integrated distribution plan by considering social cost,
PV and wind operation cost, power loss, and carbon emission
cost. The literature above considers system uncertainty but
uses deterministic power flow (DPF) calculation to solve the
problem, which cannot fully reflect the system’s operation and
will affect the robustness of the planning model. Therefore,
research on stochastic power flow (SPF) algorithms for power
system analysis is crucial. SPF estimation not only considers
the probability distribution of random variables and parameters
in the network during power flow design and the influence
of load randomness on the power grid’s operation state, but
also can obtain more abundant information, such as node
voltage and line power flow expectation and standard deviation
values and distribution intervals. This information can provide
a reference basis for assessing the operation risk of the power
grid and making planning and development decisions. Hence,
the results obtained using SPF are more realistic and reliable
than the results of DPF.

Currently, very few literature pieces use SPF to solve
charging station planning, most of which are used to analyze

the impact of various renewable energy sources on the power
grid. In [31], a multiobjective problem is proposed by con-
sidering energy loss, voltage deviation, and land cost to
determine the EVCS location. The uncertainties of EV have
been considered in this work using the 2-m point estimation
method (2PEM). Although 2PEM is easy to calculate and
implement, its calculation accuracy is low, and it has a certain
level of computational complexity when dealing with the time
and space correlation of input variables, which affects the
robustness of charging station planning. In [32], an SPF analy-
sis method is proposed to evaluate the impact of uncertainties
on the power flow of microgrids (MGs). Zhang et al. [33] use
the SPF algorithm to consider the random characteristics of
DG and evaluate the influence of DG on the voltage quality
of the distribution network. In [34], an SPF framework for
optimal operation is proposed to be solved by the Monte Carlo
simulation (MCS) method, considering generation cost as an
objective. Lin et al. [35] use a Nataf transformation-based
unscented transformation (UT) to conduct probabilistic analy-
sis for an autonomous hybrid ac/dc MG. Wei et al. [36] analyze
the impact of large-scale wind power on the grid’s voltage limit
and flow distribution based on an SPF algorithm. Li et al. [37]
aim to study the impact of future load demands and rooftop
PV on the existing power network via SPF.

Most charging station planning problems involve multiple
objectives, which are often simplified into single-objective
problems using techniques such as the linear weighting
method [38], the ideal point method [39], or the objective
function method [40]. The appropriate weight coefficient plays
a crucial role in achieving optimal results. For instance,
Jing et al. [41] used the ε-constraint approach to identify
the nondominated optimal solution set for multiobjective
optimization. They also developed a comprehensive eval-
uation model combining analytic hierarchy process (AHP)
and gray relational analysis (GRA). The proposed evaluation
model considers different criteria from various perspectives
and scales to assess the system performance. However, some
existing studies, such as [42] and [43], have used subjective
weight selection methods like AHP and hesitant fuzzy inde-
pendent judgment (HFIJ) for multiobjective analysis. These
methods lack objectivity and may not be appropriate for
charging station planning models. Using the weighted sum
method and fuzzy control, Villaobos et al. [44] proposed a
multiobjective optimization method for vehicle-to-grid (V2G)
scheduling. However, this approach relies heavily on expert
knowledge and intuition, which may lead to inconsistencies
or biases if decision-makers’ assumptions or knowledge are
incorrect or incomplete. Similarly, Bitencourt et al. [45] used
hierarchical clustering to define charging station service zones
based on EV owners’ locations. However, this method lacks
a straightforward method to determine the optimal number of
clusters, which requires empirical decisions that may affect
the accuracy of the resulting clusters. Liu et al. [46] proposed
a multiobjective charging station location model that inte-
grates an improved multiobjective particle swarm optimization
(MOPSO) process and an entropy weight-based evaluation
process. Although simple, this method may lead to weight
distortion and produce valid results. This article proposes a
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super efficiency data envelopment analysis (SEDEA) approach
to overcome this limitation in selecting weight coefficients.
SEDEA considers the weight of each input and output of the
DMU as a variable and evaluates it from the perspective that
is most beneficial to the DMU. Unlike other methods, SEDEA
does not rely on assumptions or subjective human factors,
which makes it more reliable.

To address the issues outlined above, we propose a com-
prehensive optimization framework for planning the size and
location of EVCSs. This model considers the profit of the
EVCS operator, the convenience of EV users, and the stability
of the power grid, utilizing SPF to account for uncertainties
in both EV charging and overall grid demand. The key
contributions of this article can be summarized as follows.

1) By considering both static and dynamic information
regarding EVs, we have developed separate probability
models for fast charging loads and slow charging loads,
thus enabling a more practical approach to construct
charging station models.

2) Our framework is designed to achieve the following
objectives.

a) Utility Operator Benefits: We have developed an
objective function that maximizes the difference
between yearly revenue and investment cost of
EVCSs, considering operator benefits.

b) EV User Convenience: We have also developed
an objective function that minimizes the yearly
average of EV user waiting time and distance cost.

c) Considering System Uncertainties: We account for
randomness in the distribution network by com-
bining cumulants and Gram–Charlier expansion
methods to evaluate dynamic SPF, incorporating
both baseload and EVCS load. We have also
proposed a DSVS index to analyze and improve
the grid’s stability and established an objective
function based on the index.

3) To choose the most effective weights for each objective
function in our optimization model, we have employed
the SEDEA. Additionally, we have used the linear
weighted sum method to transform the multiobjective
problem into a single-objective problem, thus resulting
in improved optimization results.

The rest of this article is organized as follows.
Section II describes the process of building a probabilistic

model of EV charging load. Section III describes the mathe-
matical optimization model of EVCS siting and sizing plan and
the SEDEA method. Section IV describes the joint solution
method combing the voronoi diagram and adaptive differential
evolution optimization algorithm (ADEOA). Case study and
simulation results are discussed in Section V. Section VI
summarizes findings and conclusions.

II. EV CHARGING LOAD PROBABILISTIC MODELING

The development of an allocation model for EVCSs heavily
relies on the accuracy of the EV charging load probability
model. However, as the EV market is still in the early stages of
development in many countries, a limited amount of EV data is

TABLE I
EV INFORMATION

Fig. 1. Hourly plug-in time PMF.

available for research. Most literature in this field only builds
charging load models based on EV user travel activities, which
may not accurately reflect real-world scenarios. Therefore, this
article proposes a more practical and comprehensive approach
for building a probabilistic model of EV charging load.

Step 1: Collection of each EV’s battery information, which
is mainly divided into static information and dynamic infor-
mation:

The static information of an EV mainly includes the model
type, battery capacity, and maximum charging power. Table I
provides the necessary data for the first two pieces of infor-
mation, and the EV model and battery capacity for each EV
will be randomly generated according to the sales rate in
Table I [47]. The maximum charging power for an EV is
determined by the charging mode the EV user selects, which
is either 50 or 7 kW.

On the other hand, the dynamic information of an EV
involves the plug-in time, parking duration time, and initial
SoC. In [47], probability mass function (PMF) models for
these three pieces of information were developed using Fed-
eral Highway Administration (FHWA) data, as presented in
Figs. 1–3. Based on these PMF models, the charging behavior
of each EV is predicted using the Monte Carlo method.

Step 2: Using the obtained information of each EV, calculate
the uncoordinated charging load profile of each vehicle. Unco-
ordinated EV charging refers to charging immediately after
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Fig. 2. Hourly parking duration time PMF.

Fig. 3. Hourly initial SoC PMF.

arriving at the destination and stopping when fully charged.
During the entire charging process, it is directly charged at
the maximum allowable charging power until completion. The
charging power of each vehicle during the noncharging period
is 0, and the charging power during the charging period is

P i
t = min


(

SoCi
exp − SoCi

t

)
× Bi

η
, Pmax

 (1)

S.t. SoCi
t = SoCi

t−1 +
P i

t−1 × η

Bi
. (2)

Step 3: Repeat Step 1–Step 2 to generate the most charging
load profiles for EVs, which is set to 50 000 times in this
article.

Step 4: This article assumes that the EV charging load
follows a normal distribution. The mean and standard deviation
of the EV charging probability distribution in each period are
calculated using the obtained EV charging power of all EVs
during that period.

III. MATHEMATICAL MODEL

The planning of EVCSs is a complex endeavor that requires
consideration of multiple factors. If operators prioritize cost
reduction, they may construct a limited number of EVSEs,
thus resulting in inconvenience to EV users and longer waiting
periods. Conversely, building a large number of EVSEs to
generate more revenue can reduce users’ waiting times, but it
may also overload the grid and lead to potential collapse. Nev-
ertheless, constructing a large number of EVSEs can also lead

to the underutilization of services, thus resulting in losses. It is
clear that the overall profits of EVCSs, EV users’ convenience,
and grid reliability are interdependent and must be considered
together when planning EVCSs. Hence, this article considers
both the overall profits of EVCSs, EV users’ convenience, and
grid reliability and establishes a multiobjective optimization
model to plan the siting and sizing of EVCSs. The siting
process involves identifying the best location for EVCS, while
sizing determines the number of fast and slow EVSEs that
each station can accommodate. To determine the importance
of each objective function, we employ the SEDEA method
and use the linear weighted summation method to transform
the multiobjective programming model into a single-objective
one. The optimal planning scheme for the final EVCS is then
determined through optimization. By using a comprehensive
approach, we can ensure that the final plan optimizes all
three factors to create a well-functioning and efficient charging
station for EV users.

A. Annual Profit of EVCS

The installation of EVCSs hinges on supporting infras-
tructure development, necessitating the need to balance both
investment costs and anticipated returns. To achieve this, the
goal of maximizing the difference between yearly revenue and
investment cost of the EVCS is assessed using the following
equation:

max f1 = F s
−
(
Fc

+ Fp
+ Fom). (3)

1) The yearly EVCS electricity sales cost: The electricity
sales cost refers to the annual cost of EVCSs selling
electricity to EV users; this is evaluated by using the
following equations:

F s
=

NEVCS∑
j=1

T∑
t=1

E j,t
EVCS × C t

sal × D (4)

E j,t
EVCS =

 (
pe,t

sl + Z ∂
2
× σ t

sl

)
× N j

sl

+

(
pe,t

fa + Z ∂
2
× σ t

fa

)
× N j

fa

. (5)

2) The yearly EVCS construction cost: The construction
cost mainly includes the purchase cost of the EVSEs,
fixed cost, and the EVCS land cost. The cost of each
charging station’s facilities is related to the total number
of EVSEs. The fixed cost is the essential expenses
required for the construction of the charging station, i.e.,
the survey, design, construction, and management of the
EVCS [48]. The land cost is generally related to the
number of EVSE in the EVCS, and the specific layout
is shown in Fig. 4. To install a connector, a minimum
width of 9’ and a length of 18’ are required. A minimum
clearance of 3’ between them is also required if multiple
connectors are needed. For each connector, an assumed
area requirement of 25 m2 is stated in this article [49].
The yearly construction cost is the cost allocated to
the charging station each year throughout the operating
cycle. It is related to the payback period of the EVCS
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Fig. 4. Layout of EVCS.

and the discount rate, which is expressed as follows:

Fc

=

(
Cfixcons

+
∑NEVCS

j=1

(
P j

EVCS + C j
land × 25 ×

(
N j

sl + N j
fa

)))

×

(
r(1 + r)o

(1 + r)o
− 1

)
(6)

P j
EVCS

= N j
sl × Cconssl + N j

fa × Pfa × Cconsfa . (7)

3) The yearly EVCS electricity purchase cost: The yearly
electricity purchase cost refers to the cost of purchasing
electricity from the grid by the EVCSs each year,
as shown in the following equation:

Fp
=

NEVCS∑
j=1

T∑
t=1

E j,t
EVCS × C t

pur × D. (8)

4) The yearly EVCS operating and maintenance costs:
The operating and maintenance costs of the charging
station mainly include the equipment maintenance and
employee wages, which can be converted based on the
construction cost of the charging station

Fom

=

(
Cfixcons+∑NEVCS

j=1

(
P j

EVCS + C j
land × 25 ×

(
N j

sl + N j
fa

)))
× (1 + ). (9)

B. EV User’s Charging Convenience

When planning for EVCSs, it is important to consider both
the profitability of the EVCS and the convenience of EV
users during charging. To achieve this, we have formulated
the objective function f2 aiming to minimize the combined
cost of yearly EV user waiting time and the distance traveled
to charge, as depicted in the following equation:

min f2 = Fw
+ Fd. (10)

1) The yearly EV user waiting time cost: Each EVCS
supports two charging modes: slow charging and fast
charging. The charging time for slow charging is long,
with an average charging time of about 8 h. EV users
under this service go about their endeavors once charg-
ing starts and return after charging is done; hence, slow

charging has no waiting cost. Therefore, the total daily
occupancy of slow EVSEs in the j th EVCS is

N j
sl =

⌈
N j

EV × τs
Ts
Tsc

⌉
+ 1. (11)

The average charging time for fast changing is about an
hour; the EV user normally waits at the EVCS until
charging is complete. Waiting costs are incurred for
charging during working hours [50]. Based on [47],
most EV users patronize fast charging from 8:00 to
18:00, while few charges outside this range. Therefore,
we assume the working hours for estimating fast charge
waiting cost as 8:00–18:00.
The EV users’ cost of waiting is the time cost incurred
due to delays in accessing the charging service. As most
users prefer fast charging during working hours, and user
income is often calculated based on time, we derive the
waiting cost for users from their waiting time, using per
capita hourly income as a basis [51]. Building on this
premise, we have formulated an objective function to
minimize the waiting time cost for EV users, as shown
in (12). In addition, to reduce EV users’ waiting time
without wastage of resources, we have implemented an
M/M/S queuing system model as an additional condi-
tion, outlined in (13)–(16)

Fw
=

NEVCS∑
j=1

Cque × W j
que × N j

EV × c × τf × D (12)

W j
que =

(
N j

faρ
)N j

fa
× P0(

N j
fa!

)
(1 − ρ)2

× λ

(13)

P0 =

N j
fa−1∑

k=0

(
λ

ε

)k

k!
+

(
λ

ε

)N j
fa(

N j
fa

)
!(1 − ρ)


−1

(14)

λ =
N j

EV × c × τf

Tf
(15)

ρ =
λ

ε × N j
fa

. (16)

2) The yearly EV user distance charge cost: As the user
travels to the EVCS, their battery power is partially
depleted, which is directly linked to the distance between
their starting point and the EVCS. The further the
distance, the greater the depletion of the battery power,
thus resulting in higher charging costs. To quantify this
relationship, we convert the driving distance into the
distance traveled to charge cost using the following
equation:

Fd

=

NEVCS∑
j=1

N j
EV∑

i=1

√(
x i

j − X j

)2
+

(
yi

j − Y j

)2
× b × Csal×D.

(17)
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C. Stochastic Stability of System Voltage

EVCSs are typically directly connected to the power grid,
and each new station built adds a considerable charging load
to the grid. This load can impact voltage stability and even
collapse if not managed properly. As a result, maintaining
voltage stability is crucial for the safe and reliable operation
of the distribution network. Although many studies consider
voltage limits a constraint at this stage, they only ensure that
the EVCS planning meets the existing requirements. However,
with the increasing number of EVs, the EVSE capacity within
the EVCS must also expand to meet the rising demand for
charging. Therefore, creating an objective function with a
voltage limit becomes necessary to allow as many EVs as
possible to connect to the grid while maintaining voltage
stability.

The conventional method of calculating DPF is not optimal
because it fails to consider the random distribution of the
network and the time-varying nature of power load, which
introduces uncertainty in power flow analysis. We propose
an SPF calculation method that combines the cumulants and
Gram–Charlier expansion approach to address this. By analyz-
ing the power flow using the probability density function (pdf),
we introduce a DSVS index to assess the voltage stability of
the power system. Finally, we establish an objective function
using the DSVS index to enhance the grid’s stability.

1) SPF Formulation: The equations of the grid power
injections are as follows [36]:

IP = G(U ). (18)

When the injected power of node m has a disturbance error
at time t , the power equation is expressed as follows:{

1Wm,t = Wm,t −Um,t
∑Nnode

n=1 Un,t (Gmncosδmn + Bmnsinδmn)

1Qm,t = Qm,t −Um,t
∑Nnode

n=1 Un,t (Gmnsinδmn − Bmncosδmn).

(19)

Equation (20) is expanded according to Taylor Series,
ignoring the high-power terms above the second degree, and
simplified processing into a linear equation system, as shown
in the following equations:

1Wm,t = Jt · 1Um,t (20)

1Wm,t = 1W L
m,t +

NEVCS∑
j=1

1W EVCS
j,m,t × B j

m (21)

B j
m =

{
1, if j connect the m th node
0, else

(22)

Considering the node injected power Wm,t and node voltage
Um,t under uncertainty, both can be expressed as two compo-
nents: expected value and random disturbance

Wm,t = W e
m,t + 1Wm,t (23)

W e
m,t = W L

m,t +

NEVCS∑
j=1

W EVCS
j,m,t × B j

m (24)

Um,t = U e
m,t + 1Um,t . (25)

By combining (18) and (20)–(25), the following two equa-
tions can be further obtained:

W e
m,t = G

(
U e

m,t

)
(26)

1Um,t =
(
J−1

t

)
· 1Wm,t . (27)

Let X be a random variable, if E(X l) (l = 1, 2, . . .) is exists,
then it is called the lth-order raw moment of X , denoted as
al(X). When the random variable X is discrete, the l-order
raw moment al(X) is expressed as

al(X) = E
(
X l)

=

n∑
i=1

ph x l
h . (28)

According to the functional relationship between the cumu-
lants and the raw moment, the cumulants K l(1Wm,t ) of the
power load and the cumulants K l(1Um,t ) of the node voltage
can be obtained

K 1
(
1Wm,t

)
= a1

(
1Wm,t

)
= µ, l = 1

K l
(
1Wm,t

)
= al

(
1Wm,t

)
−
∑l−1

j=1 A j
l−1a j

(
1Wm,t

)
K l− j

(
1Wm,t

)
, l ≥ 2

(29)

A j
l−1 =

(l − 1)(l − 2) · · · (l − j)
j !

(30)

K l(1Um,t
)

=
(
J−1

t

)l
· K l(1Wm,t

)
. (31)

After K l(1Um,t ) is obtained, the voltage pdf can be
obtained by approximating the Gram–Charlier series expan-
sion. In the power system, the Gram–Charlier series can
expand the random variable of a distribution function into a
series composed of the derivatives of normal random variables.
The series coefficient is composed of the cumulants of each
random variable. The pdf voltage of the mth node at time t is
obtained by the Gram–Charlier series as follows:

f
(
1Um,t

)
=

∞∑
l=1

C l(1Um,t
)
ϕl(1Um,t

)
. (32)

C l(1Um,t ) is obtained from K l(1Um,t ), as shown in the
following equation:

C0(1Um,t
)

= 1
C1(1Um,t

)
= C2(1Um,t

)
= 0

C3(1Um,t
)

= −
K 3
(
1Um,t

)
(
K 2
(
1Um,t

)) 3
2

C4(1Um,t
)

=
K 4
(
1Um,t

)
+ 3

(
K 2
(
1Um,t

))2(
K 2
(
1Um,t

))2 − 3

...

(33)

2) DSVS Index: According to (29)–(31), the cumulants
K l(1Um,t ) of the node voltage is obtained as K 1(1Um,t )

and K 2(1Um,t ) which are the expectation and the variance
of f (1Um,t ), respectively. From this, the upper and lower
voltage boundaries of the mth node at time t can be obtained
as follows:

U upp
m,t = K 1(1Um,t

)
+ Z∂/2 ∗

∣∣∣∣√K 2
(
1Um,t

)∣∣∣∣ (34)

U low
m,t = K 1(1Um,t

)
− Z∂/2 ∗

∣∣∣∣√K 2
(
1Um,t

)∣∣∣∣. (35)
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To verify how close the overall pdf of the voltage is to
the nominal voltage U N , we propose a DSVS index. The
mth node system voltage stability index at time t is shown
in the following equation:

I DSVS(Um,t
)

=

(∣∣U upp
m,t − U N

∣∣
U N +

∣∣U low
m,t − U N

∣∣
U N

)
×100%.

(36)

Since (36) contains absolute values, it is a nonlinear system,
not a continuously differentiable function. In nonlinear pro-
gramming, there are two types of optimal solutions, namely,
local and global optimum, and finding the global optimum
can be challenging, given the limited time available. On the
other hand, in convex programming, there is only one global
optimum, and it can be found quickly. To address this problem,
a piecewise equation for (36) alleviates the difficulties asso-
ciated with nonlinearities and helps find the optimal solution
more quickly and accurately. Thus, (36) is decomposed into
the following equation:

I DSVS(Um,t
)

=

(
m,t + m,t

U N +
ξm,t + ϱm,t

U N

)
× 100% (37)

S.t. m,t = U upp
m,t − U N (38)

m,t = U N
− U upp

m,t (39)

ξm,t = U low
m,t − U N (40)

ϱm,t = U N
− U low

m,t (41)

m,t , m,t , ξm,t , ϱm,t ≥ 0. (42)

3) Objective Function: In recent years, there has been a
significant increase in the number of EVs. The closer the
system voltage is to the nominal voltage (U N), the more EVs
can be accommodated in the existing EVCS planning, avoiding
the need for periodic EVCS replanning. Conversely, as the
number of EVs increases, additional EVCSs may be necessary
to satisfy the charging demand, thus leading to an increase
in EVCS investment costs. To ensure that each node on the
power system can remain close to U N at all times, we establish
an objective function, as illustrated in the following equation:

min f 3 =

T∑
t=1

Nnode∑
m=1

I DSVS(Um,t
)
. (43)

D. Super Efficiency Data Envelopment Analysis

The linear weighting method is a common approach for con-
verting multiobjective programming to a single-objective pro-
gramming problem. This method involves assigning weights
to each objective function to reflect their relative importance in
the final outcome. It is essential to determine the appropriate
weight coefficient to obtain the desired results [52].

This conversion process can be applied to an economic
system or a production process, where a unit produces a certain
number of products using a given set of input factors [53], [54].
Although the specifics of these activities may differ, the goal
is always to obtain the maximum output using a minimal
amount of input. To achieve this objective, a series of decisions

need to be made from input to output. These decisions are
made by a DMU. Since there are typically many DMUs that
seek to maximize their output, it is necessary to evaluate their
effectiveness and select the best one as the final decision.

Data envelopment analysis (DEA) is a linear programming-
based tool that is specifically designed to assess the relative
efficiency of work performance for organizations or projects
of the same type. The traditional DEA model, which is used
to calculate the effectiveness of the vth DMU, is presented in
the following equation:

max ϑv =

∑Z
z=1 βv,z×yv,z∑S
s=1 αv,s×xv,s

(44)

S.t. ϑv ≤ 1 (45)
βv,z, αv,s ≥ 0 ∀z, s. (46)

Equations (44)–(46) demonstrate that a more significant
value of ϑv indicates that the vth DMU can produce more
output using less input. A value of ϑv < 1 implies that the
input exceeds the output, which means that the vth DMU is
wasting resources and is, thus, considered ineffective. On the
other hand, when ϑv = 1, the vth DMU is the most efficient
compared to the other DMUs, and no other DMU can use
less input to obtain the same output. Typically, there may be
several effective DMUs or just one. However, the traditional
DEA model cannot accurately identify these effective DMUs.

SEDEA model is a new model proposed based on the
traditional DEA model; the difference is that SEDEA model
deletes the constraint ϑv ≤ 1, which excludes the vth DMU
from the set of DMUs when evaluating the vth DMU. The
efficiency of the original valid DMU value remains unchanged,
while the efficiency of the original effective DMU value will
be greater than or equal to 1. This way, we can further compare
the effective DMU based on the traditional DEA model [55].

In converting a multiobjective programming model to a
single-objective programming model, assigning a correspond-
ing weight to each objective function is necessary. Different
weight combinations exist, and each can be called DMU.
The SEDEA model is used to evaluate the effectiveness of
each DMU; finally, we choose the DMU with the most
significant value to weigh each objective function in the
single-objective programming model. The steps to determining
the effective weight coefficient vector are as follows.

Step 1: Normalize three objective functions f1, f2, and f3
in the above model, respectively. The linear weighted sum
method transforms the multiobjective problem into a single
objective problem, as shown in the following equation:

min F = ω1
max f1

f1
+ ω2

f2

min f2
+ ω3

f3

min f3
(47)

S.t. ω1 + ω2 + ω3 = 1 (48)

where max f1, min f2, and min f3 are the fixed values with
respective optimal solutions without considering the other two
objective functions; f1, f2, and f3 are the optimal solutions
obtained by (47); ω1, ω2, and ω3 are the weight coefficients
of max f1/ f1, f2/min f2, and f3/min f3, respectively.

Step 2: Determine the input and output of the DEA model.
The essence of the DEA model is to find the maximum ϑv ,
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that is, to obtain the maximum output with the minimum
input. In this article, the objective function f1 is to obtain
the maximum EVCS’s benefit, and the objective functions f2
and f3, respectively, are to minimize the EV user cost and the
voltage deviation rate. Hence, in (47), f1 is the output value,
and f2 and f3 are the input values. The following equation is
turned into:

min(Fv) = βv,1
max f1

fv,1
+ αv,1

fv,2

min f2
+ αv,2

f v,3

min f3
(49)

S.t. βv,1 + αv,1 + αv,2 = 1 (50)

where v is the vth DMU; βv,1 is the weight coefficient of
the output of the vth DMU; αv,1 and αv,2 are the weight
coefficients of the input of the vth DMU, respectively; and
fv,1, fv,2, and fv,3 are the optimal solutions obtained by the
optimization algorithm after the vth input, and output weight
vector is brought into (49).

Step 3: We set the step size of the weight coefficient
to 0.1 and the weight range of each objective function
to 0.1–0.8. According to the permutation and combination
methods and their corresponding constraints, there will even-
tually be 36 weight combinations. The weight combinations
matrix is shown in the following equation:

β1,1 α1,1 α1,2
β2,1 α2,1 α2,2
...

...
...

βv,1 αv,1 αv,2



=


0.1 0.1 0.8
0.1 0.2 0.7
...

...
...

0.8 0.1 0.1

, v = 1, 2, . . . , 36. (51)

Select the vth weight vector in order and substitute it into
(50), and (49) is used to obtain the optimal solutions of fv,1,
fv,2, and fv,3. Use (44)–(46) to calculate the relative efficiency
of the vth DMU based on fv,1, fv,2, and fv,3.

Step 4: Repeat Step 3 until the efficiency values of all
36 groups are obtained. Finally, select the weight vector
corresponding to the DMU whose ϑ is the highest as the
multiobjective function for weighting.

E. Constraints

1) System power flow constraints{
Wm = Um

∑Nnode
n=1 Un(Gmncosδmn + Bmnsinδmn)

Qm = Um
∑Nnode

n=1 Un(Gmnsinδmn − Bmncosδmn).

(52)

2) Node voltage amplitude constraint

U min
≤ U low

m,t < U upp
m,t ≤ U max. (53)

3) Power constraints of EVCSs access points(
N j

sl × Psl + N j
fa × Pfa

)
× B j

m ≤ Pmax
m,t . (54)

4) Service radius constraint.

One of the key factors to consider when planning for EVCS
is the range of service provided by the station. This range is
directly linked to the distance between the users’ starting point
and the charging station. As the service radius increases, the
capacity of the charging station to provide service decreases.
Hence, the service radius is subject to the following constraint:√(

x i
j − X j

)2
+

(
yi

j − Y j

)2
≤ Rmax. (55)

1) Charging queuing time constraint: To prevent inefficient
use of resources, the maximum waiting time for EV
users to charge their vehicles should satisfy the follow-
ing conditions:

W j
que ≤ W max

q . (56)

2) Constraints on the number of EVSEs in each EVCS:
According to [56], the construction of each EVCS must
have more than three EVSEs, so the number of EVSEs
in each charging station is restricted as follows:

N j
sl + N j

fa ≥ 3. (57)

3) EV user charging requirement constraints: To meet the
charging requirement of EV users, the rated capacity
of the j th EVCS should be greater than the total EV
charging requirement within the service range

T∑
t=1

E j,t
EVCS ≤ N j

sl × Psl × Ts + N j
fa × Pfa × Tf. (58)

IV. JOINT SOLUTION METHOD COMBINING
VORONOI DIAGRAM AND ADEOA

A. Voronoi Diagram

The voronoi diagram is an effective mathematical and
geometric tool with broad applications in various fields due
to its efficiency, intuitive space allocation, and partitioning
capabilities [57]. Its primary use lies in the substation site
selection and service scope division in power systems. Since
the location problem of EVCS shares similarities with that of
substations, this study uses the voronoi diagram to identify the
optimal location. The voronoi diagram is a geometric shape
formed by expanding each point set G at the same rate until
they meet. Each seed on the plane corresponds to a unique
voronoi cell or polygon. Any point within the voronoi polygon
is closer to its nucleus than any other seed.

Set G = {G1, G2, . . . , Gn}, 3 ≤ n ≤ ∞ that is a set of seeds
on the plane, and then, the Voronoi diagram can be defined
as [58]

V(Gu) =
{

x ∈ V (Gu)|d(x, Gu) ≤ d
(
x, G j

)}
. (59)

With NEVCS as the number of EVCS, the entire area can be
divided into NEVCS subareas using (59). Each subarea repre-
sents the service range of an EVCS, ensuring that the distance
from each EV within the service range to its corresponding
EVCS is shorter than the distance to other EVCSs.
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B. Adaptive Differential Evolution Optimization Algorithm
The ADEOA is a random parallel heuristic search algo-

rithm [59] that follows specific rules for selection, cross-
mutation, and iteration from a random group. It aims to
evaluate individuals based on a fitness function, retain good
ones, and eliminate inferior ones to guide the search process
toward the optimal solution. Additionally, ADEOA uses adap-
tive mutation operators to preserve helpful information and
prevent the destruction of the optimal solution. As a result,
this algorithm dramatically increases the likelihood of finding
the global optimum solution.

The ADEOA algorithm requires fewer parameter adjust-
ments compared to other optimization algorithms. Further-
more, the optimization results are not influenced by the
parameter settings. It is especially effective in dealing with
high-dimensional problems and offers fast convergence and
high accuracy. For these reasons, we have chosen to uti-
lize ADEOA to solve the model presented in this article.
Fig. 5 shows the flowchart for the EVCS siting and siz-
ing method, which follows the solution process outlined
below.

Step 1: Input data—randomly generate the location and
charging behavior of each EV, the baseload profile, the
baseload fluctuation range, and the basic system parameters
of the distributed grid.

Step 2: Determine the number N of EVCS in the planning
area. In this article, we assume N ∈ [4, 10].

Step 3: Use the ADEOA algorithm to randomly initialize
the locations of N charging stations and the number of fast
EVSEs in each EVCS.

Step 4: Use (59) to divide the service range of charging
stations and connect each EVCS to the nearest grid node.
Since there is no queuing problem for slow charging, it is
only necessary to use (11) to determine the number of slow
EVSEs required based on the number of EVs that need slow
charging within the service range of each EVCS.

Step 5: Calculate the yearly profit of EVCS ( f1) and the
annual charging cost of EV users ( f2) by using (3)–(9) and
(10)–(17), respectively.

Step 6: Calculate the stability of the system voltage ( f3).
Step 6.1: Set t = 1.
Step 6.2: Set the grid node m = 1.
Step 6.3: Input the expected value of the injected power

W e
m,t at time t based on (24) and through (26) to calculate the

node voltage U e
m,t and the Jacobian matrix Jt in the expected

state.
Step 6.4: Calculate the l-order raw moment of injected

power (al(1Wm,t )) based on (28).
Step 6.5: Use (29)–(31) to obtain the lth cumulant moment

of the power load K l(1W m,t ) and node voltage K l(1U m,t ).
Step 6.6: Use (32)–(33) expand to get the probability

distribution function of node voltage f (1U m,t ).
Step 6.7: Check whether the current grid node m is equal

to N node, if so, continue to the the next step; otherwise,
m = m+ 1, return to Step 6.3.

Step 6.8: Check whether the current time t is equal to T ,
if so, continue to the next step; otherwise, t = t + 1,return to
Step 6.2.

Fig. 5. Flowchart for EVCS siting and sizing method.

Step 6.9: Calculate the stochastic stability of the system
voltage ( f3) by using (43).

Step 7: Calculate the multiobjective function F by
using (47) and constraints by using (52)–(58).

Step 8: Check whether the termination condition is satisfied,
if so, turn to Step 11; otherwise, continue to the next step.

Step 9: Perform mutation and crossover operations on the
population to obtain the experimental population, and the algo-
rithm selects a better population from the original population
and the experimental population as the new population through
the greedy selection criterion.
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Fig. 6. Planning diagram.

Step 10: Check whether the current iteration iter is equal
to itermax, if so, the optimal global solution at this time is the
optimal charging station planning scheme when the number of
EVCSs is N , and continue to the next step; otherwise, iter =

iter + 1, return to Step 4.
Step 11: Calculate the results of the optimal planning

scheme when the number of EVCSs is N .
Step 12: Check whether the current number N of EVCSs

is equal to N max
EVCS, if so, compare the results of the optimal

planning scheme for different numbers of EVCSs, and output
the final optimal planning scheme; otherwise, set N = N + 1
and return to Step 3.

V. CASE STUDY

In this study, the planning area was set to be 81 m2 and
divided into nine subareas based on their load types. The IEEE
33-node distribution network system topology diagram was
also considered, as illustrated in Fig. 6. The orange, green, and
blue areas represent the commercial, residential, and industrial
loads. Meanwhile, blue and red dots denote the branch and
trunk branch nodes in the IEEE 33-node distribution network.
This article uses our previous work [60] to predict the mean
and deviation values of the injection power on each node. Each
EV’s location is indicated by a black dot, while blue solid and
red lines represent the branches and trunks, respectively.

This study considered 1000 EVs with varying types and
battery capacities in the planning area. There are 18 EV mod-
els under consideration, each with battery capacity, as listed
in Table I. Based on the approach outlined in Section II, this
study formulated probability models for both fast and slow
EV charging, with the corresponding results in the following
figures. Fig. 7 depicts the probability of charging power
modeled for slow charging, revealing a charging power range
of 5.9–7 kW, with relatively lower power output observed from
9:00 to 16:00. In Fig. 8, the probability of charging power
modeled for fast charging is presented, demonstrating scattered
charging power from 0:00 to 5:00, while the average power at
other times is around 30 kW. The overall charging power at
any given moment can be calculated by utilizing the number
of slow and fast EVSEs of each EVCS, as depicted in (5).
The time-of-use (TOU) price under consideration is shown in
Table II [61], [62].

Fig. 7. Probability charging power model of slow charging mode.

Fig. 8. Probability charging power model of fast charging mode.

TABLE II
TOU PRICE

We assume the following during the planning process:
1) users will use the nearest EVCS and travel via the shortest
path; 2) there are no parking space limitations in the queue
around each EVCS; and 3) every EVCS is connected to its
nearest grid node. The necessary parameters for the case study
are presented in Table III [48], [63], [64], [65], [66], [67], [68].

A. Selection of Weight Coefficient

Three objective functions were considered individually in
the planning area with five EVCSs. The maximum yearly
profit of EVCS was U.S. $5 844 200, the minimum annual
charging cost for EV users was U.S. $314 600, and the
system’s minimum dynamic voltage stability index was 2856.
Table IV presents the relative efficiency of each weight vector
according to the method described in Section III-D.

Table IV shows that the DEA efficiency of each weight
is evaluated as [0.1, 0.1, 0.8] and [0.5, 0.3, 0.2], which sum
to 1. To select the best weight set, we use the SEDEA model
to compare these two weights further. According to the results,
the relative efficiency of the weight vector [0.1, 0.1, 0.8]
has the highest SEDEA value, that is, given the input f2
and f3 when each weight vector is the same, the output f1
with a weight vector [0.1, 0.1, 0.8] is the highest. Therefore,
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TABLE III
OPTIMIZE MODEL PARAMETERS

TABLE IV
DEA AND SEDEA MODEL RESULTS

[0.1, 0.1, 0.8] is selected as the final weight vector of the
objective function.

B. Optimization Results of the Siting and Sizing of EVCSs

The quantity of EVCSs under consideration falls within
the planned range of 4–10. Fig. 9(a) shows the final optimal
objective function value F under different numbers of EVCSs,
which follows a parabolic trend. When the weights of the
objective functions are [0.1, 0.1, 0.8], the smallest values of
the objective function are achieved with five EVCSs. Fig. 9(b)
presents the optimal values of f1, f2, and f3 for different
numbers of EVCSs. As shown in Fig. 9(b), increasing the
number of EVCSs leads to a higher yearly profit for EVCSs
( f1) and a lower annual charging cost for EV users ( f2).
The stochastic stability of the system voltage ( f3) shows a
nonlinear trend, with the lowest value observed when there
are five EVCSs in the planned area. Therefore, considering
all factors, it is reasonable to establish five EVCSs within the
planning area.

Fig. 10 shows each location of the five EVCSs under
consideration. The service range of each EVCS is divided
by the voronoi diagram, and Fig. 10 shows that the EVCSs
are almost evenly distributed in the area. In Fig. 11, the grid

Fig. 9. Optimal results of objective functions under different number of
EVCS: (a) F and (b) f1, f2, and f3.

Fig. 10. Location and service range of each EVCS.

Fig. 11. Grid nodes to be connected to each EVCS.

TABLE V
CONFIGURATION AND OPERATION PARAMETERS OF EACH EVCS

nodes that connect to each EVCS are shown. The EVCSs are
connected to the grid’s 27th, 24th, 25th, 20th, and 31th nodes,
respectively.

Table V presents the configuration and operation of each
EVCS. As shown in Table V, the waiting time at each EVCS
is less than 7 min, indicating that EV users are provided with
better service. The value of ρ (%) represents the fraction of the
service capacity used, showing that the charger utilization rate
of each EVCS is more than 62.73%. Therefore, the proposed
scheme’s optimization results improve the convenience of EV
users by providing charging at a lower cost. Table V also
displays the EVs serviced at each EVCS and the corresponding
number of fast and slow EVSEs.

To solve the proposed model, this article sets the termination
error value, maximum number of iterations, and population
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Fig. 12. Convergence curves for ADEOA, DE, and PSO.

TABLE VI
PLANNING RESULT UNDER DIFFERENT CONFIDENCE INTERVELS

size in the ADEOA algorithm to be 1E-6, 150, and 50,
respectively. To evaluate the effectiveness of the ADEOA
algorithm, this study conducts a comparative analysis with
differential evolution (DE) and particle swarm optimization
(PSO) [69], and the iterative process of the three algorithms
is illustrated in Fig. 12. As seen from Fig. 12, ADEOA exhibits
the fastest convergence speed, achieving optimization and the
best fitness value in the 68th iteration. Although DE completes
the optimization at the 69th iteration with a similar conver-
gence speed to ADEOA, the fitness value obtained is greater.
In contrast, PSO exhibits the slowest convergence speed,
completing optimization at the 90th iteration and obtaining
the biggest fitness value. In conclusion, ADEOA outperforms
the other two algorithms regarding convergence speed and
accuracy, making it more suitable for solving the proposed
model in this article.

C. Sensitivity Analysis

This section examines the sensitivity of an EVCS planning
model to different confidence levels, EV penetrations, and land
prices.

Table VI displays the optimization results of EVCS planning
under various confidence levels when the number of EVCSs
in the planning area is five. Table VI demonstrates that as the
confidence level increases, the number of slow EVSEs also
gradually decreases the construction cost (Fc) and operating
costs (Fom) of the EVCS decline as the number of EVSEs
decreases. The expenses incurred from purchasing electricity
(Fp) and electricity sales (F s) are primarily influenced by the
number of EVSEs and the charging power of EVs, increasing

TABLE VII
PLANNING RESULT UNDER DIFFERENT EV PENETRATIONS

in both Fp and F s with higher confidence levels. The value
of EVCS profit ( f1) demonstrates an increase of 8.75% and
21.92% for 90% and 95% confidence levels, respectively,
compared to 85%. Table VI also reveals a gradual increase
in the waiting time cost (Fw) and a gradual decrease in the
distance traveled to charge cost (Fd) with an increase in
confidence level. Furthermore, the overall EV user cost ( f2)

increases gradually as the confidence interval rises, with the
value of f2 increasing by 3.28% and 5.43% for 90% and 95%
confidence levels, respectively, compared to the value under
the 85% confidence level. Finally, comparing the values of
overall voltage deviation ( f3) across different confidence levels
reveals that the value of f3 decreases by 0.499% and 0.8% for
90% and 95% confidence levels, respectively, compared to the
value under the 85% confidence level.

Table VII displays the optimization results of EV charging
station planning under various EV penetrations when there are
five EVCSs in the planning region. According to Table VII,
the EV penetration rate influences the planning outcomes
of EVCSs. The total cost of Fw and Fd grows as the
quantity of EVs increases. It is challenging to analyze the
impact of different EV penetration rates on EV users using
f2 alone; hence, this article employs the average user cost
(Ave f2 = f2/NEV).

As the number of EVs grows, so does the number of EVSEs
required in the EVCSs. This results in increased operating
expenses for the operator and more significant earnings. The
value of f1 increases by 33.72% and 67.68% at 150% and
200% EV penetration rates, respectively, compared to 0%. The
average user charging cost rises in tandem with the rate of EV
uptake. In particular, average user costs rise by 0.801% and
2.34% at 150% and 200% EV penetration rates, respectively,
compared to 0%. Yet, as the number of EVs increases, so does
the grid’s injected power, thus resulting in a rise in the voltage
deviation rate ( f3). Table VII illustrates that as EV penetration
rates grow, so does the value of f3. Notably, for 150% and
200% EV penetration rates, the f3 values rise by 14.57% and
36.24%, respectively, compared to a 0% EV penetration rate.

In Fig. 13, the planning results assume equal land prices for
different land uses. As depicted, three EVCSs are constructed
on commercial land, and two EVCSs are built on industrial
land. However, in Fig. 11, two EVCSs are erected on
commercial land, two on industrial land, and one on residential
land. Specific planning outcomes under various land prices are
displayed in Table VIII. Notably, when land prices are equal,
the total number of EVSEs is 61, one more than the practical
land prices scenario. Furthermore, compared to practical land
prices, the values of f1, f2, and f3 are reduced by 3.13%,
1.25%, and 2.58%, respectively, when land prices are equal.
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Fig. 13. Location and service under uniform land pricing.

TABLE VIII
PLANNING RESULT UNDER SPECIFIC LAND PRICES

In summary, various degrees of confidence have a more
significant impact on operator revenue and EV user costs but
have less effect on power grid stability. However, various EV
penetration rates significantly influence operator profitability
and grid stability but have a minor impact on EV user costs.
Assuming the uniform land price is more advantageous to
both EV users and the grid in charging station planning, while
considering practical land prices benefits operators more.

D. Case Comparasion

In order to validate the model presented in this article, the
authors compared it with methods proposed in [27] and [31].
These articles also considered the uncertainty associated with
EVs. Zeb et al. [27] used a DPF calculation method, while Pal
et al. [31] used a probabilistic power flow calculation method
based on the two-point estimation algorithm. Comparing the
outcomes of the three models showed that the proposed
approach is effective.

This section presents the results of comparing the proposed
method for EVCS planning with two other methods (from [27]
and [31]) that also consider the uncertainty of EVs. The
comparison is made based on the optimization results of
charging station planning under different methods when the
number of EVCSs in the planning area is 5.

Table IX presents the charging station planning optimization
results using various methods considering five EVCSs in the
planning region. Table IX shows that the total number of
EVSEs (Nfa + Nslow) acquired via [31] is 31, whereas the
total number of EVSEs produced via the proposed method
and that of [27] is 30. As a result, the f1 value of [31]
rises by 0.263% compared to the proposed method and [27].
From the perspective of the EV user, the proposed approach
achieves the highest value for objective function, which is an

TABLE IX
PLANNING RESULT UNDER VARIOUS METHODS

increase of 0.66% and 0.81% compared to the methods by [31]
and [27], respectively. Regarding power grid stability, the
proposed method has the lowest value for objective function,
which is a drop of 8.54% and 11.61% compared to the methods
by [31] and [27], respectively.

In summary, the planning outcome achieved using vari-
ous power flow methodologies has less influence on oper-
ators and EV customers but has a more significant impact
on grid stability. Applying the proposed method increases
power grid stability while protecting the interests of operators
and EV consumers, demonstrating the proposed method’s
effectiveness.

To further prove the robustness of the proposed model, this
article analyzes the voltage change of the proposed method
and that of [27] under different baseload and EV penetrations.

Fig. 14 shows the voltage fluctuation profile under different
baseload and EV penetrations obtained using the proposed
method. The black dotted line represents the minimum allow-
able voltage offset value, set to be 0.9 p.u. The red solid line
and the red shades indicate the average voltage and its fluctua-
tion range when the distribution line only has the baseload. The
blue solid line and the blue shades show the average voltage
and its fluctuation range when the distribution line has both
the baseload and 1000 EVs. The yellow solid line and the
yellow shades display the average voltage and its fluctuation
range when the distribution line has 150% penetration of
baseload and 1500 EVs. The green solid line and the green
shades represent the average voltage and its fluctuation range
when the distribution line has a 200% penetration of baseload
and 2000 EVs.

It can be seen from Fig. 14(a) that the voltage at 9:00 in a
day is the lowest. When there is only the baseload connected
to the distribution line, the fluctuation range of the lowest
voltage is [0.954, 0.965], which is much larger than the voltage
0.9 p.u., so the voltage stability of the system far meets the
requirements. When the EVs are connected to the grid, the
voltage range is [0.942, 0.953]; the highest voltage offset is
5.8%; and the lowest voltage offset is 4.7%, which is still
within the allowable range of the voltage offset. When the
baseload and EV penetration increase by about 180%, the node
voltage range will be lower than the voltage limit, and the
EVCS needs to be replanned.

Fig. 14(b) shows the voltage fluctuation profile of all
nodes at 9:00 under different baseload and EV penetrations
obtained using the SPF method. When EV penetration gradu-
ally increases, the EVSE in each EVCS increases accordingly.
Fig. 14 reveals that the voltage deviation increases in the
IEEE 33-node distribution network as the distance between
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Fig. 14. Voltage profile under different baseload and EV penetrations
obtained by the proposed method: (a) voltage profile of node 18 and
(b) voltage profile of all nodes at 9:00.

a node and the first node increases. With only the baseload
on the distribution line, the voltage at the 18th node exhibits
the lowest value, ranging between 0.954 and 0.965 p.u. This
range is significantly within the voltage threshold of 0.9 p.u.,
indicating that the system’s voltage stability well satisfies the
necessary criteria. When the baseload and EV penetration
increase to about 180%, the voltage ranges of the 13th–18th
nodes are lower than the voltage limit, while the voltage ranges
of other nodes are still within the voltage limit.

Fig. 15(a) shows the voltage profile of node 18 under
different baseload and EV penetrations as presented in [27].
Similar to Fig. 14(a), the voltage at 9:00 is the lowest. When
only the baseload is present in the grid, the lowest voltage
is 0.959 p.u., corresponding to a voltage offset of 4.1% for
node 18. When EVs connect to the grid, the voltage in
Fig. 15(a) drops to 0.9238 p.u., and the voltage offset increases
to 7.62%. Compared to the proposed method, the voltage
offset rate of [27] has increased by 19.32%. Although it can
accommodate the current number of EVs, it is very close to
the maximum allowable voltage offset. When the baseload and
EV penetration increase to about 145%, the node voltage drops
below the acceptable voltage limit. However, the proposed
method still keeps the voltage offset within the allowable
range, and it does not exceed the range of voltage offset until
EV penetration increases to 180%.

Fig. 15(b) depicts the voltage profiles of all nodes at 9:00
under different baseload and EV penetrations obtained by
Zeb et al. [27]. Fig. 15(b) shows a voltage transition at terminal
node 18. At node 18, when only the baseload is linked to
the distribution line, the voltage measures 0.959 p.u. When

Fig. 15. Voltage profile under different baseload and EV penetrations
obtained by Zeb et al. [27]: (a) voltage profile of node 18 and (b) voltage
profile of all nodes at 9:00.

the EVs are connected to the grid, the voltage in Fig. 15(b)
decreases to 0.9238 p.u. When the penetration increases to
about 145%, the voltages of nodes 13–18 and 29–33 fall below
the voltage limit, while the voltages of other nodes remain
higher than the voltage limit. Compared with the proposed
method, both the voltage offset rate and the number of nodes
beyond the voltage offset range in [27] increase significantly.
Through the comparison, it can be seen that the method
proposed in this article can accommodate more EVs and is
more robust.

VI. CONCLUSION

This article establishes a comprehensive optimization model
of EVCS site and size planning, which considers the ben-
efits of the operators, EV users, and the influence of the
distribution network’s uncertainties. In addition, we use the
SEDEA method to select the weight of each objective function
in the optimization model and use the voronoi diagram and
the ADEOA to solve the model jointly. Finally, the proposed
method is verified and analyzed using the IEEE-33 node power
distribution system as a case study.

It can be seen from Table V that for the five EVCSs, the
average waiting time of EV users does not exceed 7 min. The
EVCSs provide EV users with better services, and the utiliza-
tion rate of the chargers at the EVCS is more than 62.73%.
Based on satisfying EV users with high-quality services, the
EVCSs have been well-utilized.

Comparing the proposed method with other power flow
calculation methods for EVCS planning, it is evident that
the proposed method can improve the stability of the power
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grid while ensuring the interests of operators and EV users.
For the proposed method, when 1000 EVs are connected to
the grid, the voltage range is [0.942, 0.953], which is much
larger than the voltage 0.9 p.u., so the voltage stability of
the system far meets the requirements. When the baseload
and EV penetration increase to about 180%, the node voltage
range will be lower than the voltage limit. For [27], when the
baseload and EV penetration increase to about 145%, the node
voltage will be lower than the voltage limit.

In summary, the proposed method for siting and sizing
planning of EVCSs is more viable and justifiable. It can
efficiently enhance the EVCS’s profit, improve the charging
convenience for EV users, and ensure the stability of the
system voltage. This method is a significant reference for
future EVCS planning.

In future research, we aim to incorporate traffic network
factors and a dynamic interception location model to improve
the convenience of EV users.
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