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Abstract—SpiNNaker (Spiking Neural Network Architecture) is a specialized computing engine, intended for real-time simulation of

neural systems. It consists of a mesh of 240x240 nodes, each containing 18 ARM9 processors: over a million cores, communicating via

a bespoke network. Ultimately, the machine will support the simulation of up to a billion neurons in real time, allowing simulation

experiments to be taken to hitherto unattainable scales. The architecture achieves this by ignoring three of the axioms of computer

design: the communication fabric is non-deterministic; there is no global core synchronisation, and the system state—held in distributed

memory—is not coherent. Time models itself: there is no notion of computed simulation time—wallclock time is simulation time. Whilst

these design decisions are orthogonal to conventional wisdom, they bring the engine behavior closer to its intended simulation

target—neural systems. We describe how SpiNNaker simulates large neural ensembles; we provide performance figures and outline

some failure mechanisms. SpiNNaker simulation time scales 1:1 with wallclock time at least up to nine million synaptic connections on

a 768 core subsystem (�1400th of the full system) to accurately produce logically predicted results.

Index Terms—Event-based computing, neuromorphic computing, neural system simulation, real-time simulation, specialized simulation

platforms
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1 INTRODUCTION

GENERAL-PURPOSE (low physical thread count) com-
puters have been used for simulation applications

since they were first invented. As with most technologies,
the capabilities of the underlying machines have advanced
more-or-less hand-in-hand with the expectations of users.
However, general-purpose computers are, by definition,
designed in the absence of knowledge of their intended
application (which makes them ill-suited for almost every
specific task), and the plummeting cost of hardware has
allowed the rise of bespoke engines, tailored to specific
(types of) computing tasks. Neural simulation is an applica-
tion where the computing resource necessary to undertake
simulations of the scale necessary to demonstrate emergent
behavior is far outstripping the capabilities of commodity
machines, and severely testing those of multi-million dollar
supercomputers. Other application areas in this class
include large-scale particle/particle and particle/field prob-
lems (computational chemistry, cosmology, high-energy

theoretical physics), weather modelling, financial market
stress testing, and others [30]. This paper focuses on the per-
formance of a machine specifically designed to simulate the
behavior of extremely large numbers of small data packets
moving through an extremely large graph in real time:
a mammalian nervous system.

Neuromorphic computing is a branch of computer sci-
ence focused on computing engines specifically designed to
simulate the behavior of large (many millions) aggregates of
neurons. The paper describes

� The SpiNNaker simulation engine, its architecture,
programming model and specific configuration
challenges.

� The specific algorithmic and numerical techniques
employed to predict the behavior of the individual
neurons.

� A set of performance benchmarks, showing how the
system behaves.

These benchmarks are also analysed on BRIAN [1] and a
naive, simple neural simulator called ANSWER, and quantita-
tive performance outcomes compared. Both BRIAN and
ANSWER execute on conventional single-thread architectures.

The benchmarks are artificial neural network constructs
with logically determined correct behaviors. They consist
of sets of idealised synfire ring oscillators [2], [3], beating
with each other. They are not chosen for significant biologi-
cal relevance or fidelity (although they are sympathetic to
the types of problem that are neurologically realistic), but to
stretch and explore the capabilities of the three simulators
in terms of simulation ability. The focus of the paper is on
simulator performance, both in terms of speed and resource
consumption.
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In the context of this paper, “design intent” indicates that
the system is operated in themanner inwhich itwas intended.
If the user steps outside this perimeter, the system—quite
rightly—will not function correctly.

2 SPECIALIZED SIMULATION PLATFORMS

SpiNNaker is certainly not the only computing engine to be
utilised for the simulation of large neural systems:

2.1 Brainscales

The FACETS and BrainscaleS projects have developed a
‘wafer-scale’ system for neural simulation [4], using an ana-
logue implementation of the adaptive exponential Leaky
Integrate and Fire (LIF) neuron model (a two-variable, sin-
gle compartment model) [5]. Since electronic component
time constants can be more rapid than biological membrane
time constants, the FACETS hardware operates at around
10,000 times notional biological real-time. The system com-
prises up to 384 analogue cores on a wafer (each simulating
512 neurons), which are interconnected via a custom
packet-switched network to provide up to O(107) neuron
models per wafer. Larger machines can be created by con-
necting together multiple wafers, via a secondary network
that uses time-stamped event packets [6]. The accelerated
time at which the FACETS system runs makes it a challenge
for live interaction with the world (at least directly) [7], but
is clearly valuable in terms of examining parameter sensi-
tivities and exploring parameter spaces. Since the neural
model is implemented in silicon, limited scope exists for
modifying the behavior of a neuron in the simulated net-
work; this loss of flexibility is traded off against the energy
consumption (typically 10�9 J/synaptic event—compare
with conventional simulation technology on supercomputer
clusters: 100 � 10�4 J/event and nature: typically 10-14

J/event [25]1).

2.2 Cauwenberghs Integrate-and-Fire Array
Transceiver (IFAT)

The IFAT [8] is a mixed-signal approach to neural simula-
tion hardware, combining analogue neuron models with a
digital synaptic interconnect. The neuron chips use a con-
ductance-based LIF model, while the synapses are imple-
mented by an event-based system in an FPGA that connects
together multiple IFAT chips. Early versions used 2400 neu-
rons/chip and up to 4M synaptic connections, and were
shown to operate in real time in conjunction with a silicon
retina for related visual processing tasks [9]. A later incarna-
tion of the same basic plan [10] supports 216 (64k) neurons
per board, comprising four 16k neuron chips and a hierar-
chical communication system (again, using FPGAs); the
overall system suggests that it could scale to four boards

(256k neurons). The communication system capitalises on
the all-or-nothing nature of the neural spike: its nature as a
pure asynchronous event allows it to be conveyed effi-
ciently in digital form using address event representation
(AER) [11]. In AER systems each neuron is given a unique
numerical identifier or ‘address’, and it is this address (the
source address) that is transmitted to other neurons when-
ever the neuron spikes.

2.3 The IBM TrueNorth Chip

TrueNorth [12] is a silicon implementation of a neural net-
work. The system implements 4096 neurosynaptic cores,
each of which models 256 neurons with 256 synaptic inputs.
The chip uses 5.4 billion transistors but runs at only 70 mW,
using an event-driven hardware style to minimise activity
(and thereby save power—TrueNorth dissipates around
2:5x10�11J/synaptic event). As with BrainscaleS, the neuron
model is fixed (though here it is digital) with a per-input
strength modulation shared across the 256 neurons in a
core. The system is deterministic, allowing an exact soft-
ware model to be used for development and debugging.

2.4 Other Physical Systems

The Stanford Neurogrid [13], which employs sub-threshold
analogue circuits for real-time performance, and the Cam-
bridge Bluehive system [14], which uses digital circuits on
FPGAs to deliver real-time performance are both powerful
neuromorphic computing systems. The latter grew from a
comparison project with SpiNNaker itself. A more detailed
quantitative comparison of these (and other) architectures
may be found in [33].

2.5 A Broader Perspective

The study of neural and cognitive systems is (rightly) vast,
and this paper is not the place for even the briefest precis.
This notwithstanding, it is observed that neuromorphic
machines are but one tool in a large and growing panoply
of systems dedicated to their elucidation There is much
more to the (understanding of) the workings of the mamma-
lian brain than the I/O relationships of the constituent com-
ponents. To quote from [31]: “In these approaches [the types
of mechanistic simulation system outlined above] the brain is con-
sidered solely as a physical substrate. By analogy, this would
amount to restricting the study of a computer to the description of
its electronic circuits, or hardware, ignoring its software level that
expresses algorithms under the form of programs.” There are
strong analogies between the theories outlined in [31] (and
others), and the approach we have taken in SpiNNaker.
Indeed, SpiNNaker is an ideal platform for the realisation of
these concepts. [32] discusses the features of a massively
asynchronous, parallel brain in ways, again, that resonate
with the design principles of SpiNNaker. The paper closes
with the words “The brain may, in fact, be much more like asyn-
chronous computers than synchronous ones. Or rather, asynchro-
nous, parallel computers may end up being much more like the
brain than parallel, synchronous ones.”

2.6 Summary

The landscape of neural-specific simulation hardware is
growing at a remarkable rate and is being explored in many

1. This figure can be derived in a number of ways. Top-down: The
human brain dissipates around 20W, contains around 1015 synapses,

and the neurons fire at around 1Hz, giving 2.10-14 J/event. Bottom-up: A
single ATP molecule can deliver around 10-19 J[27], and a synapse uses

around 105 molecules/transmission[26], giving 10-14 J/event. Breaking

this down even further, a neuron spiking requires about 109 ATP mole-

cules, so the power dissipated by the neurons is around 10-19 x 109 x

1011 � 10W, and the corresponding figure for synaptic power dissipa-

tion is 10-19 x 105 x 1015 � 10W; making a total power budget of 20W.
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dimensions, not all using bespoke hardware: The Blue Brain
project [15] employs a conventional supercomputer, allow-
ing for largely heterogeneous models (with much detail, but
with great energy cost). Conversely, engines such as those
enumerated above use more efficient analogue electronic
circuitry but comprise a single neural model with only
limited flexibility.

SpiNNaker connects a very large number of general-
purpose (digital) processorswith an efficient customnetwork,
providing the user extensive freedom to manipulate the
specific details of the neuralmodels employed. This flexibility
underpins the power of the system: it exploits hardware
for speed, and software for user configurability in a way not
possiblewith a conventional or otherwise fixed architecture.

3 THE SPINNAKER ENGINE

SpiNNaker is composed of general purpose computing
cores (ARM9), and so, in principle, can be made to do any-
thing a programmer cares to define. However, the nature of
the resource distribution (memory) and communication
infrastructure make it ideally suited to any problem that
can be cast into the form of a large number of interacting
entities, each possessing a small but independent state—
such as a neural network.

3.1 Machine Architecture

The machine architecture is described in detail in [16], [17],
[18], and outlined in Fig. 1. Starting from the left, at the
highest level of granularity, the system is composed of a set
of triangularly connected nodes, conveniently mapped onto
the surface of a three-dimensional toroid. The nodes are
identical, and the mesh is isotropic, which means that the
physical size of the system is completely scalable from (in
principle) 1, up to a hard limit of 2562 nodes. (This limita-
tion derives from the internal labelling of the nodes which
allows only a 16 bit identifier.) Each node possesses

� An Ethernet connection, which supports communi-
cation with the outside world.

� A set of six bi-directional communications links, plus
an associated routing subsystem.

� An internal network-on-chip, connecting the node
links to a set of eighteen ARM9 cores.

� Various memory subspaces (see below), timers and
counters.

3.1.1 Cores

Electrically, the eighteen ARM9 cores on each node are
identical, but during initialisation, a (deliberate) hardware
race occurs, achieving two things: one core (the monitor) is
elected to oversee the behavior of the node (and plays no
direct part in the simulations), and sixteen (of the remaining
seventeen) are elected to support the simulation capability.
These are called application cores. (In a system of a million
cores, it is unrealistic to expect that everything will be—and
remain—perfectly functional. Fault-tolerance is built into
the architecture at several levels [19].)

3.1.2 Memory Maps

All the resources available to every core are memory
mapped. Each core has a local 32-bit address space, contain-
ing 32 Kbytes of private instruction tightly-coupled memory
(ITCM), and 64 Kbytes of private data tightly-coupled mem-
ory (DTCM), giving the cores a Harvard architecture.
In addition, mapped onto the address space, is 128 Mbyte of
node-local SDRAM and 32 Kbytes of SRAM. These latter
tranches of physical memory support a fast way for cores on
the same node to communicate with each other. In total, the
million core machine has just over 7 Tbytes of memory
distributed throughout it.

3.1.3 Communication

The communication infrastructure built into the machine
[17], [18] supports the fast transmission of packets of data
between individual cores. Unlike conventional multi core/
process computer architectures, where the message size and
choreography is usually defined by the user, in SpiNNaker,
the packets are just 40 or 72 bits. This size restriction allows
a packet to easily define the existence data of a neural spike,
whilst at the same time making it possible for the routing
infrastructure to be entirely hardware. This, in turn, makes
the packet propagation throughout the system extremely
fast: packets are transmitted between cores in a sequence of
node hops (Figs. 1 and 6)—each hop taking around 0.2 us.
Using a toroidal nodal interconnection topology gives the
overall system a bisection bandwidth of around 5 billion
packets/s. Packet trajectories may be 1 core to 1 core, or
1-core to many-cores: any multicasting is handled trans-
parently by hardware. The packet interconnection graph
(neural topology) is embedded in routing tables during the
system configuration phase (see below), which permits

Fig. 1. SpiNNaker architecture (graphics produced in part by the tool [25]).
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every aspect of packet propagation throughout the entire
system to be hardware brokered.

3.2 Programming Model

There is no central overseer process; there is no overall mem-
ory coherency, there is no global clock. Like the mammalian
brain, local computation occurs due to the responses of a
neuron to the arrival of packet input (synaptic activity)—it is
interrupt-driven, and the arrival of a packet is an event:

� A packet arrives (via hardware) at its destination
core.

� The hardware loads the core program counter with
the address of the appropriate packet handler routine,
held in the ITCM.

� Code executes in response to the arrival of the
packet. (This code has access to any local state data
(held in the core DTCM or the node SDRAM/
SRAM), plus the 40/72 bits of packet data.)

During execution, the packet handler routine may/may
not launch packets of its own. After execution, the handler
terminates and the core enters sleep mode. There is no
“return to operating system”, because there is no operating
system in the conventional sense of the term. The core is
woken (by hardware) in response to the arrival of a packet-
induced interrupt; the packet is handled, and the core
returns to quiescence. The design intention is that most cores
spend most of their time asleep.

3.3 Neural Model

One of the most challenging compromises for the designer
of simulation models is always the level of detail of the
model [25]. Fine detail produces high runtimes, and one of
the inviolable axioms of SpiNNaker is real-time perfor-
mance. An important use of simulation is to expose emer-
gent behavior of a system, and this can be a strong function
of a host of model parameters. In wet biology, cells can be
spontaneously active and that activity is modulated by the
synaptic inputs. Whilst all the simulation systems used in
this study can support this behavior, it has been deliberately
suppressed to make the quantitative comparisons presented
in Section 5 easier to interpret.

3.4 Time

The cores in SpiNNaker can run at a nominal 200 MHz, but
there is no attempt to phase- or frequency-lock these across

the machine fabric. (Given the size of the machine, any
attempt to do this would have more than doubled the
design and implementation costs of SpiNNaker.) However,
each node possesses two independent counter/timer units
[20], providing OOðmsÞ signals to indicate the passage of
wallclock (biological) time. These timing signals are incident
on all the cores (just as packets can be), and awake their
own handlers, allowing each core to update a local biologi-
cal time value. (All handlers are expected to be very small—
a few hundred machine instructions at most—so that most
interrupts are handled immediately on arrival.)

3.5 Configuration

Configuration is a non-trivial pre-processing stage that
involves taking the definition of the neural circuit (in terms
of the interconnect topology) and generating from this the
routing table entries and memory index structures located
on each node. (Details of the process are described in [18].)
The principal route into the tool chain is via PyNN descrip-
tions, but we also have a domain-agnostic input channel
that allows interconnect descriptions in a variety of formats.
Viewing both the neural networks and the node topology as
graphs, the functionality of the configuration software is to
create a 1:many mapping of cores:neurons (Fig. 2), turn this
mapping into the appropriate configuration data and
upload it (via the Ethernet) to the node mesh; whereupon it
is distributed to the target nodes. The design intent is that
each core should be capable of hosting around a thousand
neurons; thus the largest possible SpiNNaker engine
(2562 x 16 application cores) should be capable of handling
simulations of over a billion neurons, or around 1 percent of
the human brain.

4 NEURAL SIMULATION

We have now arrived at the point where the neural network
(the topology of which is defined externally by the user) is
loaded into the SpiNNaker engine. The topology of the neu-
ral graph is embodied in the routing tables distributed
throughout the engine, and the functionality and state of
the individual neurons localised in individual cores. The
routing infrastructure (route tables, node network-on-chip
systems, physical node-node interconnect) allows an indi-
vidual neuron (the state of which is localised in a specific
area of memory on a specific host core) to send and receive
packets to and from other, specific neurons, without any con-
sideration or concern about how—or when—anything gets to its
intended target(s). The wallclock time taken for a packet to
travel from its source to its destination varies according to
the placement (Fig. 2) derived by the configuration soft-
ware; it will lie in the range 0.1us (for a pair of neurons
mapped to cores in the same node), to

pð216Þ=2 � 0:2 �
25 us for a pair of neurons mapped to cores on opposite
sides of the largest possible SpiNNaker toroid. The real-time
packet transit time is a function of the behavior of the configura-
tion software, not the biological topology of the network under
simulation, but importantly, both these times are effectively
instantaneous from a biological perspective. This range of vari-
ance (0:5us� 25 us) for packet transit time does not matter
for the correctness of simulations attempting to discern
emergent behaviors ay longer timescales [34].

Fig. 2. Neuron: core mapping.
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The functionality of each neuron is embodied in the code
associated with a packet interrupt, running on the appropri-
ate application core. When a biological neuron receives an
incident synaptic input, due to a pre-synaptic action poten-
tial, it reacts, and the nature of this reaction depends upon
the type of neuron (i.e., the functionality) and its past excita-
tion history (i.e., the state). In the broadest possible sense,
most biological neurons exhibit some kind of integrate-and-
fire behavior, which can be captured in numerous ways.
One of the most pervasive models (and one which can be
used by SpiNNaker) is the Izhikevich model [21], [22], [25],
which is a differential equation, the integration of which
produces a wide range of biologically plausible behaviors.
However, the exact form of the neural equations is irrele-
vant in the context of this paper, and the LIF model [25] is
conceptually simpler, and will be used hereafter.

4.1 March-in-Time (Conventional) Integration

In a conventional (single-thread, single processor) simula-
tion, the differential equations associated with neural
behavior are integrated by some conventional method:
Euler, Runga-Kutta, Adams-Bashforth [23]. Fig. 3 depicts a
conventional numerical solution in progress (with the errors
exaggerated). The key point is that from the perspective of
the software, simulation time is just another variable, to be
manipulated alongside any other. The calculation proceeds
at whatever rate is dictated by the host machine speed.
(Also, we note that the timestep, hh in Fig. 3, may not neces-
sarily be a constant throughout the simulation, although it
often is in most biological simulations, because the equa-
tions used are not usually numerically stiff2)

4.2 Discrete Time (Event-Based) Integration

Consider a single LIF neuron, that has two synaptic inputs
and a single output; incident upon the inputs are the pulse
trains shown in Fig. 4 (InputA, InputB). The internal state
variable (integrand) within the neuron might reasonably
resemble the trace State. When excited, State is increased;
when left alone, State decays (approximately) exponentially
with the passage of (simulated) time. When State exceeds
some internal threshold, the neuron fires (Output), and
emits an output pulse (action potential) of its own. A conse-
quence of the neuron firing is that it enters the refractory
period, where all inputs in this time window are ignored. In

SpiNNaker (Fig. 5) the explicit handling of the inputs is
somewhat different. This is described in detail in the next
section. Note that in Fig. 4, the abscissa is calibrated in simu-
lated time. The relationship between simulated time and
wallclock time on a conventional (single- or multi-core)
architecture is not necessarily (indeed, is not usually) linear,
or of much interest to the user, except when it becomes
unacceptably large, and compromises user interaction.

4.3 Real-Time Event-Based Integration
(SpiNNaker)—in Principle

With SpiNNaker, every neuron is represented by a discrete
core, which spends most of its time quiescent. It is awoken
by an incoming event, which can be from an incident neu-
ral event, or from the (real-time biological) clock. The cor-
responding waveforms are shown in Fig. 5. This is a
digital system; state values can only change as a conse-
quence of events. Thus the State (in Fig. 5) increases when
an input is incident to the model, and decreases when a
timer tick arrives. Between these occurrences, it is—has to
be—constant. The pseudo-code (interrupt handlers) that
generate these waveforms are shown below:

Each time a neural spike is incident on the neuron, the
code OnPacketðÞ is executed; each time a biological clock
tick arrives, OnTimerðÞ is executed. Note the abscissa in
Fig. 5 is calibrated in wallclock (real) time.

If an event arrives whilst a core is still executing a handler
for a previous event, the newer packet is queued until the
core is free. As long as the wallclock rate at which incident
packets are consumed (handled) is higher than the (wallclock)
rate at which they arrive, the system operates successfully.
The routing subsystem can buffer around a dozen packets,
and even if some are forced into the next OnTimer slot, the
overall accuracy of the simulation is not unduly compromised.

This may be counter-intuitive to an audience with a con-
ventional computation background,where the order of events
is generally of high importance. However, if the operation(s)
carried out on the events as they arrive is simply integra-
tion—as it is here—then the temporal order of the integrands
is unimportant. The consequence of the situation described

Fig. 3. Conventional integration. Fig. 4. Continuous (event-based) integration.

2. In the discipline of electronic design automation (which is one
of the heaviest users of numerical integration), a differential equa-
tion is considered stiff if the ratio of any pair of differential coeffi-
cients is > 1010.
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here (that the integration is delayed: an unbiological process-
ing artefact) is that (for a very small minority of cases) a gener-
ated spike may be delayed for a millisecond. Real biological
systems are generally robust to this level of noise [34]. Subse-
quent sections here (4.4. et seq) expand on this.

4.4 Real-Time Event-Based Integration
(SpiNNaker)—in Practice

The outline explanation of the previous section illuminates
the broad principles of the operation of SpiNNaker, but
omits one important aspect: the goal of the SpiNNaker
machine is to model the behavior of a large number of neu-
ral models in real time, which it achieves by exploiting the
massive parallelism of the routing infrastructure and the
million cores contained within it. The system outlined in
Section 4.3 will integrate the neural equations as fast as it
can (the ARM9 can run at 200 MHz). We need to capture
the temporal behavior of the (biological) system under simu-
lation, as well as the functional behavior if the simulation is
to contain any useful fidelity. Fig. 6a depicts a simple bio-
logical system—of interest is the time history of neuron A
exciting neuron B.

� Dt12 is the axonal delay of an impulse launched from
neuron A. It is OOðmsÞ, and a function of the biological
geometry of the system under simulation.

� Dt23 represents the time taken for neuron B to react
(via some suitable synapse) to the excitation from
neuron A. It too is OOðmsÞ, and is a function of biology
and the state (history) of neuron B.

The corresponding scenario as implemented in SpiNNaker
is shown in Fig. 6b.We assume (see Section 3.2 and Fig. 2) that
neuron A is mapped to SpiNNaker node N1, B to N4 and the
intermediate routing tables configured such that A communi-
cates with B via the routers onN1,N2,N3 andN4.

� The axonal delay (Fig. 6b) stored as a parameter in
the synapse state local to neuron model B on node
N4 represents Dt12 and Dt23 from Fig. 6a.

� The neuron-core mapping (A ! N1, B ! N4) is a
function of the configuration software, and indepen-
dent of biology.

� The node-node wallclock hop delay DtN (OOð100 nsÞ) is
a function of the underlying hardware and the real-
time traffic density—both decoupled frombiology.

� The neuron-neuron wallclock delay DtNN (maximum
OOð10 usÞ—Section 4) is a function of the configura-
tion software, traffic density and SpiNNaker engine
size—all decoupled from biology.

How might we bring all this together to capture the pas-
sage of biological time? From Section 3, recall that there are
different types of interrupts in the system. (The SpiNNaker
architecture supports 32 distinct interrupt types, but only
two are relevant here.)

� Each core is provided with a packet handling interrupt
(invoked by an incoming packet representing a spike
from an incident neuron).

� Each node asserts on each core within it a ‘biological
clock tick interrupt’. These clocks (one for each node)

Fig. 5. SpiNNaker integration.

Fig. 6. Time models itself.
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are not phase locked, they are (computationally)
slow (OOðkHzÞ) and they indicate (to the incident
cores) that biological time is passing. From a biologi-
cal perspective, kHz is a reasonable speed, but from
the perspective of the SpiNNaker cores, these
‘biological time’ events are rare—they occur around
every 200000 machine cycles.

Returning to Fig. 6a, from a biological perspective:

� t1: A fires when it fires
� Dt12: Pulse propagates to B
� t2: Pulse arrives when it arrives
� Dt23: B integrates the incoming pulse(s)
� t3: B fires when (if) it fires
There is no synchronising clock; the sequence of actions

is event-driven data-push.
From a simulation (SpiNNaker) perspective (Fig. 6b):

� tA: A fires when it fires
� DtNN: Pulse (packet) propagates to B
� tB: Pulse arrives O(us) later; triggers ‘packet arrived’

interrupt
In parallel with this (and not synchronised with it)

� tbio: triggers a ‘clock tick’ interrupt with each tick
The meaningful interplay of wallclock (biological) and

simulated time is achieved by the handlers below:

The packet arrival handler (which one might prima facie
expect to do most of the work) in fact does nothing except
remove the packet from the communication fabric and store
it in a local buffer; the clock tick handler performs the neces-
sary integration and subsequent pulse firing decisions, but
this is done at a rate effectively throttled by the (biological)
wallclock timer ticks. Referring to Fig. 7, the individual mes-
sage frequencies (S1::Sn) are much lower than that of the
real time clock; the superposition of all these inputs (which
may number in the thousands) have an exact timing which
is a function of the neuron:core map, i.e., independent of
biology (which is undesirable) BUT the message latency is
much less than the biological time constants so it does not
affect the biological fidelity of the simulation outcome
(which compensates).

This all works because

� Biological wallclock time is modelled locally at each
node (and thus each neuron model held within it)—
the problem of system-wide global clock synchroni-
sation is overcome (it is irrelevant).

� At each wallclock time tick:
� Inputs are asserted (if age suitable)
� Equations integrated
� States updated

� Wallclock packet transit delay is negligible and
ignored

� Biological delay is captured in the target synaptic
model state

� The differential equations controlling the model are
not stiff3:
� All the time constants are large compared to the

biological clock tick
� Almost every numerical integration scheme is

stable in these conditions [23].

5 PERFORMANCE

The whole point of any simulator is to answer questions
about a model of a system that are too expensive, difficult
or dangerous to put to the real system. To be useful, two
essential conditions must be met:

� The computational model of the system under simu-
lation must accurately reflect the underlying reality,
at least in the aspects of interest to the user. There is
a tradeoff here: building a model that captures every
aspect of reality is usually unnecessarily complicated
and consequently places an unnecessarily high com-
putation burden on the simulator; however, the ulti-
mate purpose of any simulation is to answer
questions to which the user does not know the
answer, and it may be that some unexpected and
superficially trivial component of a model has a dra-
matic effect upon the outcome (sensitivity, emergent
behavior).

� The simulation algorithms must correctly compute
the interaction of the models used to build the system

Fig. 7. Spike timings.

3. The LIH is not considered stiff, because the discontinuity when
the neuron fires is not usually modelled with an ODE. However, under
certain conditions [26], the Izhikevitch model [21,22] can be considered
technically stiff.

456 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018



under simulation, and not introduce significant
numerical artefacts of their own. (These effects may
not be negligible on finite word length machines.)

SpiNNaker is a simulator. It is designed to simulate neu-
ral systems, and within that broad constraint, it does noth-
ing that could not be achieved with a desktop machine.
What it is intended to do (and what justifies the 140 person-
years already invested in the development) is to perform
meaningful (accurate) simulations on systems of hitherto
unattainable size in real time. SpiNNaker is all about speed,
or to be more precise, the scaling of compute cost with prob-
lem size. To provide a power perspective, SpiNNaker dissi-
pates around 10nJ/synaptic event.

For a conventional simulation system, accuracy is
assessed by simulating systems with known functionality
(‘reality’ being obtained from physical measurement, the
solution of closed-form mathematical representations, and/
or comparison with other trusted simulation systems—
preferably all three). Simulator performance (speed) is
obtained by direct measurement.

SpiNNaker represents a significant departure from
conventional simulation and computing system architec-
tures, and so it is essential to explore the simulated
behavior of artificial circuits (those for which we under-
stand functionality and hence the correct outputs) before
deploying on systems for which we do not know the
behavior.

Neural systems are intrinsically noisy (Section 3.3), and
it is important to be able to distinguish between ‘genuine’
noise (i.e., a faithful simulation of an intrinsically noisy
physical system) and artefacts introduced by the simula-
tion technique; the former is useful, the latter destruc-
tively not so. The interpretation of non-trivial simulation
results without noise is not easy (see, for example, the
“non-firing” spike heights in Fig. 9). For this reason, we
restrict ourselves here to a portfolio of noiseless, simple
topologies whose correct behavior is discernable by
inspection. This gives us confidence that the output of the
simulation is correct, even in the presence of obfuscating
noise [19].

Fig. 8. Synfire loop test topology.
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5.1 Simulator Benchmarks

The base-level unit of our test set is the synfire ring [2], [3]—
see Fig. 8. This consists of a set of neural pools connected in
a ring. Each pool consists of a set of neurons (W in size), the
inputs of which are driven from some subset of the outputs
of the preceding pool. A parameter P (the ‘connection prob-
ability’) indicates the fraction of outputs of each pool con-
nected to the inputs of the subsequent pool. In the
degenerate case (P ¼ 1) every neuron in a pool drives every
neuron in the subsequent pool. The behavior of such a ring
is easy to understand: if no excitation is applied, nothing
happens. However, if one neuron is triggered—for what-
ever reason—then thresholds and refractory periods allow-
ing, a synchronised excitation wave will propagate round
the ring indefinitely. The behavior is tolerant of dropped
packets (conveniently modelled by setting P 6¼ 1). If we take
a set of rings—each of which has a different size (the sizes
are relatively prime to prevent beating)—connect them in
parallel (as in Fig. 8), and set the output device threshold
such that it only fires when coincident pulses arrive from
all rings simultaneously, we have a potentially formidable

(from the point of view of the simulator) circuit, but one
whose behavior (from the analytic point of view) is entirely
predictable.

The output “device” is a neuron model, the parameters
of which are unimportant, except inasmuchas the threshold
is defined as above, and the decay rate of the neuron state is
sufficiently large to accommodate slight offsets in the arriv-
als of the Tp signals.

The I/O delay and neuron count for the test circuits is
shown in Table 1. The generalized expressions are

Ring set period ¼ Pi primei

Ring set neuron count ¼ W � Si primei

Choosing the sizes of the rings in each set to be relatively
prime (and making them absolutely prime is a simple way
of achieving this) means that the time of the final output
spike (corresponding to the first coincidence of each indi-
vidual ring output) is simple to predict.

5.2 Quantitative Temporal Behavior

Fig. 9 shows the device activity associated with the first
device in each pool for a three ring {3,5,7} system. The bot-
tom three traces depict the outputs from a single neuron in
each of the final (right-hand) pools in each ring. Exactly
which neuron is chosen is largely irrelevant (assuming W
and P are not pathologically low) and without loss of gener-
ality we choose the neurons in each pool in Fig. 8 labelled as
‘Tp’ (Test point). With a neural delay of 2 ms, the period of
ring 0 is shown as 6 ms, that of ring 1 is 10 ms and that of
ring 2 as 14 ms, giving the first coincidence at fire delay x
ð3x5x7Þ ¼ 210 ms after the initial trigger at t ¼ 20 ms. The
fourth trace in Fig. 9 (‘output’) shows the internal

TABLE 1
Synfire Ring Sets

Set Ring size Input / output delay Neurons

1 {3} 3 3W
2 {3,5} 15 8W
3 {3,5,7} 105 15W
4 {3,5,7,11} 1155 26W
5 {3,5,7,11,13} 15015 39W
6 {3,5,7,11,13,17} 255255 56W
7 {3,5,7,11,13,17,19} 4849845 75W

Fig. 9. Three synfire rings beating (the experimental data of fig 10 uses five).
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integrand (state) of the output neuron in Fig. 8. The thresh-
old of this neuron (and this neuron alone) is set to the sys-
tem spike height x ring count, turning it into a simple
coincidence detector. This neuron fires only when output
spikes from all the rings in the test configuration fire in
unison (thereby providing the timing signal that ends the
experiment).

Fig. 10 shows the wallclock times for the simulation of
ring set 5 (see Table 1) for three simulators. Three sets of
wallclock timing curves are presented, each for a different
value of pool interconnection probability P. Synaptic counts
corresponding to P ¼ 1 are shown as numeric labels at the
appropriate abscissa positions; the synapse counts for any
of the curves P 6¼ 1 may be obtained by multiplying the
P ¼ 1 value by P.

� SpiNNaker: Here all the P curves lie exactly on top
of each other—time models itself, so we would
expect the responses to be independent of the syn-
apse count, which is the case. (The full SpiNNaker
machine is currently being assembled; these results
are taken from a 768 core subsystem.) The wallclock
time is equal to the simulated time, and indepen-
dent of the pool width, as expected.

� BRIAN: These are the wallclock times for BRIAN [1],
a widely used neural simulator running on a conven-
tional architecture (here a single-thread implementa-
tion running on an Intel i7 2.3 GHz machine). Here,
the wallclock times grow with the problem size.
For small circuits, BRIAN operates faster than biolog-
ical (real) time, and the absolute speedup will obvi-
ously depend on the host computer. The reason that
the BRIAN curves grow slowly and are not highly

dependent on the overall synapse count is that inter-
nally the system represents the interconnection topol-
ogy as a matrix, and uses an extremely fast and
highly tuned matrix multiply class to propagate data
within it. The performance is only weakly dependent
upon the proportion of non-null entries in the connec-
tionmatrix.

� ANSWER: uses an extremely unsophisticated LIF
model and a generic event pump, so the broad char-
acteristics of the behavior—extremely fast for small
systems, growing faster than BRIAN as the problem
gets larger—are unsurprising. ANSWER yields to
SpiNNaker when the overall problem size exceeds
around 60000 synapses.

Note that the curves for P 6¼ 1 do not extend all the way to
the smallest synapse count. This is because the statistical
nature of the pool-pool interconnect regime has open-circuited
some of the rings, meaning that the simulation never stops.
As P!0, this becomesmore of an effect with lowpoolwidths.

The data in Fig. 10 is provided to put the performance
of SpiNNaker into context. The ANSWER curves represent
the edge of the performance envelope obtainable by an
event-based single thread architecture. The horizontal line
(the superposition of all SpiNNaker data) represents a phys-
ical implementation of the Holy Grail of parallelisation:
Amdahl’s law notwithstanding, the realised behavior of
the system scales as a constant—1:1 with wallclock time
(up to some finite limit). It is an elegant demonstration of
the Gustafson-Barsis principle.

5.3 Correctness

Does the output of SpiNNaker, fast though it may be, actu-
ally agree with reality and other established simulator

Fig. 10. Wallclock simulation times.
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results? As an illustration of the correctness of the approach
embodied in SpiNNaker, Fig. 11 shows the internal state of
a neuron at an arbitrary point within a simulation. What the
neuron is doing is unimportant; what is relevant is the close
agreement between the values for the internal neuron state
as computed by BRIAN and SpiNNaker. The very small dis-
crepancy at t � 58 ms is a reporting artefact (SpiNNaker is
a real-time machine, and within the domain of neural simu-
lation, the time taken to exfiltrate data has a small quantita-
tive effect on the recorded outputs).

5.4 Resource Utilization

One of the many consequences of shrinking machine
geometries is a change in the distribution of compute costs:
it now takes orders of magnitude more time and energy to
move data about than it does to process it [14]. This is one
of the drivers for many-core architectures: problem data
(state) may be physically distributed across a machine, and
processed—hopefully/usually—by a core physically adja-
cent to it. The full SpiNNaker engine contains � 7 TByte of
memory, distributed throughout the physical machine, and
embedded within it are the millionþ cores. The design is
realized from relatively low-performance devices, and yet
achieves a memory access bandwidth of 28.8 Gbyte/s per
node, an impressive figure even by the standards of today.
BRIAN and ANSWER are conventional software systems
running on single-thread fetch-execute architectures.

The data footprint (in all three systems) consists of two
components: the state data of the system-under-simulation
and the overhead structures necessary to organize and per-
mit efficient access to this data. This overhead is lower for

SpiNNaker because the state is physically distributed over
the computer mesh (Fig. 1) and at that level of granularity
does not require organizing, because the individual node
memories are independent and access to them not coherent.

Fig. 12 shows the dynamic memory footprint for the spe-
cific simulation X in Fig. 10 on ANSWER, as a function of
simulation time—note the logarithmic abscissa. (The total
footprint at any (wallclock) time is the sum of this figure
and the storage overhead.)

The exact nature of the data in Fig. 12 is completely dic-
tated by the connectivity of the circuit under simulation
(Fig. 8) and is, at that level, uninteresting. The point—in
the context of this paper—is that the dynamic memory
data in Fig. 12 shows—at any wallclock time—the quantity
of ‘future (simulated) events’ to be processed by the simu-
lator4. By virtue of the massive hardware parallelism
afforded by the SpiNNaker architecture, the need for this
memory simply does not arise—SpiNNaker handles all
events calculated to occur at simulated time tt at wallclock
time tt.

5.5 Limits of Performance

Within the region of intended usage for SpiNNaker, simula-
tion time scales 1:1 with wallclock time; this is impressive,
but clearly not sustainable for indefinitely large networks
on limited hardware. The design intent is that maximum
density of representation is 1000 neuron models hosted per
core. Within each core, the interplay of spike and clock
interrupts is described in Section 4. Although the biological
clock interrupts occur relatively rarely to the processor clock
(around one biological tick to 200000 processor clock ticks),
within this interval, the processing of interrupts is inevita-
bly serialised within the core. In the worst case, then,
(if every neuron hosted by a core is simultaneously excited),
an individual core has 200000=1000 ¼ 200 processor cycles
to handle all necessary computation. Thus the natural end
point to the SpiNNaker lines in Fig. 10 occurs when neuro-
nal representation becomes so dense that the core simply
runs out of time to process all the spike interrupts between
biological clock tick events. SpiNNaker is a massively paral-
lel machine—when completely assembled, it will consist of
over a million cores—and each of these is independent and
parallel in execution. The speed performance depicted in
Fig. 10 will not change when the larger machine is assem-
bled—simply the capacity of the simulator will grow.

Fig. 11. Comparison of SpiNNaker and Brian outputs.

Fig. 12. Dynamic memory footprint of a single-thread simulation of syn-
fire ring circuits (Fig. 8).

4. ANSWER is totally internally instrumentable, but the correspond-
ing information relevant to BRIAN is much coarser grained and adds
nothing to the discussion.
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This pathology can be ameliorated to a certain extent by
slowing the biological clock, but this strategy starts to
impinge on the validity of the numerical assumptions of
Section 4, and can only be taken so far.

A second design limit that can cause problems is that of
packet dropping. The cores of the SpiNNaker engine are truly
independent and parallel; there is no overseer or meta-
network to impose traffic control. Once a packet is launched,
it is swept up by the hardware communications infrastruc-
ture and delivered to its destination. The precise hop
sequence of each packet trajectory is determined by the con-
figuration software before the simulation starts. The asyn-
chronous nature of the hardware supports considerable in-
flight packet buffering (distributed along the route), but it is
still possible for traffic density transients to momentarily
overwhelm a router. When this happens, the packet is
removed from the communications fabric, and placed in a
register local to the router that dropped the packet. At the
same time, an interrupt is raised to the monitor core of the
node containing the router/dropped packet; this handler
can remove the packet to the software stack, and re-inject it
into the communications structure at a later point when the
local packet traffic density subsides. SpiNNaker is designed
with a safety margin of a factor of ten—i.e., the hardware can
handle packet rates around ten times the expected average
density, but it has been found possible to (transiently) exceed
this figure. Re-injecting dropped packets in the manner
described ensures their eventual arrival, although not neces-
sarily within the correct biological timeslot. A natural limit
to this extenuation occurs due to the finite size of any local
packet buffer. Utilizing one of the 16 application cores (and
the associated DTCM) as a dedicated ‘recover and re-inject’
thread allows a buffer size of� 40k packets/node.5

In the end, the real-time simulation capabilities of SpiN-
Naker can be overwhelmed by excessively dense represen-
tation of neural circuits or excesses of local communications
traffic—but so can any simulation engine. SpiNNaker con-
tributes to the art by extending the boundaries of real-time
simulation to hitherto inaccessible scales.

6 FINAL COMMENTS

These initial quantitative assessments of the comparative
performance of SpiNNaker show that the machine demon-
strates the (weak) scaling that was one of its original design
criteria—the simulation time scales 1:1 with wallclock. This
scaling maintains real-time performance independently of
the size of the problem by increasing the deployed hard-
ware resource in proportion to the computation load; this is
sustainable due to the architectural innovations, (inspired
by computation mechanisms in the brain), that allow the
computation to work with a non-deterministic communica-
tion infrastructure, globally asynchronous operation (time
models itself), and no memory coherency mechanism.

SpiNNaker has been designed specifically for modelling
large-scale systems of spiking neurons in biological real

time, leading to the architectural features described here.
Architectures of this type are suitable for wider applications
of similar nature, though inevitably these must be exten-
sively restructured to map them onto the machine.

SpiNNaker has absorbed considerable research effort.
Nevertheless, these are dwarfed by the resources poured
into the BlueBrain project [15], the Human Brain project
[15], BrainScaleS [4] and others. It does nothing functional
that cannot be achieved (slowly) on a 3kGBP desktop
machine (albeit one containing 7Tbytes of memory), but it
delivers results many orders of magnitude faster than the
desktop—in real time. It is a research machine, and—like
any simulation system—can be overwhelmed by problem
sets that take it out of its intended region of operation. How-
ever, within that arena, its capabilities provide computa-
tional neuroscience with a resource unlike any other
currently—or foreseeably—available.

The machine does not represent a panacea even just for
neural modelling, as it has its limitations. Most notable
among these is the tendency of the discrete time-step soft-
ware implementations to cause communication traffic to be
bursty so that, even if the average traffic is well below
capacity, transient bursts at the start of each millisecond
interval can overload the fabric, resulting in (recoverable)
dropped packets. In networks with particularly pathological
transient traffic characteristics the user may have to take
measures to reduce the intensity of network traffic peaks.

Overall, SpiNNaker represents an unprecedented capa-
bility to simulate large-scale spiking neural networks run-
ning in biological real time, and as such it achieves two
significant goals: 1) it moves forward the computational bar-
riers to detailed brain network modelling by a significant
distance, and 2) it opens the door to, and demonstrates the
validity of, event based computation as a valuable tech-
nique (almost) orthogonal to conventional computing
engines: non-deterministic message passing, non-coherent
memory access and globally unsynchronised hardware.
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