
Application-Arrival Rate Aware Distributed
Run-Time Resource Management for
Many-Core Computing Platforms

Vasileios Tsoutsouras , Student Member, IEEE, Sotirios Xydis ,Member, IEEE,

and Dimitrios Soudris ,Member, IEEE

Abstract—Modern many-core computing platforms execute a diverse set of dynamic workloads in the presence of varying application

arrival rates. This inflicts strict requirements on run-time management to efficiently allocate system resources. On the way towards

kilo-core processor architectures, centralized resource management approaches will most probably form a severe performance

bottleneck, thus focus has been turned to the study of Distributed Run-Time Resource Management (DRTRM) schemes. In this article,

we examine the behavior of a DRTRM of dynamic applications with malleable characteristics against stressing incoming application

interval rate scenarios, using Intel SCC as the target many-core system. We show that resource allocation is highly affected by

application input rate and propose an application-arrival aware DRTRM framework implementing an effective admission control

strategy by carefully utilizing voltage and frequency scaling on parts of its resource allocation infrastructure. Through extensive

experimental evaluation, we quantitatively analyze the behavior of the introduced DRTRM scheme and show that it achieves up to

44 percent performance gains while consuming 31 percent less energy, in comparison to a state-of-art DRTRM solution. In comparison

to a centralized RTRM, the respective metric values rise up to 62 and 45 percent performance and energy gains, respectively.

Index Terms—Distributed run-time resource management, many-core systems, intel SCC, application admission regulation policy

Ç

1 INTRODUCTION

CONTEMPORARY technological achievements and system
designs such as cloud computing drive innovation

towards many-core computer architectures and dynamic
applications design [1]. Many-core architectures [2], [3], [4]
are nowadays a reality, proposed as an effective computer
organization to address the ever increasing user demands for
higher performance, reliability and lower power consump-
tion. The nature of applications’ design is also evolving by
incorporating dynamic characteristics such as high variabil-
ity in workload, self-awareness andmalleability, i.e seamless
run-time adaptivity to available system resources [5], [6], [7].

The combination of highly dynamic, parallel applications
and emerging technologies in many-core systems dictates
the need for run-time decision making regarding resource
distribution, which incorporates sophisticated logic in an
effort to meet the requirements of high performance, low
power consumption, safety and reliability. Inevitably, this
comes at the price of high computational requirements in
order to provide results within acceptable time limits.

To alleviate the computational bottleneck, the resource
allocation paradigm has shifted from centralized to Distrib-
uted Run-Time Resource Management (DRTRM) decision
making processes. The new paradigm has been adopted,
leading to user-space DRTRM implementations [7], [8],
design of new Operating Systems [9], [10], [11] and even
novel implementations of the Linux Operating System with
distributed, replicated kernel instances [12]. In overall, the
advantages of DRTRM are increased scalability, inherent
distribution of computational burden for decision making,
support for heterogeneous systems, as well as enhanced
system reliability, i.e., eliminating the single point of failure
of centralized approaches.

However, the nature of distributed decision making does
come with an increased complexity in the resource manage-
ment process. The lack of a single point with overview of
the platform leads to limited ability to adjust in scenarios
that the need for resources is stressed, since numerous
distributed agents need to communicate via exchanged
messages in order to enforce a global policy. In this work,
we identify this limited adaptivity ability by examining
resource stressful scenarios, resulting from the arrival rate
of incoming applications on many-core systems. We show
that a very fast and resource hungry scenario of incoming
applications can be the breaking point for the efficiency of
the distributed framework.

The effects of the arrival rate of incoming execution
requests have been widely investigated for different target
systems such as Cloud infrastructure [13], Map-Reduce
Clusters [14] and many core-systems [15] but all solutions

� The authors are with the School of Electrical and Computer Engineering,
National Technical University of Athens, Athens 157 72, Greece.
E-mail: {billtsou, sxydis, dsoudris}@microlab.ntua.gr.

Manuscript received 18 Dec. 2016; revised 13 Dec. 2017; accepted 27 Dec.
2017. Date of publication 2 Feb. 2018; date of current version 14 Sept. 2018.
(Corresponding author: Vasileios Tsoutsouras.)
Recommended for acceptance by S. Le Beux, P.V. Gratz, and I. O’Connor.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2018.2793189

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018 285

2332-7766� 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5824-9763
https://orcid.org/0000-0001-5824-9763
https://orcid.org/0000-0001-5824-9763
https://orcid.org/0000-0001-5824-9763
https://orcid.org/0000-0001-5824-9763
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
mailto:

rely on centralized resource management, which allows for
effective decision making under heavy input traffic. We dif-
ferentiate from these works by analysing and correlating the
application arrival rates in respect to the internal mecha-
nisms of DRTRM and propose its extended application-
arrival aware version, which is capable of dynamically
adapting to stress-marked scenarios in a distributedmanner.

Our analysis of DRTRM internals reveals that its resource
allocation process forms a hierarchy in the inter-play of differ-
ent agents running on the target many-core system. Further-
more, these different agents exhibit unbalanced workload
characteristics by design, as for example a subset of the avail-
able system cores are dedicated only to management-related
tasks, without any involvement in application workload exe-
cution. Consequently, their execution profile makes them
promising candidates to enforce Voltage and Frequency scal-
ing (VFS) techniques to balance their power and computation
needs. We utilize the aforementioned concept of VFS at the
DRTRM level in order to efficiently regulate resource man-
agement requirements according to system stress conditions,
without compromising the distributed nature of our manage-
ment framework. More specifically, the novel contribution of
our work are:

� Wepropose and design anApplication-Arrival aware
Distributed Run-Time Resource Management frame-
work for many-core systems which utilizes VFS tech-
niques in order to enforce an application admission
regulation policy in a purely distributed manner,
requiring the communication of only a small subset
of the system’s cores.

� We provide a second level of exploitation of our VFS
based techniques by meticulously mapping the parts
of DRTRM on the system according to their compu-
tational requirements in order to maximize the
energy consumption gains of our framework.

� We implement the proposed DRTRM on Intel Single
Chip Cloud Computer (SCC) [2], a many-core sys-
tem which gives us the opportunity to validate our
proposed techniques in an actual setup and capture
and analyze the behaviour of applications’ workload
execution and system’s energy consumption.

� We provide an exploratory analysis of the different
design knobs of the proposed framework in order to
fine-tune its parameters, thus maximizing the gains
in application execution latency as well as system-
wide energy consumption.

The rest of the paper is organized as follows: Section 2 is
dedicated to relatedwork. Section 3 presents ourApplication-
Arrival Aware DRTRM by summarizing its resource alloca-
tion mechanisms in Section 3.1 and detailing the proposed
admission control in Section 3.2. Section 4 includes an exten-
sive experimental analysis of the behaviour and efficiency of
the proposed DRTRM solution on Intel SCC platform, while
Section 5 concludes the paper.

2 RELATED WORK

Distributed Run-Time Resource management has been
investigated in various works as in [7], [8], [16], [17], with
main focus on minimizing application execution latency tar-
geting a many-core system. In [16], [17] authors propose

distributed mapping using clusters of cores, which are re-
sized at run-time according to the needs of running applica-
tions. Resources are negotiated and migrated between
applications with the help of local agents and a global
supervising agent. Such a global agent is not present in [7],
[8] and thus application management is performed by dis-
tributed agents which negotiate individually for resources.

However, in all of these works the arrival rate of applica-
tions is not taken into account. This parameter is investi-
gated in [18], where a heuristic for application admission
control is proposed to aid the service provider of cloud or
grid based systems to meet the Quality of Service require-
ments of the user. In [15], a job arrival aware scheduler is
proposed targeting asymmetric multi-processors. The cen-
tralized scheduler has a complete overview of the system
and uses queuing theory concepts and arrival rate predic-
tions to make run-time decisions for the migration of jobs
between different cluster of PEs.

Authors of [19] target embedded, hard, real-time systems
and propose a feedback loop approach using control theory
to regulate and fine-tune application admission. Their
approach is similar to our proposed one, but targets systems
of only a few processors, whereas ours is designed for many-
core systems. In [20] the concept of a job queue in a many-
core system is extended by introducing Isonet, a hardware
based dynamic load distribution and balancing manager.
This manager makes the selection of the jobs to be executed
based on micro-network of load balancing modules, which
take into account the current load conditions of the system,
in an ultimate effort to maximize system speedup.

The described approaches, mainly focus on performance
optimization, neglecting energy optimization goals, which
is becoming an important requirement for contemporary
management frameworks. In [21] authors propose ARTE,
an Application-specific Run-Time Management framework,
which makes use of queuing theory concepts to maximize
the QoS of a many-core system, while respecting its power
budget. The employed queuing model utilizes specific
information for each application, resulting from design time
analysis. In contrast to our approach, ARTE operates in a
centralized manner embedded inside the OS of a multi-core
system. Another centralized approach is VARSHA++ [22], a
run-time framework extended with Dynamic Voltage Scal-
ing capabilities, for application mapping in multi-processor
chips operating under dark-silicon constraints. An input
queue is used for application arrival, while task mapping
and scheduling is performed taking into account variation
characteristics and reliability predictions for the target chip.

Al-Fareque et al. [23] proposed an agent-based frame-
work to reduce peak temperature combined with enhanced
performance and reduced energy consumption. Agents’
negotiations are based on a supply/demand economical
model that distributes power in a proactive manner. Agent-
based management is also utilized in [24], performing dis-
tributed task migration for thermal management. Neural
networks are used to predict peak temperatures in cases
of workload variation, showing higher performance and
reduced migration overhead compared to other centralized
predictive dynamic thermal managers. An Agent-based
power management presented in [25] provides the opportu-
nity of power state control of resources for each individual

286 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

application operating on the system. The determination of
each power state is performed with respect to improving the
overall energy consumption of the system under manage-
ment. To achieve that, a distributed power management
approach is proposed based on game-theory, which achieves
significant results both in scalability and energy efficiency.

3 APPLICATION-ARRIVAL AWARE DRTRM

3.1 DRTRM Architecture

The proposed DRTRM framework targets many-core homo-
geneous platforms, where all Processing Elements (PEs) are
mapped on the same chip. It is assumed that communica-
tion between PEs is achieved in a message passing way via
a Network-on-Chip infrastructure. Nevertheless, our design
is not dependent on the communication scheme of the PEs
so it can be adapted to operate on top of shared memory
based, many-core architectures.

3.1.1 Target Application Model

The proposed framework focuses on the management of
parallel applications which exhibit malleable characteristics
[7], i.e., they can be re-sized up/down according to resour-
ces availability. We refer to resources as the PEs occupied
by each application and assume no communication between
two different running applications. Each application is
described by three parameters, which are its workload W ,
its parallelism variance s, and its average parallelism A.
According to the model utilized in [7], Eqs. (1) and (2) pro-
vide the speedup of a parallel application, that is executed
on nworker PEs of a many-core system

SðnÞ ¼

nA
Aþ s

2ðn�1Þ
; 1 � n < A

nA
sðA�1

2Þþnð1�s
2Þ

; A � n < 2A� 1

A ; n � 2A� 1

8
>><

>>:

|ffl{zffl}
s< 1

(1)

SðnÞ ¼
nAðsþ1Þ

sðnþA�1ÞþA ; 1 � n � AþAs � s

A ; n > AþAs � s

(

|ffl{zffl}
s�1

:
(2)

Using Eqs. (1) and (2), the remaining execution time of a
running application with workloadW is calculated as [7]

Tfinish ¼ W

SðnÞ : (3)

Due to the lack of a central agent responsible for applica-
tion mapping, each application is managed atomically, dis-
tributing its workload to its active worker cores. Adopting
application management concepts from many-core Operat-
ing Systems [10] and large scale distributed systems [26], a
dedicated, unique PE per application, named Manager core,
controls its life-cycle and manages its resources according
to the embedded directives of the application developer. Its
additional key aspect is to perform all the necessary actions
for inter-application run-time resource negotiation, which is
critical for optimizing the speedup of its application.

In the context of this work, theManager core is responsible
for distributingworkload to theworking nodes and gathering

the output of their calculations. Given that our design aims at
large many-core systems, we choose to have no application
workload executed by theManager core in order to minimize
any run-time overhead imposed on applicationmanagement.
In addition, since we target highly scaling applications the
imposed speedup overhead of this choice is greatly reduced.
In the general case, a Manager core is a software entity/
process which can be co-scheduled with other processes on a
single core, i.e., our choice is not a hard design constraint.

We define as Rtot the total number of Processing Ele-
ments of the target many-core system and as Napps the total
number of instantiated applications at a given moment. The
relationship betweenNapps and Rtot is

1 � Napps � Rtot: (4)

Napps is always equal or greater to 1 under the convention that
there is an administrative applicationwhich is responsible for
idle computational resources handling (see Section 3.1.3). If
we define as Ri the resources occupied by the ith application
then the following two equations are valid

Ri 6¼ Rj; 8i; j; i 6¼ j; i; j � Napps (5)

XNapps

i¼1

@Ri
¼ Rtot; (6)

implying that that two applications cannot share the same
computational resources (Eq. (5)) and the total computa-
tional resources occupied by all applications are equal to
the total resources of the system (Eq. (6)). The maximum
PEs that an application can occupy are dictated by the least
number of cores that maximize its speedup.

3.1.2 Implemented Malleable Application

In order to provide an experimental setup able to represent
realistic characteristics of emerging workloads, we imple-
ment application malleability within an integer matrix mul-
tiplication code between a square matrix of size M�M and a
vector of size M�1. This computational kernel was chosen
due to its significance in applications of High Performance
Computing (e.g., Linear Algebra applications) and Machine
Learning (e.g., Support Vector Machines classifiers). In
addition, the patterns of the involved computations allow
the development of a parallel application, which respects
the model of malleable applications.

To create computationally intensive applications, the core
multiplication is repeated W times and this variable is con-
sidered the workload of the application. Resizing is enabled
only at specific synchronization points between these repeti-
tions. The speeudp function Sðn;MÞ and remaining execu-
tion time Trem of the application aremodelled as

Sðn;MÞ ¼ Exec tð1;MÞ
Exec tðn;MÞ ; Trem ¼ Wrem � Exec tðn;MÞ; (7)

where Wrem refers to the remaining multiplication repeti-
tions, n is the number of worker cores and Exec t is a func-
tion returning the execution time for one instance of the
matrix multiplication for n cores. Exec t is dependent both
on the input data-set size as well as on the number of

TSOUTSOURAS ETAL.: APPLICATION-ARRIVAL RATE AWARE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORE COMPUTING... 287

processes working in parallel and is derived from extensive
profiling on the target platform. The maximum number of
workers for the implemented application is set to 8. Fig. 1
shows the execution latency of various workloads on Intel
SCC in respect to allocated resources. We observe that as
dictated by Eqs. (1)–(3) the scaling of the implemented
application is irrelevant to its workload W and respects the
linearity betweenW values and remaining execution time.

To achieve this behavior, we force DRTRM to allocate one
parallel process per core, thus eliminating co-scheduling
interference effects, since SCC does not support hyper-
threading at the core level. At run-time, the Manager com-
municates to each worker the upper and lower bound of the
consecutive rows of the input matrix that it has to multiply.
The workload is evenly distributed and the workers do not
exchange any information with one another. Each worker
writes in the memory of its Manager core the computed
results. In order to alleviate the overheads of memory block
caching that limits the benefits of dynamic malleability, we
carefully tile the workload distributed to each core to fit the
SCC node’s cache capacity, while also performing data pre-
fetching at the initialization of the application.

The implemented application exhibits collective commu-
nication during workload distribution and reduction of
computed results by the Manager core. Different inter-
worker communication patterns can be modelled in the
Speedup curve of the application and be taken into account
by the Manager core at run-time.

3.1.3 Distributed Information Tracking

The purely distributed nature of the presented framework,
dictates the need for a consistent way of system monitoring
at run-time. Since no processing entity is aware of the status
of the complete system, a number of PEs are allocated for
monitoring a part of the system and communicating this
information to the rest of the nodes. These dedicated PEs
will be referred to as Controller cores and maintain a record
of active Manager cores in a system region called Cluster.
This record is calledDistributedDirectory Service (DDS).

Clusters span to non-overlapping areas which are fixed
at design-time and can be reconfigured at system initializa-
tion only. The number of Controller cores and the topology
of their Clusters is an important design parameter which
affects workload and traffic distribution on the system.
Examples of different Cluster topologies are illustrated in
Fig. 9, where cores of the same color belong to the same
Cluster and are monitored by the same Controller core.

In order for a core to acquire information about application
activity inside a region R of the system, defined by a center
C and a radius r, it must issue such a request to the responsi-
ble Controller cores. A DISCOVER_CNTR_CORES signal
requests information about which Controller cores monitor
region R. A REQUEST_DDS_INFO signal informs about the
active Manager cores inside region R. ADD_CORES_DDS
and REMOVE_CORES_DDS signals issue a request by a
Manager for appropriate DDS list modification. By design,
the Controller core is also the owner of idle cores inside its
Cluster. As a consequence, it receives requests by other agents
for these resources, which are replied by offers according to
the availability of resources.

3.1.4 Application Instantiation

The final piece to capture the complete life-cycle of an
incoming application on the target many-core system is the
part of its instantiation and initialisation. This task is under-
taken at run-time by Initial cores that are responsible to dis-
cover at least one PE for the new application to be executed
on. One is appointed per application, randomly assigned at
run-time to enable a widespread distribution of Initial cores
across the platform, thus avoiding the repeated assignment
to a specific PE. It acts only as the means for the instantia-
tion of a new application, whose actual mapping is dynami-
cally determined and is not dependent on the position or
characteristics of the Initial core. Its task is completed when
a least one available PE has been discovered to facilitate the
execution of the new incoming application.

In Fig. 2, the overview of the functionality of the Initial core
is presented. First, a region R is defined where the Initial core
will look for available resources. Then, a DISCOVER_CNTR_
CORES signal is sent to its Controller to discover which Con-
trollers are monitoring region R. Having sent the signal, it
pauses until the reply is received. Upon the reply reception, it
proceeds to the next state where a REQUEST_DDS_INFO sig-
nal is sent to all Controller cores responsible for regionR. This
step will provide the information of which Manager cores
possess resources inside R. Another pause phase is initiated
which endswhen replies from all Controllers have been gath-
ered. Next, a REQUEST_FOR_CORES signal is sent to every

Fig. 1. Performance of malleability model in respect to #cores and work-
load size for matrix size M = 4,096.

Fig. 2. Overview of the functionality of an initial core.

288 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Manager and Controller inside region R requesting resource
offers for the new application. Then a timer is set and the Ini-
tial core pauses again waiting for offers. When the timer
expires, if there is at least one not null offer, the newManager
core is instantiated accordingly. In the opposite case, the over-
all process is re-executed after a pre-defined interval.

3.1.5 Resource Management Overview

The overall resource management goal of DRTRM is to serve
all applications requiring admission, while maximizing the
performance of the system. This is achieved by increasing
the resources of each application in such a way that the total
performance is maximized in addition to serving as many
incoming applications simultaneously as possible. The opti-
mization goal of our design is overall system service latency,
in contrast to other RTRM frameworks [27], which consider
only performance maximization of individual applications.
Its constraint is that no PE of the system is shared by two
applications as stated in Eqs. (5) and (6). To dynamically
guarantee the balanced allocation of PEs to all applications,
resource bargaining rounds are performed periodically
between active application instances,Ai;Aj; i; j 2 A.

We adopt the negotiation mechanism proposed in [8],
i.e., a re-assignment of resources is performed between Ai,
Aj whenever the following condition is true

SpeedupðAi;#Ri � 1Þ < SpeedupðAj;#Rj þ 1Þ: (8)

This means that a PE is reallocated to Aj if the speedup loss
of Ai is lower than the speedup gain of Aj. In case of a re-
allocation, it follows that the difference in total System
Speedup (SSp) is

DSSp ¼ SpeedupðAj;#Rj þ 1Þ � SpeedupðAi;#Ri � 1Þ > 0; (9)

meaning that system speedup/throughput is increased.
The aforementioned negotiation mechanism evaluates

the resource exchange possibility between two distributed
agents. The exchange of resources on the system takes place
only in a peer-to-peer fashion, so when many agents bargain
for resources they communicate their requests to all possible
resource providers. More precisely, the negotiation mecha-
nism is utilized by Manager cores for inter-application
resource exchange and by Initial cores in the process of
instantiating a new application. As far as Controller cores
are concerned, offering resources (idle PEs) is trivial, since

they exhibit no speedup loss. Consequently, they reply posi-
tively to a request for resources, provided that there are idle
cores inside the designated region.

The amount of resource bargaining decisions, was used
as a representative metric to evaluate the effect of central-
ized resource management on simulated, scaled up versions
of many-core systems. One agent is responsible for the sys-
tem overview and applications negotiate resources at run-
time via this agent. Our experiments validated the over-
burdening of the centralized manager, showing that there is
a non-linear correlation between system size and the neces-
sary resource negotiation instances, e.g., scaling up from 48
to 1,200 cores (25�) results in a 113� increase in the negotia-
tion instances, while the ratio of incoming applications and
system resources is maintained constant.

The presented DRTRM scheme implicitly imposes a hier-
archy to the different roles of PEs and the resource alloca-
tion flow. This hierarchy, presented in Fig. 3, creates
dependencies between PEs, which will be the key element
of the extended, Application-Arrival Aware DRTRM. At the
top level (Level 1), Controller cores are the building blocks
of information tracking and idle resources ownership. In
Level 2, Manager cores supervise application execution and
facilitate inter-application resource exchange, which is criti-
cal for the system to reach an optimized state, ensuring no
starvation incidence for any application. Initial cores lie in
Level 3 and temporarily acquire resources from the upper
two levels, in their effort to initialize a new application.

In overall, the resource management hierarchy as well
the appointment of dedicated tasks, either at design time,
i.e., Controller cores or at run-time, i.e., Manager, Initial
cores, is mandatory to account for the lack of centralized
system management. The inherent trade-off is the reduction
of available workers, which we consider tolerable in future
many-core systems with hundreds or thousands of PEs. In
addition, the presented hierarchical scheme is favored with
the intention to provide discrete and encapsulated function
of distributed agents to allow them to incorporate custom
run-time policies in future designs, tailored to the needs of
different applications.

3.2 Adaptive and Distributed Application Admission

The envisioned structure of the system is presented in Fig. 4.
It consists of i) the incoming application traffic according to
differing arrival rate distributions and application charac-
teristics, ii) an input application queue, iii) the DRTRM
module responsible for applications’ initialisation, resource

Fig. 3. Cores hierarchy and dependencies in DRTRM.

Fig. 4. The proposed application-arrival aware DRTRM.

TSOUTSOURAS ETAL.: APPLICATION-ARRIVAL RATE AWARE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORE COMPUTING... 289

management and execution on the many-core system and
iv) an admission control module that regulates the dispat-
ching of applications to be mapped onto the targeted plat-
form. The proposed scheme implements a feedback loop
approach, in an effort to configure DRTRM at run-time
according to the rate of incoming applications and the inten-
sity of system resources utilization by running applications.

We define as �ðtÞ the input rate of new applications on
the queue of the processing system and as mðtÞ the total rate
of application conclusion and exit from the system. Rate mi,
that each individual application concludes its operation is

mi ¼ fðRi;Wcompi ;Wcommi
Þ; (10)

ergo a function of its occupying computational resources Ri,
the workload Wcompi that the application has to execute and
the amount of communication Wcommi

which has to perform
with other applications on the system (mainly for resource
exchange purposes). The correlation between the occupying
resources of the application Ri and mi is proportional to the
speedup of the application

mi / speedupðRiÞ ¼ LatencyðRiÞ
Latencyð1Þ : (11)

The speedup of each application is calculated as the ratio
of its estimated finish time when it occupies Ri resources
and the corresponding values when it occupies only one
resource. In the context of this work, these values are
derived experimentally (see Section 3.1.2). In total, for the
Napps instantiated on the system at a given time t the total
output rate m is defined as

m ¼
XNapps

n¼1

mi: (12)

The aim of the Application-Arrival Aware DRTRM is to
service as many incoming applications as possible or in
other words minimize the difference between incoming and
outgoing application rate

min QðtÞ ¼ �ðtÞ � mðtÞ: (13)

3.2.1 Effects of the Incoming Applications’ Rate

on DRTRM

To motivate the necessity for a DRTRM with application-
arrival aware characteristics, we quantify the resource man-
agement efficacy of DRTRM against different input applica-
tion scenarios. A “Stressing” scenario was created, where the
interval between successive applications is significantly

small. Interval values were derived randomly to provide an
unbiased input. This is compared against other application
arrival scenarios,where the intervals of consecutive incoming
applications derive from Poisson distributions with Lambda
coefficient values equal to 16, 32, 48 and 64 respectively, as in
[15]. Fig. 5 illustrates the application arrival moments of two
scenarios, highlighting that applications in the “Stressing”
scenario arrive much earlier. All Poisson derived scenarios
follow the same trend but differentiate on the moment that
there is a peak in the rate of incoming applications.

In Fig. 6, we quantify the impact of �ðtÞ via the aforemen-
tioned scenarios, on a DRTRM without application-arrival
aware characteristics, using the implemented matrix-vector
multiplication applications on Intel SCC. Comparison of the
“Stressing” to Poisson distribution derived scenarios, shows
that total application execution latency exhibits a steep rise
of 190 percent in average, despite the fact that the workload
intensity of applications is identical in all scenarios. Addi-
tionally, the “Sum of applications’ instantiation effort execu-
tion latency”, which is a quantitative indication of the effort
spent in order to introduce all applications into the system
is averagely 142 percent higher. This indicates that despite
the shortage of available computational resources, Initial
cores kept on frequently searching cores for the new appli-
cation, even though it was highly probable that no PE was
available and would not be available until one of the run-
ning applications finished and freed its resources.

In correlation to Eq. (13), when �ðtÞ is high applications
pile up on the system leading to a point when Napps � Rtot,
i.e., there are no sufficient resources for admission of new
applications. Incoming applications are sent back to the
queue and an initialisation process is restarted. This involves
resources request from active applications, but since resour-
ces are scarce workload execution is interrupted without any
gain for any of the involved agents. Inevitably, these inter-
rupts result to an adverse effect on m, since according to
Eq. (10), which suggests that the execution of an application
is affected by Wcommi

, i.e., its communication with other
applications (owned to resource bargaining in this case).

Note that a centralized resource management framework
would suffer from similar to the aforementioned ineffi-
ciency issues, since the frequent remapping requests due to
the high application arrival rates and the lack of distribution
of this computational burden, would hinder the run-time
adaptation and efficiency of the system.

3.2.2 Proposed Adaptation Scheme

The observed vicious cycle, should be detected and miti-
gated by a DRTRM able to adapt application admission to

Fig. 5. Arrival times of application trace.
Fig. 6. DRTRM behaviour for different input application arrival rate sce-
narios (No application-arrival aware features).

290 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

the status of resource demand and supply on the system. In
a straightforward manner, such an adaptive behavior could
be translated to a policy at the Initial core level, e.g., the rep-
etition frequency of the core searching cycle could be
adjusted according to system resource utilization intensity.
This adaptation mechanism stumbles upon the nature of
purely distributed resource management, suffering from
two major drawbacks:

� It requires a central decision to assure effective adap-
tation of the framework in respect to the incoming
application demands. Consequently, this creates a
central point of information acquisition, which is
intended to be avoided in a distributed framework.

� It suffers from synchronization latency. Even if the
designer decides to gather the necessary information
and proceed to an adaptation decision, the gathering
process followed by a broadcast to the cores could
create a significant latency upon the enforcement of
the new policy. Eventually, when the new policy is
enforced, the state of the system might be different
compared to when the gathering process started.

Our proposed distributed mitigation plan is to reduce the
burden of pointless application instantiation efforts indi-
rectly, by taking advantage of the resource allocation hierar-
chy of DRTRM (Fig. 3) in order to slow down the core
search efforts of Initial and Manager cores, in case of heavy
workload scenarios when available resources are scarce.
Our simple yet effective application admission regulation
policy, relies on decelerating Controller cores by reducing
their operating frequency using Voltage and Frequency
Scaling techniques. In contrast to a centralized regulation
policy, this requires co-ordination of only the Controller
cores, which are very limited in number. As a consequence,
the required decision making can be implemented in a dis-
tributed manner. In our VFS extended DRTRM scheme,
application conclusion rate (Eq. (10)) can be re-written as

mi ¼ fðRi;WcompiðfðRiÞ; VddðRiÞÞ;Wcommi
ðfðRiÞ; VddðRiÞÞÞ; (14)

indicating that both Wcompi and Wcommi
are affected by the

operational frequency and voltage of the utilized resources
Ri of an application. Therefore, for the proposed mitigation
plan to be effective, care is taken so that VFS in different
PEs is such that

� Wcommi
is reduced by avoiding unnecessary commu-

nication between new applications under instantia-
tion requesting resources from running ones.

� Wcompi remains unaffected by not applying VFS on
resources executing computational workload. This is
highly important and implies that worker cores
remain at the highest possible frequency, ensuring
that no latency overhead is imposed on applications.

Due to the dependencies of resource allocation hierar-
chy in DRTRM, the deceleration of Controller cores when
system utilization is maximum leads to less frequent exe-
cution of temporarily redundant tasks of other agents,
such as search for free resources. Thus, significantly less
negotiation overhead is imposed on running applications,
allowing them to proceed with workload execution unin-
terrupted. In this way, their execution is concluded faster

and resources become available to facilitate the needs of
new applications.

Conceptually, the interplay of cores in DRTRM follows/
can be modelled as a client-server model, where clients are
Initial/Manager cores and the servers are Controllers. Slow-
ing down the servers leads to prolonged waiting times in
the client side, leading to increased latency for task comple-
tion. In turn, this creates longer control cycles which reduce
the pointless application instantiation efforts.

Fig. 7 zooms in the communication between a Control-
ler and an Initial/Manager core, showing in more detail
how slowing down the operations of the first eventually
results in slowing down the function of the others. The Ini-
tial core executes its search for resources, which is highly
dependent on information acquired by the Controller
core. The left side of Fig. 7 shows the evolution in time of
their communication in a typical operating frequency
configuration. The right side illustrates the timing for the
execution of the same operations after the frequency of the
Controller core has been scaled down. Since it operates on
lower frequency, more time is required for its incoming
request to be served. These requests create blocking
points in the execution of the Initial core and indirectly its
required time to execute a full resource search cycle is pro-
longed. This induced time gap slows down the instantia-
tion of one new application and by scaling up to all Initial
cores, it leads to reduced instantiation rate for all new
applications.

Fig. 8, presents how all cores categories are affected by
the VFS enabled DRTRM. Again, we see the interplay of dif-
ferent cores prior to and after VFS. The left side depicts the
internal functionality of a Manager core, which distributes
workload to its worker. Whenever the worker core finishes
its calculations, it informs the Manager in order to decide
how to further allocate application workload. If at that
moment the Manager is occupied with serving other incom-
ing requests such as a core request by an Initial core, then

Fig. 7. Time gap in RTRM signal exchange.

TSOUTSOURAS ETAL.: APPLICATION-ARRIVAL RATE AWARE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORE COMPUTING... 291

the elapsed time until workload re-distribution is increased
and the worker remains idle for more time.

The VFS extended DRTRM, achieves more efficient
workers utilization by avoiding the overburdening of Man-
ager cores by incoming resource negotiation requests. As
described, Controller cores of reduced operation frequency,
stall the operation of Initial cores resulting in the generation
of less requests for Managers. Consequently, a Manager core
is more responsive when its workers notify their workload
completion, which significantly reduces their idle time
and eventually leads to lower application execution latency.
The reader should note that in an actual stressful scenario,
the inefficiencies presented in Fig. 8 are aggravated since the
Manager core is flooded by resource requests from numer-
ous Initial cores. This results to a queue of requests, required
to be served before re-allocatingworkload to theworkers.

A system with tunable sleeping intervals of the Control-
ler cores would have comparable results to VFS technique
with regard to the admission control mechanisms. How-
ever, it requires a fine-grained, run-time tuning mechanism,
adaptive to the number of running applications, thus intro-
ducing synchronization overheads. In addition, the adop-
tion of tunable sleep calls reduces energy efficiency, since
there is no guarantee that the sleep duration is sufficient to
trigger a low-power system state.

4 EXPERIMENTAL EVALUATION

This section, presents the results of our conducted
experiments regarding the limits, efficiency, extensions and
robustness of our proposed methodology. For consistency
purposes, all experiments have been conducted using the
”Stressing” application arrival scenario, which we consider as
the point of interest of our work. Scenarios of lower arrival
intensity are sufficiently handled by DRTRM, while scenarios
of higher intensity greatly surpass the capabilities of the target
platform and are considered unrealistic. Evaluated metrics
quantify the performance of the proposed framework as well

as its energy savings resulting from the novel use of VFS
techniques.

4.1 Intel SCC: Many-Core Cloud-Computing
Platform

We utilize Intel Single Chip Cloud Computer [2] as the
driver many-core platform of this work, which is a 48-core
Network-on-Chip (NoC) platform, based on a mesh inter-
connection for on-chip data communication. It consists of 24
tiles, each one containing 2 processing cores of x86 instruc-
tion set. Tiles are connected through a 2D-mesh and a router
inside each tile is responsible for forwarding outgoing pack-
ets. Each tile also includes an L2 cache memory shared by
the two PEs and a special memory called Message Passing
Buffer, which provides fast and reliable data dispatching
amongst different cores. The tiles are divided into 6 Voltage
Islands (V.I.) and a Voltage Regulator Controller (VRC),
provides the ability to regulate the voltage of each island
individually. It is also possible to regulate the operating fre-
quency at tile granularity and always within limits dictated
by the respective operation voltage.

Each PE runs its own lightweight Linux OS distribution,
which significantly improves the programmability of the
system. The platform comes with a library called RCCE [28],
which offers MPI primitives in order to ease application
development. An API is also exposed to safely work with
the VFS capabilities of the system, offering the ability to scale
the frequency and voltage of each island by dictating a fre-
quency/voltage pair, ranging from < 800 MHz, 1.1 V> ,
< 533MHz, 0.8 V> down to < 100MHz, 0.7 V> [29].

The SCC platform incorporates a power metering infra-
structure, enabling the reporting of instant voltage and cur-
rent values drawn by the many-core chip. We developed a
custom power metering daemon program, which samples
the power metering registers by periodically invoking the
”sccBmc -c status” command. The gathered values are then
numerically integrated over each time interval i, to calculate
the dissipated energy: E ¼ P

Vi � Ii � Dti to acquire the

Fig. 8. VFS induced execution slack.

292 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

sum of the consumed energy. A similar infrastructure has
been used also in [30] to examine the impact of DVFS deci-
sions on the execution of single instances of MPI-based
applications mapped onto the SCC.

An instance of DRTRM supervises each PE, operating at
the user-space level of the software stack. The required user-
defined signals have been developed on top of the RCCE
API, which uses the sharedMPBmemory for inter-core com-
munication. Taking into consideration the platform’s VRC
architecture of pre-configured voltage islands, we enforce a
grouping of the Controller cores onto a specific voltage
island. In this way, frequency scaling can be also combined
with voltage scaling to further reduce the power consump-
tion of the DRTRM infrastructure.

As a far as Clusters are concerned, we examine all config-
urations of 2, 4 and 6 Controller cores presented in Fig. 9,
chosen to include both coarse and fine-grained topologies
with only constraint the placement of Controller cores
inside V.I. 0, in order to simultaneously regulate their volt-
age. However, in the general case, DRTRM can support any
kind of user-defined topology.

Since the regulation of a Voltage Island affects a group of
PEs, the application mapping directives of the VFS enabled
DRTRM have been meticulously tweaked to avoid the map-
ping of a worker core inside a region of reduced frequency
in order guarantee that application execution is not hin-
dered. On the contrary, its hierarchical scheme, described in
Section 3.1.5, enables the mapping of Manager cores on low
power PEs because they do not execute computational
workload but only orchestrate intra-application workload
distribution and inter-application resource bargaining.

4.2 Performance-Power Gains of Admission Control

The first set of experiments evaluates the efficiency of the
proposed admission policy to diminish the congestion cre-
ated on the many-core system by the ”Stressing” application

arrival scenario, using the implemented malleable appli-
cations as input. All Controllers are mapped on V.I. 0 of
Intel SCC. Fig. 10 presents performance-energy metrics of
DRTRM configurations with 2, 4 and 6 Controllers cores.
Their operating frequency is dropped from 800 MHz to
533 MHz via a voltage drop from 1.1 V to 0.8 V in V.I. 0.

Results are expressed in normalized gain with respect to
the same DRTRM topology without any voltage-frequency
scaling of the Controllers. As shown, in all cases perfor-
mance and energy improvements are reported. The results
exhibit a lack of symmetry between the improvement in
performance compared to energy. For example, in configu-
ration [2,A] (Fig. 9a) there is a 20 percent improvement in
performance accompanied by a 12 percent reduction in the
amount of energy, whereas in configuration [4,B] (Fig. 9f)
the respective numbers are 3 and 18 percent. This is because
the utilized performance metric does not indicate the degree
of concurrent execution of different applications on the sys-
tem. This degree severely affects the required time for each
experiment to be completed and thus its requirements in
energy. Therefore, on the one hand in configuration [2,A],
applications acquired more working cores, their summed
execution time was small but they were executed in a more
”serialized” way, thus energy gains are smaller. On the
other hand, in configuration [4,B] applications are executed
in a more concurrent manner meaning that they possess
less cores in average. However, the experiment is concluded
faster in total, which accounts for the high energy gains.

A delicate point of our design is the correlation of fre-
quency reduction to the resource management efficiency.
We emphasize that the proposed application admission pol-
icy is very effective in stressful application service requests,
i.e., cases when the system load is consuming almost all
hardware resources. Furthermore, the reduction of the oper-
ating frequency of the Controller cores is a critical design
parameter and should not be chosen arbitrarily. Based on
that, our next experiments evaluates the behavior of the
admission policy extended DRTRM for all operating fre-
quencies provided by Intel SCC.

The experiment, involves only Cluster topology [2,A]
(Fig. 9a) of 2 Controller cores. For this DRTRM configuration,
all the possible values of Controllers operating frequencies
are tested. Fig. 11 reports themeasuredmetrics, which expose
an interesting performance-energy correlation. Decreasing
the operating frequency of Controller cores results in reduced
total application execution latency. However, the constant
decrease of latency does not always imply more efficient
resource allocation. Application initialization on the system

Fig. 10. Performance-energy gains from application admission control in
DRTRM.

Fig. 9. Examined cluster topologies [#Controller cores, Cluster conf.].
Regions of the same color belong to the same cluster. Controller cores
are shaded.

TSOUTSOURAS ETAL.: APPLICATION-ARRIVAL RATE AWARE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORE COMPUTING... 293

is highly related to Controller cores’ operation and when
their computational capabilities are excessively reduced, this
initialization is performed in a slow, almost “serialized” rate.
This low rate ensures that when new applications are instan-
tiated, they are offered their maximum number of workers
since few other applications occupy resources and thus their
execution time isminimized.

Nevertheless, this “serialized” execution profile, results
in increased running time for each experiment given that
very few applications are executed in parallel. This in turn
increases the consumed energy required for the experiment
to be concluded. This trend is highlighted on Fig. 11 with
red line for energy consumption and blue line for execution
latency. The important outcome of this study is that a care-
less decision of VFS policy can have an adverse effect on
DRTRM efficiency. On the contrary, meticulous choice of
operating frequencies can give the system designer the free-
dom to sacrifice concurrent application execution for small
energy savings and vice versa.

Symmetrically to investigating DRTRM behaviour under
all available Controller cores’ operating frequencies, we
experiment with increased number of islands of reduced
voltage. This gives the opportunity to the proposed DRTRM
to utilize VFS in a more common way, i.e., to reduce power
consumption of some parts of the system that are not too
computationally intensive, such as Manager cores.

A set of experiments were performed, withmore than one
V.I. of Intel SCC operating on reduced voltage. Our design
constraint is that no worker core will be mapped on these
islands, in order not to stall workload execution. Results are
presented in Fig. 12 including metrics about latency and
energy consumption of the various configurations.

We observe that, having two islands of reduced voltage
leads to high gains both in execution latency and consumed
energy of the system. Further increase to the number of
reduced voltage islands leads to prolonged application exe-
cution latency. This is attributed mainly to the fact that a
large number of cores cannot be utilized to execute work-
load (worker cores) and thus applications have few resour-
ces. This increased latency, results to prolonged activity on
the system and consequent increase in its consumed energy.
In conclusion, this analysis shows that it is worthwhile to
further investigate DRTRM configurations of up to 2
reduced voltage islands aiming at fine tuning the rest of
DRTRM design options.

4.3 Exploratory Analysis of the DRTRM Parameters

4.3.1 Configurations of One Island with Reduced

Voltage

In order to evaluate the combined effects of the design
parameters of DRTRM and our proposed methodology, we
perform a large exploration campaign over the different
Cluster topologies. Fig. 13 summarizes the results in terms of
(a) the total execution latency for all applications to be initi-
ated (Sum of Initial cores execution latency) and executed,
(b) distribution of instant power consumption of Intel SCC
(c) total consumed energy, (d) total number of exchanged
messages, (f) size of exchanged messages. In all diagrams,
the X-axis is a tuple of the examined Cluster configuration
(Fig. 9) and the frequency of Controller cores. For example,
tuple [[2,A],800] means Cluster configuration [2,A] (Fig. 9a)
with 2 Controller cores operating at 800 MHz. Tuple [[2,
A],533] is about the same Cluster topology with Controller
cores at 533 MHz. Frequency of 800 MHz implies that no
admission control is performed, while frequency of 533MHz
implies that admission control is active and worker cores are
mapped outside of the island of reduced voltage.

Regarding system performance, Fig. 13a validates that a
high number of Controller cores in SCC platform results in
increased latency for both applications’ instantiation and
execution. As far as the proposed admission control policy
is concerned, it is shown that it results to lower latency in
all cases, enabling performance optimization of 6 percent, in
average. The combined energy consumption gains rise up
to 12 percent (Fig. 13c). Additionally, we observe in Fig. 13b
that the proposed admission control scheme leads to better
power distribution both in terms of robustness (the 25- and
75-quantiles in cases of 533 MHz are consistently closer
than in the case of 800 MHz) and peak power, where gains
of averagely 6 percent are reported. Power distribution for
cluster topologies with increased number of Controller
cores ([6,B] and [6,C]), exhibits a more robust trace given
that the incoming workload is distributed in an even man-
ner across system resources due to the small size of Clusters.

As shown in Fig 13d, increased system performance is
correlated to the number of exchanged messages. For every
Cluster topology, the proposed admission control policy
results in reduced number of exchanged messages, which
validates its intended goal of regulating the intensity of core
search operations. Regarding the total size of exchanged
messages (Fig. 13e), the trend is the same as in their total
number, but the actual values are not proportional since the

Fig. 11. DRTRM behavior for all freq. dividers of V.I. 0.

Fig. 12. DRTRM behavior for increasing reduced V.I.s.

294 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

size of each message varies according to its type. For exam-
ple, an offer for cores from one manager to another is a few
bytes long since it involves the ids of the offered cores, while
the corresponding reply message is only one byte long to
indicate the acceptance/rejection of the offer.

To summarize, our experiments provide an experimen-
tally derived proof that the proposed application arrival
aware DRTRM is effective in mitigating the “Stressful” sys-
tem state regardless of the chosen Cluster configuration.
Nevertheless, careful choice of the Cluster configuration can
maximize the achieved gains, which are not limited to per-
formance metrics but include power and energy consump-
tion as well as communication traffic on the system.

The experiment is repeated for configurations of 2 Con-
troller cores, using the malleable application model pre-
sented in Section 3.1.1, to validate the efficiency of our
proposed methodology using a more diverse mix of appli-
cations. Each application is characterized by its parallelism
variance s and average parallelism A, which are provided
as input to DRTRM. The workload valuesW are maintained
identical with the ones used for the Matrix Multiplication
application and the experiment is executed on Intel SCC.
One workload round equals to a time delay scaled accord-
ing to the Speedup of the application, which is calculated
with respect to its characteristics and the number of its
worker cores. To create the workload mix, different values
of application parameters have been randomly chosen,
ranging from 0.01 to 100 for s and from 2 to 16 for A. Appli-
cations with low s exhibit steep scaling with high speedup
for the majority of A values. Applications with high s have
smooth scaling characteristics but do not achieve as great
speedup, even for high A values.

The presented results in Fig. 14, validate the efficiency of
our proposed application arrival aware DRTRM, which
manages to reduce the total execution latency of applica-
tions by 43.8 percent and the required latency for applica-
tion admission by 472 percent in average, in comparison to
the original DRTRM. The higher gains are attributed to the

mixed scaling characteristics of applications, enabling the
admission control policy to provide many worker cores to
high scaling applications and thus conclude their operation
much faster. This in turn leads to faster release of their occu-
pied resources, thus allowing the queued incoming applica-
tions to locate working cores with highly reduced effort,
due to the lack of congestion on the many-core system.

4.3.2 Configurations of Two Islands with Reduced

Voltage

The experiments illustrated in Fig. 15 elaborate on the effi-
ciency of DRTRM in a system with two islands of reduced
voltage, inside which Manager cores are mapped. Perfor-
mance and energy metrics are provided, for configurations
of 2 Controller cores given that they fared better in the pre-
vious experiments. The X-axis of the plots includes tuples
of the examined Cluster configuration (Fig. 9) and the ids of
the islands of reduced voltage. For example, tuple [[2,A],R.
V.I.(0.1)] implies Cluster configuration [2,A] (Fig. 9a) and
Voltage Islands 0 and 1 operating on 0.8V at 533 MHz.

Fig. 13. Measured values for all configurations (Cluster topology & operation frequency of Voltage Island 0).

Fig. 14. Comparison of configurations for model based malleable appli-
cations (Cluster topology & frequency of V.I. 0).

TSOUTSOURAS ETAL.: APPLICATION-ARRIVAL RATE AWARE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORE COMPUTING... 295

The overall trend in results is that all configurations with
V.I. 0 and 1 diminished in voltage, lead to significantly bet-
ter system performance compared to all other combinations
of reduced V.I.s of the same Cluster configuration. This is
because Controller and Manager cores are mapped in close
proximity and thus their communication is faster and more
efficient. Additionally, V.I. 1 is the access point for commu-
nication of Intel SCC with external non-volatile storage,
where log files of the incoming applications are stored. As a
consequence, I/O operations are sped up leading to highly
reduced execution time for Manager cores. In turn, this
leads to less energy consumption, compared to all other
configurations of the same Cluster topology.

The rest of the combinations of V.I.s do not result in
enhanced system performance and significant gains in con-
sumed energy, if any. Amongst them, the one with reduced
voltage in islands 0 and 5 fares better, which can be attrib-
uted to less communication traffic in the center of the plat-
form, which uses XY-routing in its mesh. This reduced
congestion in the center of the platform enables better com-
munication between Controllers and the rest of the cores
and this in turn leads to small performance improvements.

The best Cluster configuration in terms of performance
is [2,C] (Fig. 9c), which slightly prevails over all others.
Interestingly this topology is highly fragmented in the
sense that Clusters include small areas spread throughout
the platform. An example contrary topology is that of
configuration [2,D] (Fig 9d), where Clusters are two big
continuous areas. The difference in performance can be
explained on two grounds. First, the fragmentation of
Clusters, leads to highly dispersed application mapping
over the platform. Given that the examined workload
does not imply communication among worker nodes, this
disperse mapping reduces the probability of their mem-
ory operations being congested, especially for accesses to
off-chip shared DRAM. Secondarily, Initial cores are ran-
domly distributed at run-time in a round robin fashion
inside different Clusters. As a result, high Cluster fragmen-
tation increases the probability of more widespread Initial
core assignment and thus more evenly balanced core
allocation in applications. In conclusion, the amalgam-
ation of common VFS techniques in our application aware
DRTRM, can optimize system performance and lead to
reduced energy consumption. However, this can only be
achieved by careful choice of DRTRM parameters both at

design-time (e.g., Cluster configuration) and run-time
(e.g., VFS topology and Managers mapping policy).

4.3.3 Robustness against Workload Scalability

In this section we evaluate the robustness of the proposed
DRTRM scheme against scaled workloads, using the config-
uration [2,A] at 533 MHz. In each experiment the number of
incoming applications and the intensity of their workload
requirements varies. TheworkloadW valueswere generated
using a random number generation function based on Pois-
son distribution. Four different levels of workload intensity
were created using values 16, 32, 48, 64 as the mean value of
the random generator. The workload escalation of these four
levels is provided in the legend of Figs. 16 and 17. The varia-
tion in workload was combined with an ascending number
of incoming applications ranging from 16 to 128.

In the first experiment, the implemented malleable appli-
cation (Section 3.1.2) is utilized and Fig. 16 presents the total
execution latency of each examined input workload combi-
nation. Results show a close to linear scaling in latency for
ascending number of incoming applications and workload
intensity levels. In addition, in all cases the deviation from
the respective mean value is very small and no unexpected
behavior is observed, e.g., spikes in the execution latency. It
is also important to take into account the noise (expressed
through variations in latency) injected in the measured val-
ues due to the layered software stack of each SCC core
(DRTRM instance - Linux OS - SCC drivers). The above
observations qualify the proposed DRTRM scheme as
robust in terms of the required average execution latency
with respect to the examined workload related parameters.

Fig. 15. Measured values for all configurations (Clusters of two Controller cores + Voltage Islands with reduced voltage).

Fig. 16. Different examined Matrix Multiplication application workloads
(Mean value, standard deviation format).

296 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

The experiment is repeated for the mix of applications
created using the malleable application model as described
in Section 4.3.1. While the characteristics of the input appli-
cations differ, their workload requirements are identical to
the ones of Fig. 16. Fig. 17 illustrates the required latency for
the execution of the different scenarios of the model based
workload mix. We observe that the framework maintains its
robustness in handling applications of increasing workload
requirements, despite of the higher diversity of their scaling
characteristics. Compared to the respective results for the
implemented application (Fig. 16), the deviation of the mea-
sured values is much smaller since the lack of workload
computations leads to less latency variations and more
deterministic interplay between the distributed agents dur-
ing the execution of each input scenario.

4.4 Comparative Evaluation of Different RTRM
Schemes

Finally, we present a combined comparative analysis of the
different types of resource management schemes presented
throughout this work. More specifically, we compare i) a
centralized RTRM, where one agent monitors the entire sys-
tem and aids inter-application negotiations for resources, ii)
a Distributed RTRM without application aware admission
control and iii) the proposed VFS extended DRTRM in ver-
sions of one or two reduced voltage islands. Examined sce-
narios involve the execution of 128 application arriving at
the rate dictated by the ”Stressful” scenario. Results are pre-
sented in Fig. 18 in terms of total application execution
latency and system-wide consumed energy.

The worst RTRM regarding application execution latency
is the centralized one, since in SCC a single core is not compe-
tent enough to handle the high amount of resource allocation
requests generated by the input rate of incoming applica-
tions. This inefficiency is translated to elevated consumed
energy of the centralized scheme. Increasing the number of
RTRM related managerial agents as in the case of no VFS
extended DRTRM results in much better resource manage-
ment performance. However, the arrival rate of applications
is still not taken into account, which leaves space for further
gains when VFS extended version of DRTRM is applied.
Having balanced the resource utilization under this stressful
scenario, more gains are acquired in the VFS extended
DRTRM with two reduced voltage islands, which maps
Manager cores efficiently, taking advantage of their execu-
tion profile. In overall, when comparing the centralized
approach to the best of the VFS extended one, gains of

62 percent in total application execution latency and 45 per-
cent in consumed energy are exhibited.

5 CONCLUSION

In this paper we presented an Application-Arrival Aware
Distributed Run-Time resource management framework
focused on the execution of applications with malleable fea-
tures. We analyzed the structure and internal mechanisms
of the developed framework and proposed an operating
voltage and frequency scaling strategy, that regulates appli-
cation admission without degenerating its distributed
nature. We showed that the efficiency of the distributed
resource management is highly dependent on both the
applications’ arrival patterns and management policies/
mechanisms. Extensive experiments on Intel SCC many-
core platform showed that performance, power and energy
gains are delivered in comparison to either centralized or
distributed run-time resource management schemes.

ACKNOWLEDGMENTS

This work has been partially supported by the E.C. programs
AEGLE under H2020 Grant Agreement No: 644906 and
VINEYARDunderH2020 Grant AgreementNo: 687628.

REFERENCES

[1] M. Ferdman, et al., “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” in Proc. 17th Int. Conf.
Archit. Support Program. Languages Operating Syst., 2012, pp. 37–48.

[2] J. Howard, et al., “A 48-core IA-32 message-passing processor
with DVFS in 45 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits
Conf. Digest Tech. Papers, 2010, pp. 108–109.

[3] G. Chrysos, “Intel� xeon phiTM coprocessor-the architecture,”
Intel Whitepaper, 2014.

[4] S. Bell, et al., “Tile64-processor: A 64-core SOC with mesh inter-
connect,” in Proc. Digest Tech. Paper IEEE Int. Solid-State Circuits
Conf, 2008, pp. 88–598.

[5] R. De Lemos, et al., “Software engineering for self-adaptive sys-
tems: A second research roadmap,” in Software Engineering for
Self-Adaptive Systems II. Berlin, Germany: Springer, 2013, pp. 1–32.

[6] J. Jahn and J. Henkel, “Pipelets: self-organizing software pipelines
for many-core architectures, ” in, Proceedings of the Conference on
Design, Automation and Test in Europe. San Jose, CA, USA: EDA
Consortium, 2013.

[7] S. Kobbe, L. Bauer, D. Lohmann, W. Schr€oder-Preikschat, and
J. Henkel, “DistRM: distributed resource management for on-chip
many-core systems,” in Proc. 7th IEEE/ACM/IFIP Int. Conf. Hardw./
Softw. Codesign Syst. Synthesis, 2011, pp. 119–128.

[8] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris,
“Distributed run-time resource management for malleable appli-
cations on many-core platforms,” in Proc. 50th Annu. Des. Autom.
Conf., 2013, Art. no. 168.

[9] A. Sch€upbach, et al., “Embracing diversity in the barrelfish many-
core operating system,” in Proc. Workshop Managed Many-Core
Syst., 2008, Art. no. 27.

Fig. 17. Different examined model based application workloads (Mean
value, standard deviation format).

Fig. 18. Comparison of the different RTRM schemes.

TSOUTSOURAS ETAL.: APPLICATION-ARRIVAL RATE AWARE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORE COMPUTING... 297

[10] J. A. Colmenares, et al., “Tessellation: Refactoring the OS around
explicit resource containers with continuous adaptation,” in Proc.
50th Annu. Des. Autom. Conf., 2013, Art. no. 76.

[11] D. Wentzlaff, et al., “A unified operating system for clouds and
manycore: FOS,” Computer Science and Art. Intelligence Lab,
Massachusetts Institute of Technology, Cambridge, MA, USA:
Tech. Rep. MIT-CSAIL-TR-2009–059, 2009.

[12] A. Barbalace, B. Ravindran, and D. Katz, “Popcorn: a replicated-
kernel os based on linux,” in Proc. Linux Symp., 2014.

[13] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal
resource allocation algorithms for cloud computing clusters,” Per-
form. Eval., vol. 81, pp. 20–39, 2014.

[14] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask sched-
uling in MapReduce with data locality: Throughput and heavy-
traffic optimality,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 190–
203, Feb. 2016.

[15] B. Raghunathan and S. Garg, “Job arrival rate aware scheduling
for asymmetric multi-core servers in the dark silicon ERA,” in
Proc. Int. Conf. Hardw./Softw. Codesign Syst. Synthesis, 2014,
pp. 14:1–14:9.

[16] M. A. Al Faruque, R. Krist, and J. Henkel, “ADAM: run-time agent-
based distributed applicationmapping for on-chip communication,”
in Proc. 45thACM/IEEEDes. Autom. Conf., 2008, pp. 760–765.

[17] I. Anagnostopoulos, A. Bartzas, G. Kathareios, and D. Soudris, “A
divide and conquer based distributed run-time mapping method-
ology for many-core platforms, ” in, Proceedings of the Conference
on Design, Automation and Test in Europe. San Jose, CA, USA: EDA
Consortium, 2012.

[18] W. Zheng and R. Sakellariou, “Budget-deadline constrained
workflow planning for admission control,” J. Grid Comput.,
vol. 11, no. 4, pp. 633–651, 2013.

[19] P. Dziurzanski, A. K. Singh, and L. S. Indrusiak, “Feedback-based
admission control for hard real-time task allocation under
dynamic workload on many-core systems,” in International Confer-
ence on Architecture of Computing Systems. Berlin, Germany:
Springer, 2016, pp. 157–169.

[20] J. Lee, C. Nicopoulos, H. G. Lee, S. Panth, S. K. Lim, and J. Kim,
“IsoNet: Hardware-based job queue management for many-core
architectures,” IEEE Trans. Very Large Scale Integr. Syst., vol. 21,
no. 6, pp. 1080–1093, Jun. 2013.

[21] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “Arte: An
application-specific run-time management framework for multi-
cores based on queuing models,” Parallel Comput., vol. 39, no. 9,
pp. 504–519, 2013.

[22] N. Kapadia and S. Pasricha, “A runtime framework for robust
application scheduling with adaptive parallelism in the dark-
silicon era,” IEEE Trans. Very Large Scale Integr. Syst., vol. 25, no. 2,
pp. 534–546, Feb. 2017.

[23] T. Ebi, M. Faruque, and J. Henkel, “Tape: Thermal-aware agent-
based power econom multi/many-core architectures,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des.-Dig. Tech. Papers, 2009,
pp. 302–309.

[24] Y. Ge, P. Malani, and Q. Qiu, “Distributed task migration for ther-
mal management in many-core systems,” in Proc. 47th Des. Autom.
Conf., 2010, pp. 579–584.

[25] M. Shafique and J. Henkel, “Agent-based distributed power man-
agement for kilo-core processors,” in Proc. Int. Conf. Comput.-Aided
Des., 2013, pp. 153–160.

[26] V. K. Vavilapalli, et al., “Apache hadoop YARN: Yet another
resource negotiator,” in Proc. 4th Annu. Symp. Cloud Comput, 2013,
Art. no. 5.

[27] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging
trends,” in Proc. 50th Annu. Des. Autom. Conf., 2013, Art. no. 1.

[28] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-
weight communications on Intel’s single-chip cloud computer
processor,” ACM SIGOPS Operating Syst. Rev., vol. 45, no. 1,
pp. 73–83, 2011.

[29] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance
analysis and benchmarking of the intel scc,” Cluster Comput.
(CLUSTER), 2011 IEEE Int. Conf., pp. 139–149, 2011.

[30] A. Bartolini, M. Sadri, J. Furst, A. K. Coskun, and L. Benini,
“Quantifying the impact of frequency scaling on the energy effi-
ciency of the single-chip cloud computer,” in Proc. Des. Autom.
Test Eur. Conf. Exhibition, 2012, pp. 181–186.

Vasileios Tsoutsouras received the diploma
degree in electrical and computer engineering from
the National Technical University of Athens,
Greece, in 2013, and is currently working toward
the PhD degree with the National Technical Univer-
sity of Athens, Greece. His main research interests
include resourcemanagement onmany-core archi-
tectures and Internet of Things, embeddedmedical
devices, and HW/SW co-design. He has published
more than 10 technical and research papers in sci-
entific books and international conferences. He is a
studentmember of the IEEE.

Sotirios Xydis received the diploma and PhD
degrees in electrical and computer engineering
from the National Technical University of Athens,
Athens, Greece, in 2005 and 2011, respectively.
His research interests include design space explo-
ration for system level and datapath synthesis,
multi-/many-core and re-configurable architec-
tures, design and optimization of arithmetic VLSI
circuits and power/thermal aware design. He has
published more than 80 technical and research
papers in scientific books, international journals,
and conferences. He is amember of the IEEE.

Dimitrios Soudris received the diploma and PhD
degrees in electrical and computer engineering
from the University of Patras, Greece, in 1987 and
1992, respectively. Since 1995 and for 13 years,
he served as a professor in the Department of
Electrical and Computer Engineering, Democritus
University of Thrace, Greece. He is currently an
associate professor in the School of Electrical and
Computer Engineering, National Technical Uni-
versity of Athens, Greece. His research focuses
on embedded systems design, low power VLSI

design, and reconfigurable architectures. He has published more than
380 papers and is the coauthor/coeditor of six Kluwer/Springer books. He
is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

298 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

