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Abstract— The temperature of lithium-ion batteries (LIBs) is
a critical factor that significantly impacts the performance of the
battery. One of the essential roles of the battery management
system (BMS) is to monitor and control the temperature of
the cells in the battery pack. In this article, two deep neural
network (DNN) modeling approaches are used to predict the
surface temperature of LIBs. The first model type is based on
a feedforward neural network (FNN) enhanced with external
filters, while the second model is based on a recurrent neural
network (RNN) with long short-term memory (LSTM). These
models are trained and tested using experimental data from two
batteries, one cylindrical cell, and one pouch cell at a range
of driving, fast charging, and health conditions. The proposed
models are shown to be capable of estimating temperature with
less than 2 ◦C root-mean-square error (RMSE) for challenging
low ambient temperature drive cycles and just 0.3 ◦C for 4 C
rate fast charging conditions. In addition, a model which was
trained to estimate the temperature of a new battery cell was
found to still have a very low error of just 0.8 ◦C when tested
on an aged cell. Both models are deployed to an NXP S32K344
microprocessor to measure their execution time and memory use.
The FNN executes significantly faster on the microprocessor than
the LSTM, 0.8 ms compared with 2.5 ms for models with around
3000 learnable parameters, and uses less random access memory
(RAM), 0.4 kB compared with 1 kB.

Index Terms— Battery management system (BMS), battery
temperature, battery thermal modeling, lithium-ion batteries
(LIBs), machine learning, neural network (NN), temperature
estimation.

I. INTRODUCTION

ONE of the essential functions of the battery manage-
ment system (BMS) is to monitor the performance of

lithium-ion batteries (LIBs). Battery temperature is a critical
factor that should be monitored to ensure safe and reliable
battery operation [1]. The temperature of the battery also
impacts the accuracy of battery state estimation, including
state of charge (SOC) [2] and state of health (SOH) [3].
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Temperature monitoring of the battery pack is essential to
avoid, in the worst case, thermal runaway and destruction of
the pack. Temperature sensors are widely used to measure the
temperature of battery cells. However, it is often impractical
to sense the temperature of every cell due to cost, number
of sensor inputs, and wiring complexity. Robust temperature
estimation models can be used as an alternative to physical
sensors or can perform as a redundant monitoring system for
the existing sensors. In addition, these models can be applied
to detect battery thermal and short circuit faults [4], [5] by
monitoring the residual of the estimated and measured cell
temperatures.

Several methods for estimating cell temperature have been
investigated in prior research. These methods include electro-
chemical impedance spectroscopy (EIS)-based methods [6],
[7], [8], partial differential equation (PDE) thermal-based
methods [9], [10], [11], [12], and data-driven methods [13],
[14], [15], [16]. In the EIS methods, one or several frequencies
of ac current are injected into the battery. Then, based on the ac
voltage response, the impedance of the battery is measured and
is correlated with the temperature. The EIS method requires
complex BMS hardware though, and cannot easily be per-
formed during operation [6]. The PDE methods are multistate
models that capture the thermal behavior of the batteries with
reasonable accuracy. These models emulate the generation
and transfer of heat in the battery considering the thermal
boundary conditions. These methods are shown to be capable
of modeling the temperature distribution of LIBs with lumped
[9] or multidimensional 1-D [10], 2-D [11], and 3-D [12]
models. However, the more complex versions of these methods
are not easily implemented in real time on a BMS because they
involve a high number of parameters and complex mathemat-
ical operations.

Recently, data-driven methods, which are based on machine
learning, have been used to model nonlinear, time-dependent
system behavior and are a promising alternative for battery
temperature estimation. Machine learning-based models are
trained with measured battery data, with inputs such as voltage
and current and outputs such as SOC or temperature. Such
models learn to mimic LIB behavior and have been used
for terminal voltage modeling [17], SOC [2] and SOH [3]
estimation, and recently for temperature estimation [13], [14],
[15], [16]. In [13], a recurrent neural network (RNN) model,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1878-1453
https://orcid.org/0000-0003-3576-672X
https://orcid.org/0000-0002-0676-1455


1154 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 9, NO. 1, MARCH 2023

with measured current, SOC, and ambient temperature as
inputs, estimates battery cell voltage and surface temperature.
The RNN model was shown to estimate the battery surface
temperature during a portion of a low-temperature drive cycle,
where battery temperature was between 1 ◦C and 8 ◦C, with
an error of less than 2 ◦C.

The work in [14] investigated different artificial neural
network (ANN) model inputs to estimate battery surface
temperature. The study concluded that feeding the model with
measured voltage, current, and the prior time step of the
predicted temperature led to predicting the battery surface
temperature with a maximum estimation error (MAXE) of
less than 3 ◦C and less than 0.3 ◦C root-mean-square error
(RMSE). While this study does show very low error, it is
not clear if unique data was used for training and testing
the network, and only temperatures of 25 ◦C or greater were
investigated, so the proposed methodology may not achieve
as good of results under more realistic scenarios. The work in
[15] uses a radial basis function feedforward neural network
(FNN) model with a Kalman filter to estimate the internal
core temperature of a battery. The inputs to the model have
measured surface temperature, voltage, and current, and a very
low RMSE of less than 0.1 ◦C and MAXE of less than 0.3 ◦C
are achieved for estimating internal core temperature. The
reported results are excellent, but since the measured surface
temperature is an input to the model, it is not really comparable
to algorithms that aim to estimate surface temperature like [13]
and [14], and the algorithms proposed in this study. In [16],
a preliminary investigation of the application of nonrecurrent
and RNNs for battery surface temperature estimation was
presented. Different combinations of network inputs were
investigated, and around 3 ◦C MAXE was achieved to drive
automotive drive cycles.

While multiple studies have investigated neural networks
(NNs) for temperature estimation, these studies have only
examined a limited range of operating conditions, and none
have investigated the practicality of implementing the algo-
rithms in a BMS microprocessor. Hence, the main contribu-
tions of this article are summarized as follows.

1) Development of two types of deep NNs (DNNs) to
predict LIB surface temperature including an FNN and
RNN with long short-term memory (LSTM).

2) A methodology for improving the performance of the
FNN by effectively adding the memory of past time
steps through the use of one or more filtered inputs.

3) A comprehensive evaluation of the FNN and the LSTM
surface temperature prediction models for realistic, chal-
lenging operating conditions, including low ambient
temperature, high-temperature rise, fast charging, and
aging.

4) A comprehensive benchmarking of the proposed models
versus prior studies in the literature.

5) Measurement of BMS microprocessor execution time
and memory use for each algorithm using a Processor
in the loop (PIL) platform.

The rest of this article is organized as follows: Section II
provides an overview of DNNs. Section III presents the test

Fig. 1. Structure of a typical multilayer FNN.

setup and dataset. The structure selection for the surface
temperature estimation models is detailed in Section IV. The
temperature estimation for dynamic and fast charging condi-
tions are presented in Sections V and VI, respectively. The
performance on a BMS microprocessor and testing the models’
performance for an aged dataset versus other studies in the
literature is presented in Sections VII and VIII. Finally, the
conclusions are presented in Section IX.

II. OVERVIEW OF DNNS

In recent years, ANNs have shown strong capability in
extracting features from nonlinear complex mathematical rela-
tionships. DNNs are ANNs containing more than one hidden
layer. There are several types of ANNs including FNNs,
RNNs, and convolutional NNs (CNNs). Each NN type varies
in structure, characteristics, and application. FNNs are com-
monly used in fault diagnosis of power systems [18] and
pattern recognition [19]. RNNs were developed to model
problems requiring memory so that past information is consid-
ered when calculating the current output. RNNs have shown
strong performance in stock market forecasting [20], battery
SOC estimation [2], and speech recognition [21]. For very
large inputs, such as images, FNNs would have a large,
complex structure for which determining the model weights
and biases is challenging. CNNs, which utilize convolution
on the inner layers, were developed to deal with image
recognition and classification problems in an efficient and
effective manner [22]. LIB modeling and state estimation are
considered regression problems where FNNs and RNNs are
commonly used. This section presents an overview of the FNN
and the LSTM-RNN which are used in this study. The hyper-
parameters and framework for training the models is discussed
as well.

A. Feedforward Neural Network

FNNs are a type of ANN where data is fed in a forward
direction from the input to the output [18]. The simplest FNN
has input and output layers where each layer has a certain
number of neurons (n). Multiple intermediate layers (l) can
be used in larger, more complex problems. The inputs fed to
the first layer neurons are x1 to xNI, where NI is the number
of inputs, as shown in Fig. 1. The inputs are multiplied with
the respective weight, w

l,n
i , summed, and added to the bias

value (bl,n
i ) and output hidden state value h. Each neuron also
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Fig. 2. Structure of an LSTM unit.

uses an activation function, Fl,n , to improve the performance
of the network. Activation functions include the hyperbolic
tangent, clipped rectified linear unit (CRELU), and leaky
rectified linear unit (LRELU). Different activation functions
are presented in [23] along with more details regarding the
FNN. Equation (1) is used to calculate the number of learnable
parameters (LPFNN) of a two-hidden layer FNN, like that used
in this study. The learnable parameters include all weight and
bias values and are a function of the number of inputs (NI)
and number of neurons in the first and second hidden layer,
NHL1 andNHL2

LPFNN = NHL1(1 + NI + NHL2) + 2NHL2 + 1. (1)

Unlike the LSTM, the FNN does not have a memory
cell embedded in the model and, therefore, does not encode
information from the previous time steps. Several studies
addressed improving the FNN performance by adding some
filtered data to the inputs, such as voltage and current [23],
[24]. In this study, the accuracy of the FNN is evaluated with
one or two first-order low-pass Butterworth filters applied to
the voltage and current measurements. The Butterworth filter
is selected due to its smooth frequency response roll-off and
less phase delay. The frequency response [H ( f )] of the filter
is described in the following equation:

H ( f ) = 1√
1 + ε2

(
f
fc

)2n
(2)

where fc is the chosen cutoff frequency, maximum passband
gain ε is equal to 1, and the filter order n is equal to 1.

B. RNN With LSTM Layer

The LSTM layer is commonly used to overcome the van-
ishing or exploding gradient issue which can occur during the
backpropagation training process for some RNN types [20].
An LSTM layer comprises a memory cell (Ck), a memory
candidate (C̃k), an input gate (V k), an output gate (U k), and
a forget gate (Fk), as shown in Fig. 2. The memory cell is
utilized to save information from past time steps, and the three
gates control the flow of information to and from the cell. The
LSTM layer utilizes the input data at the present time step
(�k) and hidden state values from the preceding time step
(Hk−1) to update the current hidden states (Hk). The number

TABLE I

TRAINING PARAMETERS

of learnable parameters (LPLSTM) for an RNN with a single
hidden LSTM layer can be calculated as a function of the
number of hidden units (HU) and the number of inputs using
the following equation [23]:

LPLSTM = 4(NI x HU + HU x HU + HU) + HU + 1. (3)

C. Neural Network Training Framework

In this section, the training of the proposed NNs and the
corresponding hyperparameters are presented. The NN model
parameters, i.e., weights and biases, are updated iteratively
during the backpropagation phase based on the loss (L)
between the estimated and the actual output according to the
following equation:

L =
∑k=P

k=1

(
Ok − Ôk

)2
(4)

where P is the total length of the input training data, Ok is
the actual output that is the measured surface temperature of
the battery at each time step k, and Ôk is the estimated output
which is battery surface temperature at time k in this study.

The initial learning rate for the training process, which
specifies how much the weights and biases can be adjusted for
each epoch, is set to 0.01. The learning rate drop factor is 10%,
and the patience is 1000 epochs, meaning that the learning
rate is dropped by 10% every 1000 epochs. The training and
testing datasets are resampled to 1 Hz and normalized so their
values are between 0 and 1. All the training data is used
as one minibatch for each update of the training parameters.
The training process stops after the validation dataset accuracy
does not improve for 300 consecutive epochs. Most trainings
continued for around 5000 epochs, taking approximately 3 h
for the FNN and 13 h for the LSTM models. The network’s
learnable parameters are randomly initialized at the start of
each training. Each network configuration is trained between
three and 20 times with different initial parameters each time,
helping to ensure a global- or near-global optimal solution
is achieved. The network was created and trained with a
similar script to that shared in [24] using MATLAB 2020b,
the MATLAB Deep Learning Toolbox, and an Intel Core
i7 CPU. Table I lists the different parameters used in the
training process of the proposed NN models.

III. TEST SETUP AND DATASETS

Two batteries with different chemistries are used to train and
validate the proposed models. The first battery is a Panasonic
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Fig. 3. Panasonic test setup and data logging system.

Fig. 4. (a) Kokam module fixture and (b) thermocouples positions on the
middle cell.

18650PF LIB cell with lithium nickel cobalt aluminum oxide
(NCA) chemistry and 2.9-Ah rated capacity, as shown in
Fig. 3. This battery is cycled at different dynamic conditions
with a range of drive cycles at different ambient temperatures.
One temperature sensor was placed on the outer surface to
monitor the temperature of the cell. The second cell is a
Kokam lithium nickel manganese cobalt oxide (NMC) pouch
cell, which is tested at different fast charging rates in a liquid-
cooled module with three parallel (3P1S) cells, as shown in
Fig. 4(a). Between each cell is a 0.26-cm-thick aluminum
plate for cooling and fifteen T-type thermocouples are placed
throughout the module. Seven of the thermocouple measure-
ments are used in this study, including four placed on the
face of the middle cell as shown in Fig. 4(b) and one on
the coolant inlet and another on the outlet. A 200-W chiller
with a 15-L/min coolant flow rate is used to cool the module
and is connected to copper cooling tubes attached to the
edges of the fixture as illustrated in Fig. 5. The thermocouple
temperatures are logged in LabVIEW and measured with a
National Instruments NI-9213 thermocouple module. Table II
presents the specifications of each cell [25], [26], while the
battery cycler and thermal chamber specifications are listed in
Table III.

Two types of datasets were collected for the Panasonic
battery, one of which has −20 ◦C, −10 ◦C, 0 ◦C, 10 ◦C,
and 25 ◦C fixed ambient temperature and the other of which
has varied ambient temperature, as described in Table IV. The
battery is cycled using four standard drive cycles, namely,
Urban Dynamometer Driving Schedule (UDDS), Unified

Fig. 5. Kokam module test setup.

TABLE II

BATTERY SPECIFICATIONS

TABLE III

DESCRIPTION OF TEST SETUP AND LABORATORY EQUIPMENT

TABLE IV

DESCRIPTION OF TESTS PERFORMED ON BATTERIES

Dynamometer Driving Schedule (LA92), Highway Fuel Econ-
omy Test (HWFET), and Supplemental Federal Test Procedure
(US06), and five mixed drive cycles which are made of a
randomized mix of the power profiles for the standard drive
cycles. The maximum charge/discharge currents at 25 ◦C
for UDDS, LA92, HWFET, and US06 are 4.2/7.5, 9.7/10.5,
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Fig. 6. Kokam battery module temperature measurements for 5-C charge.

Fig. 7. Battery temperatures for training, validation, and testing datasets.
(a) Panasonic. (b) Kokam.

5.5/5.5, and 7.5/20.8 A, respectively. The mixed cycles are
referred to as Mix 1–5. The varied ambient temperature tests
start at either −20 ◦C or 10 ◦C, and the temperature rise
throughout the tests is achieved by turning the cooling system
off while leaving the circulating fans on. The varied ambient
temperature tests are used to test how the temperature esti-
mation models perform when the thermal conditions around
a battery are changing. The drive cycle power profiles are
generated from a model of an electric truck with a 35-kWh
battery pack and are scaled for a single 18650PF cell. The
battery was fully charged at 25 ◦C prior to each drive cycle
test. Each drive cycle was repeated until the battery SOC
reached between 10% and 30% depending on the temperature.
This final SOC value was selected based on when the battery
can no longer provide enough power to continue. The five
mixed drive cycles at each fixed ambient temperature are used
to train the proposed NN models and are labeled listed as
Training data in Table IV. The four standard drive cycles
with fixed ambient temperature are used for Validation and
the mixed drive cycles with varied ambient temperature are
used for Testing the best trained NN models and are referred
to as the Fixed Ambient Temperature and Varied Ambient
Temperature datasets, respectively.

The Kokam module is charged at currents ranging from
1–5 C, which is 93–465 A. For all the tests the thermal cham-
ber ambient temperature and the chiller coolant temperature
are regulated to 20 ◦C. Fig. 6 shows the temperature collected
from the thermocouples for a 5-C charge. The thermocouple
measurement which reaches the highest temperature, TC3,
is used when training and testing the temperature estimation
algorithms in this study. The 1-, 3-, and 5-C rate charge data

Fig. 8. Structure of (a) FNN and (b) LSTM battery surface estimation models.

is used for training, while the 2-C charge is used for validation
and the 4 C for testing, as listed in Table IV. Fig. 7 shows the
battery temperature versus amp-hours discharged or charged
for the training, validation, and testing datasets of both batter-
ies. The figure shows that the training data covers the whole
capacity range of the battery and that the NN model will need
to in effect interpolate between the trained temperature data in
almost all test cases and extrapolate beyond 30 ◦C for a few
of the Panasonic tests.

IV. NEURAL NETWORK MODEL STRUCTURES AND FNN
FILTER FREQUENCY DETERMINATION

In this section, the structure of the investigated FNN and
LSTM is presented. In addition, a study is performed to
determine the optimal filter frequency values used for the
filtered voltage and current inputs to the FNN.

A. Determination of Optimal Corner Frequency for Filters
on FNN Input Data

Fig. 8(a) shows the basic structure of the investigated
FNN temperature estimation model, including inputs, layers,
activation functions, and output. The inputs include SOC,
ambient temperature (Ta), and voltage (V ) and current (I )
or filtered voltage (V f 1, V f 2) and current values (I f 1, I f 2).
Two hidden layers with 50 neurons each are used, which is
expected to be a sufficient number of neurons and layers to
achieve good accuracy [24]. The output layer consolidates all
the neuron outputs to create a single output value for the
network, estimated temperature (T̂s). The investigation in this
section focuses on determining the proper corner frequency
for the optional filtered input values. A wide range of corner
frequencies, for both one and two sets of filtered inputs,
is considered.
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Fig. 9. Panasonic Validation data temperature estimation error versus filter
frequency for FNN with a single set of filtered voltage and current inputs.

First, a single set of filtered voltage and current inputs is
investigated, such that inputs are {V f 1, I f 1, SOC, Ta}. Twenty-
one networks are trained with the Panasonic cell Training data
and filter frequencies varying from 0.01 to 100 mHz. These
cover the range of frequencies over which the LIB electrical
and thermal time constants are likely to occur. The average
Validation dataset error is shown in Fig. 9 for all three trainings
performed for each filter frequency value. The figure shows
that the standard deviation of the three training repetitions
is quite small, from 0.02 ◦C to 0.11 ◦C, verifying that three
trainings are sufficient to ensure the best solution is achieved.
With a filter frequency of 1 mHz, the least error is achieved,
just 1.16 ◦C, which is 43% less than the 2.05 ◦C error achieved
for the FNN without filtered voltage and current as inputs,
where inputs are instead {V , I, SOC, Ta}. The error is high
for both low- and high-frequency filter values because with
a high-frequency filter, the signal is similar to the unfiltered
signal, and when the filter frequency is very low the output of
the filter is essentially a dc value and provides no meaningful
additional information. The similar error for the studied high-
and low-frequency filters also shows that a sufficiently wide
range of filter values was investigated.

Next, voltage and current filtered at 1 mHz, the filter value
which achieved the best results with a single filter, are used
along with voltage and current filtered at a second frequency,
such that inputs are {V f 1, I f 1, V f 2, I f 2, SOC, Ta}. Networks
are trained for 12 frequencies, ranging from 0.01 mHz
to 100 Hz, and the results are presented in Fig. 10. The
addition of the second set of filtered values is shown to achieve
a 0.14 ◦C, 12% reduction in error for filter frequencies equal
to 4 and 8 mHz.

For the in-depth analysis in Sections V and VI, three FNN
model structures are used based on the above analysis, the
four-input model with no filtered inputs, the four-input model
with 1-mHz filtered inputs, and the six-input model with
1- and 4-mHz filtered inputs, as listed in Table V. Importantly,
the model filter frequencies are selected purely based on the
analysis of the Validation dataset error above, and the testing
dataset which will be used in Section V is kept blinded from
the selection of the optimal filter frequencies.

Fig. 10. Panasonic Validation data temperature estimation error versus second
filter frequency for FNN with 1-mHz filters and a second set of filtered voltage
and current inputs.

TABLE V

DESCRIPTION OF MODEL CONFIGURATIONS INVESTIGATED

IN SECTIONS V AND VI

TABLE VI

NUMBER OF LEARNABLE PARAMETERS FOR FNN (1 MHZ) AND LSTM
CONFIGURATIONS INVESTIGATED IN FIG. 18

B. LSTM Model Structure

The LSTM has internal memory embedding information
from past time steps, so it is not necessary to include filtered
data as an input as was done for the FNN. Fig. 8(b) shows
the LSTM temperature estimation model structure used in this
study, including the layers and activation functions. Voltage,
current, SOC, and ambient temperature are used as inputs.
One hidden layer is used, and it includes 25 hidden units,
where each hidden unit is the LSTM structure shown in Fig. 2.
Twenty-five hidden units are used so that the total number of
learnable parameters, 3026 as listed in Table V, is similar to
the FNN.

In summary, the LSTM and the three FNN configurations
Section IV will be compared in the analysis for varied
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Fig. 11. Temperature estimation error of each model for fixed ambient
temperature Panasonic drive cycle Validation data.

ambient temperature operation in Section V and fast charging
in Section VI. The acronym, number of inputs and types,
and number of parameters for each of the four models are
presented in Table V.

V. TEMPERATURE ESTIMATION FOR PANASONIC CELL

ELECTRIC VEHICLE DRIVE CYCLES

In this section, the temperature estimation models with
configurations discussed in Section IV are trained with the
Panasonic cell drive cycle Training data, as defined in Table IV.
Each of the four models, three FNNs, and one LSTM, as listed
in Table V, is trained 20 times. The error of each of the
trained models is calculated using the Validation dataset,
which consists of the Fixed Ambient Temperature dataset.
The trained model with the lowest validation error is then
selected and evaluated using the Testing dataset, which consists
of the Varying Ambient Temperature dataset which is more
representative of conditions in an actual electric vehicle.

A. Training Process With Multiple Training Repetitions to
Select Best Trained Model via Validation Data

Each of the four models is trained 20 times with unique
initial parameters to ensure that the global optimum solution
is reached and that a fair comparison between the model types
is performed. The average of the rms temperature estimation
error for all the Validation cycles is calculated and is plotted
for each model type and training repetition in Fig. 11. The
figure shows that is important to perform multiple training
repetitions, since the difference between the best and worst
trained FNN with 1- and 4-mHz filters is quite significant,
around 0.5 ◦C. The difference is even greater for the LSTM,
around 1.1 ◦C. The trained model with the lowest Validation
error—an error of 2.00 ◦C for FNN (N/F), 1.12 ◦C for FNN
(1 mHz), 0.96 ◦C for FNN (1 and 4 mHz), and 0.50 ◦C for
LSTM—is selected for evaluation in Section VI. Notably, the
error decreases substantially as more filtered inputs are added
to the FNN, and the LSTM achieves about half the estimation
error of the best FNN.

Fig. 12. Temperature estimation for best FNN (1 mHz) and LSTM models
for Mix 1 varied temperature drive cycles. (a) Mix 1 starting at −20 ◦C.
(b) Mix 1 starting at 10 ◦C.

Fig. 13. Temperature estimation error of FNN (1 mHz) and LSTM models
for each varied ambient temperature Testing drive cycle.

B. Temperature Estimation Accuracy for Best-Trained
Models and Varying Ambient Temperature Test Data

In this section, the four best-trained models are evaluated
using the independent set of Testing data, the Varying Ambient
Temperature drive cycle data, as described in Section III and
Table IV. These drive cycles start at −20 ◦C or 10 ◦C and
have a temperature rise of as much as 35 ◦C. The temperature
estimated by the FNN with 1-mHz filters and by the LSTM
is plotted for two of the drive cycles in Fig. 12. Even though
the temperature rise is quite significant, the error is around
2.5 ◦C or less for the LSTM and 4 ◦C or less for the FNN
for this Mix 1 cycle. The rms error for each of the eight
Testing cycles is then plotted in Fig. 13, showing that the
LSTM typically achieves around 5%–10% lower error than
the FNN. Besides, both models show a stable error for the
testing drive cycles with the FNN average error of 1.8 ◦C and
the LSTM error of 1.6 ◦C. The average rms and maximum
error of the eight Testing cycles for each model type are then
plotted in Fig. 14, showing that the LSTM still achieves the
best accuracy, although by a smaller margin than was observed
for the Validation data.
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Fig. 14. Temperature estimation error of each model for varied ambient
temperatures drive cycle Testing data.

While the error for the Testing data is much higher than
for the Validation data, nearly twice as high for the FNN and
three times as high for the LSTM, the results demonstrate
that the models can estimate temperature for data which is
very different than the data which the model was trained
with. This is an important characteristic for electric vehicle
applications, where a wide range of operating conditions exist
across different climates, terrain, and use cases. Overall, the
accuracy of the temperature estimation is still quite reasonable,
with less than 2 ◦C rms error for all but the FNN with no filters,
less than 4.5 ◦C max error for the FNNs with filters, and less
than 4 ◦C max error for the LSTM. Considering that low-cost
physical temperature sensors are often rated for several degrees
Celsius of error, the machine learning algorithms appear to be
an excellent alternative. Finally, one unexpected result was
that the FNN error is slightly higher with two input filters,
suggesting that when only marginal benefits of a second filter
are observed during validation it may not be beneficial to
include the additional filter.

VI. TEMPERATURE ESTIMATION FOR KOKAM CELL FAST

CHARGING

During fast charging, the battery is charged at a high rate for
a short time, resulting in significant loss and temperature rise
which is challenging to capture in battery thermal models. This
section investigates and highlights the NN model’s capability
to capture the temperature transients associated with fast
charging. Similar to Section V, each network is first trained
multiple times, then the best trained networks are selected
using the validation data, and finally, the error is evaluated
for independent test data. Error is also presented as a function
of the number of learnable parameters, giving insight into
network sizing.

A. Training Process With Multiple Training Repetitions to
Select Best Trained Model via Validation Data

Each model is trained 20 times with unique initial para-
meters to ensure the global optimum solution is reached, just
as was done for the Panasonic drive cycle data. The model
is trained with a 1-, 3-, and 5-C fast charge, and a 2-C
fast charge is used for validation, as specified in Table IV.
The validation error for each training repetition is shown in
Fig. 15. Each FNN training repetition has a similar error, while

Fig. 15. Temperature estimation error of each model for Kokam cell 2-C
fast charge Validation data.

Fig. 16. Temperature estimation for best FNN (1 mHz) and LSTM models
at 1–5-C fast charging rates. (a) Best FNN (1 mHz). (b) Best LSTM.

the LSTM error varies widely, again demonstrating the value
of performing multiple training repetitions. The best trained
model is selected from the training repetitions for use in
Section VI-B, with an error of 0.65 ◦C for the FNN (N/F)
model, 0.25 ◦C for FNN (1 mHz), 0.20 ◦C for FNN (1 and
4 mHz), and 0.29 ◦C for LSTM. The FNN performance again
improves as more filters are added, even though the filter
frequencies were selected using an analysis of Panasonic cell
data. This suggests that if the filter frequencies are close to the
electrical and thermal time constants of the battery system, this
should be sufficient to improve the performance of the FNN.

B. Temperature Estimation Accuracy for Best-Trained
Models and 4-C Fast Charge Test Data

In this section, the best-trained models as identified in
Section V are evaluated for the 4-C fast charge Testing data.
Fig. 16 shows the estimated temperature of the FNN (1 mHz)
and LSTM models for the 4-C fast charge, as well as the
other C-rate fast charges used for training and validation. The
FNN error is exceptionally low for the 4-C fast charge Testing
case, never exceeding 1 ◦C, which is impressive considering
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Fig. 17. Temperature estimation error of each model for 4-C fast charge
Testing data.

that the 1-, 3-, and 5-C fast charges used for training have
quite different temperature rise. The LSTM error is quite a
bit higher, exceeding 2 ◦C at one point. Both models struggle
to fit the 1-C fast charge training data accurately, but this is
likely due to fluctuations in the coolant and battery temperature
caused by on and off cycling of the chiller when the loss is
very low.

Fig. 17, shows the rms error and maximum error of the
four models for the 4-C fast charge. Overall, the FNN with
the 1- and 4-mHz filtered inputs has the lowest error, just
0.3 ◦C rms error and 0.65 ◦C maximum error. This error is very
low, which demonstrates that the FNN temperature estimation
model could effectively be used along with a terminal voltage
estimation model for predicting temperature for different fast
charge profiles, enabling temperature to be regulated during
fast charging with model predictive control for example. The
LSTM, which performed best for the drive cycles tested in
Section V, had a somewhat higher RMSE of 0.41 ◦C and
more than three times higher maximum error of 2.29 ◦C.
The fast charge dataset is smaller in size compared with
the drive cycle, typically around 7% as long (29 341 data
points for fast charge versus 434 797 data points for drive
cycles). The LSTM performs worse in this case because the
smaller amount of training data may not be sufficient to fully
train the memory aspects of the LSTM. The fast charging
voltage/current profiles are also less dynamic than the drive
cycles which makes the fast charge a less complex problem for
a simple FNN to efficiently extract system features. There are
not many numerical studies comparing the FNN and LSTM,
but the study in [27] showed that for modeling dynamic
systems, the FNN shows better performance than an RNN
when the inputs are noise-free. While the experimental data is
essentially noise-free due to the high accuracy of the battery
cycler measurements, the drive cycle data could be considered
similar to noise since it is highly dynamic, while the output
is a smooth signal. In this way, the research in [27] could be
considered to support the LSTM performing better than the
FNN for drive cycle data in Section V.

C. Impact of Number of Learnable Parameters on
Temperature Estimation Accuracy

In Sections IV–VI-B, each temperature estimation model
was configured with around 3000 learnable parameters.
To investigate whether this number of parameters is necessary
to achieve the best accuracy, FNN and LSTM models with

TABLE VII

MODEL EXECUTION TIME AND MEMORY USE FOR NXP S32K344
160-MHZ BMS MICROPROCESSOR

Fig. 18. 4-C fast charge Testing temperature estimation rms error of the
FNN (1 mHz) and LSTM models as a function of the number of learnable
parameters.

between around 150 and 10 000 learnable parameters are
tested in this section. Similar to the previous cases, each model
is trained 20 times and tested with the 4-C fast charge data. The
number of neurons, hidden units, and corresponding number
of learnable parameters of the LSTM and FNN model with
1-mHz filters are presented in Table VI.

The error versus number of learnable parameters is plotted
in Fig. 18 for the best model out of the 20 training repetitions,
showing that both the FNN and LSTM error decreases as the
learnable parameters increase. The FNN error decreases only
slightly though, while the LSTM error decreases by about half
as learnable parameters increase from 149 to 5236. It is notable
that even the smallest FNN, with just 171 learnable parameters,
has better accuracy than any of the LSTM models. These
results clearly show that the FNN is well suited for estimating
the temperature of constant current, constant voltage fast
charges, achieving higher accuracy than the LSTM with a
much smaller network.

Overall, the FNNs with filtered data inputs are shown
to be more accurate for the fast charging cases, while the
LSTM is more accurate for the more complex dynamic, varied
temperature drive cycles. In Section VII, the execution time
and the memory use will be measured for each model when
it is deployed to a BMS microprocessor.

D. Impact of SOC Error on Temperature Estimation
Accuracy

The proposed models utilize SOC as one of the inputs,
where SOC is calculated from current measured using an
accurate battery cycler in the laboratory. However, SOC esti-
mation algorithms implemented in the vehicle cannot be 100%
accurate. Hence, a robustness test case with SOC error is
investigated in this subsection. A ±5% offset in SOC is added
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Fig. 19. 4-C fast charge Testing temperature estimation rms error for the
FNN (1 mHz) with ±5% offset error in the input SOC values.

Fig. 20. NXP S32K344 160-MHz BMS microprocessor with FNN (1 mHz)
deployment and testing for 4-C fast charge case.

to the 4-C fast charge data. Temperature is estimated using
the FNN with a 1-mHz filter for the correct and offset SOC
inputs, as shown in Fig. 19. The RMSE obtained by the FNN
(1 mHz) for +5% and −5% offset in SOC are 0.35 ◦C and
0.28 ◦C, respectively, and the error is 0.3 ◦C with no SOC
error. The error for the +5% SOC offset is just 15% greater
than the error with the correct SOC, demonstrating that SOC
error has a small impact on temperature estimation error. The
maximum error obtained for both offset cases is still within
1 ◦C, which is quite acceptable given the fairly large SOC
error. An accurate SOC estimation algorithm may achieve an
error of less than 2% for most cases, which would result in
even less temperature estimation error.

VII. MICROPROCESSOR EXECUTION TIME AND MEMORY

USE

In this section, the three FNN models and the LSTM model
with approximately 3000 learnable parameters and an FNN
model with 171 learnable parameters, as listed in Table V, are
deployed to a BMS microprocessor. The BMS microprocessor
used in this study is an NXP S32K344 with a 32-bit 160-MHz
Arm Cortex-M7 processor, as shown in Fig. 20 [28]. The
microprocessor has 4 MB of flash memory and 512 kB
of random access memory (RAM). The MATLAB/Simulink
environment is used to generate C-code from the models which
are implemented in Simulink. The C-code is generated using
the MATLAB model-based design toolbox and is deployed to
the microprocessor evaluation board using a universal asyn-
chronous receiver–transmitter. The model execution time and
memory use are then measured using a Simulink profile block.
All the input signals are transferred from the host computer

to the deployed algorithm executing on the microprocessor.
Fig. 20 shows an example of the deployment of the FNN
(1 mHz) model with 2851 parameters. The resulting error for
the FNN (1 mHz) model is completely identical to the results
attained with the algorithm running on a PC as presented in
Figs. 16(a) and 17.

The microprocessor execution time to run one instance of
each model is listed in Table VII. For the models with around
3000 learnable parameters, the execution time is around 0.8 ms
for the FNNs and 2.5 ms for the LSTM, indicating that despite
the models having the same number of learnable parameters
the computational complexity of the LSTM, which includes
nonlinear hyperbolic tangent and exponential gate functions,
is higher. The results show that adding filtered inputs to the
FNN results in a negligible execution time increase of a few
microseconds. The execution time is much less for the FNN
with 171 learnable parameters, just 0.09 ms, demonstrating
that if slightly higher error is acceptable, a very computation-
ally efficient algorithm can be used.

To implement one instance of each algorithm on the micro-
processor, between 4 and 9 kB of flash memory are needed
for the FNNs, while 53 kB is needed for the LSTM. This
is just a fraction of the 4 Mb of flash memory available on
the processor, demonstrating that the flash memory use of the
proposed models is not a significant limitation to running them
on a BMS. The models only require 0.2 to 1 kB of RAM,
which again is just a small fraction of the 512 kB of RAM
available on the processor and indicates that these algorithms
could easily be implemented in a BMS.

In summary, execution time may be more of a limitation
than memory use. Running the models 100 times, as would
be needed to estimate the temperature of 100 cells, would
consume between 8% and 25% of the processor time for a
1-Hz update rate and the 3000 parameter models. Fortunately,
for the fast charging case at least, a significantly smaller
FNN model can be used which would reduce the overall
execution time substantially, requiring just 0.8% of processor
time to run 100 models each second. The smaller FNN
could also easily be run with a low-cost NXP S32K1 series
microprocessor, which was observed in [29] to require about
a factor of eight greater execution time compared with the
NXP S32K3.

VIII. AGING STUDY AND MODELS BENCHMARKING

VERSUS STUDIES IN THE LITERATURE

In the previous test cases, the proposed models were tested
using experimental data from cells at the beginning of life
(BOL). However, in any realistic scenario, the battery will
experience aging while deployed in the vehicle. Therefore,
in this test case, one of the proposed temperature estimation
models is trained using charge profiles from a battery at BOL
and is tested both at BOL and under aged conditions. Testing
the NN under aged conditions shows if the correlation between
input voltage, current, and SOC and the temperature rise is
consistent throughout the life of the battery. An FNN (1 mHz)
NN is used and is trained with experimental data from a 3-Ah
capacity Samsung INR21700-30T cylindrical cell. The cell
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TABLE VIII

COMPARISON OF TEMPERATURE ESTIMATION MODELS WITH PRIOR RESEARCH

Fig. 21. Samsung cell voltage, current, SOC, and temperature at 100% and
80% SOH conditions. (a) Cell voltage, current, and SOC. (b) Cell measured
versus estimated temperatures.

was subjected to an aging test performed at 25 ◦C over six
months until the cell reached 80% SOH. For the aging tests,
the cell is discharged with drive cycle power profiles and then
boost charged (4-C rate followed by 2-C rate). Fig. 21(a)
shows the measured voltage, current, and SOC during the
boost charge for the cell at 100% and 80% SOH conditions.

The measured temperature and the temperature estimated
by the FNN (1 mHz) model and the corresponding estimation
error are shown in Fig. 21(b). The FNN (1 mHz) model error
is quite low at 100% SOH, just 0.5 ◦C rms, and 1.15 ◦C max,
and it only increases slightly at 80% SOH to 0.8 ◦C rms and
1.56 ◦C max. This demonstrates that the model, which was
only trained on new data, successfully learned the correlation
between terminal voltage, current, SOC, and temperature. The
model essentially translated the higher terminal voltage of
the more resistive aged cell to a higher temperature rise.
To improve accuracy throughout the life of the cell, the
proposed model can always be updated or calibrated either
onboard in the cloud using data collected from a fleet of
vehicles.

The proposed models are compared in Table VIII to other
machine learning algorithms presented in the literature, includ-
ing an LSTM, ANN, and FNN. The models are compared in

terms of algorithm type, studied ambient temperatures, largest
temperature rise case, and error.

The maximum error of these models varies from 1.5 ◦C
to 7 ◦C, which is greater than the 0.7 ◦C–4 ◦C maximum
error observed for the proposed models. Considering that the
temperature rise reached up to 35 ◦C, which is twice as high
as the studies in the literature. Besides, the proposed model
showed around a 35% increase in estimating the temperature
of an aged battery as compared to [14], where the model
showed a 130% higher error for an aged battery. The FNN
in our study has the advantage of decoding some memory
information than in [30] by adding some selected filter fre-
quencies. Besides, the LSTM model with voltage as an input
in this study shows better performance than the LSTM in [13]
with only current, SOC, and ambient temperature. The table
also shows the superiority of the proposed study over other
studies due to including a variety of dynamic and fast charge
conditions which challenge any modeling approach.

IX. CONCLUSION

In this article, two DNN modeling approaches were pro-
posed to predict the surface temperature of LIBs. The first
model type is based on an FNN enhanced with external
filters, while the second model is based on an RNN with
LSTM. These models were trained and tested at a range of
driving, charging, and health conditions, with up to 35 ◦C
of temperature rise and 450 A of current for the fast charge
tests. The models were also deployed to an NXP S32K344
BMS microprocessor to benchmark the models in terms of
execution time and memory use. Including filtered voltage and
current inputs to the FNN models considerably improved their
performance, resulting in errors close to or better than for the
LSTM. The proposed FNN with 1-mHz filter model is shown
to be capable of predicting the temperature with a maximum
error of no more than 4.5 ◦C for challenging, low-temperature
drive cycles and no more than 0.7 ◦C for 4 C rate fast charges.
Besides, the proposed model showed around a 35% increase
in estimating the temperature of an aged battery than the
beginning of life error. When running the models with around
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3000 learnable parameters on the BMS microprocessor, the
FNNs required about 1/3 the execution time, showing that the
LSTM is much more computationally complex than the FNN.
The results also showed that both flash and RAM memory use
of the FNN is much lower than the LSTM.

Overall, the results show that machine learning algorithms
are very effective at learning the relationship between battery
temperature and measured terminal parameters, reducing the
need to create complex battery loss and thermal models. The
machine learning algorithms can also easily be implemented to
a BMS microprocessor, and do not require excessive execution
time or memory.
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