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Abstract—Inferring the structure and dynamics of network
models is critical to understanding the functionality and control
of complex systems, such as metabolic and regulatory biological
networks. The increasing quality and quantity of experimental
data enable statistical approaches based on information theory
for model selection and goodness-of-fit metrics. We propose an
alternative data-driven method to infer networked nonlinear
dynamical systems by using sparsity-promoting optimization to
select a subset of nonlinear interactions representing dynamics
on a network. In contrast to standard model selection methods-
based upon information content for a finite number of heuristic
models (order 10 or less), our model selection procedure discov-
ers a parsimonious model from a combinatorially large set of
models, without an exhaustive search. Our particular innovation
is appropriate for many biological networks, where the govern-
ing dynamical systems have rational function nonlinearities with
cross terms, thus requiring an implicit formulation and the equa-
tions to be identified in the null-space of a library of mixed
nonlinearities, including the state and derivative terms. This
method, implicit-SINDy, succeeds in inferring three canonical
biological models: 1) Michaelis–Menten enzyme kinetics; 2) the
regulatory network for competence in bacteria; and 3) the
metabolic network for yeast glycolysis.

Index Terms—Dynamical systems, network inference,
nonlinear dynamics, biological networks, machine learning,
sparse selection, non-convex optimization.

I. INTRODUCTION

NETWORK science is of growing and critical importance
across the physical, biological and engineering sciences.

In biology, both the quality and quantity of modern data has
inspired new mathematical techniques for inferring the com-
plex interactions and connections between nodes in metabolic
and regulatory networks (see [1]–[5] and references therein).
Discovering the structure, connectivity and dynamics of such
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networks is critical in understanding the functionality and con-
trol decisions enacted by the network in tasks such as cell
differentiation, cell death, or directing metabolic flux [6]–[9].
Methods based on information theory provide rigorous statis-
tical criteria for such model selection and network inference
tasks. For example, partnering the Kullback-Leibler (KL)
divergence [10], [11], a measure of information loss between
empirically collected data and model generated data, and
the Akaike information criteria (AIC) [12], [13], a relative
estimate of information loss across models balancing model
complexity and goodness-of-fit, allows for a principled model
selection criteria [14]. Indeed, model selection is a fundamen-
tally important computation for a variety of areas of biology
such as epidemiology, neuroscience, and gene networks, where
first principles models are unavailable.

Model selection methods and information theoretic
approaches for nonlinear dynamical networks, however, face
significant challenges. To successfully formulate dynamic
models, a method must determine both the correct nodal
dynamics and its node-to-node connectivity from a com-
binatorial large space of potential interactions. Traditional
model selection is performed using information criteria on a
finite, generally order 10 or less, set of heuristically defined
models [15]–[18]. The model with the maximal information
content is selected using AIC [12], Bayesian information
criteria (BIC) [19], or other related metrics [20]–[23].

A continued goal of model selection is to consider a
more comprehensive set of models, potentially combinato-
rially large, for evaluation by information criteria. Recent
efforts significantly enhance the number of potential models
by automated model generation [24], [25]. Despite the sig-
nificant increase in candidate models, even a modest number
of interacting variables can render model selection algorithms
intractable. This is because each model posited must be numer-
ically simulated, fit and evaluated for information content. To
highlight this complexity, consider selecting a specific model
from all possible polynomials of degree d in n variables.
The number of possible monomial structures Nm is given by
Nm = (n+d

d

)
, while the number of polynomial structures, Np,

that may be formed by assigning nonzero coefficients to the
Nm monomials is given by: Np = ∑Nm

k=1

(Nm
k

)
. The number

of possible polynomial structures Np may be thought of as
summing over all possible polynomials with only k mono-
mials. In our metabolic network example below, we consider
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polynomials up to degree d = 4 with n = 5 variables which
results in Nm = 126 and Np ≈ 1038. Simulating, evaluating,
and comparing 1038 models in a traditional model selection
framework using information criteria is currently intractable.

To overcome the significant challenge of model selection
with a combinatorially large set of models, we propose a
novel method to infer both the dynamics and connectivity of
biological networks motivated by machine learning methods,
overcomplete libraries [26]–[28], and non-convex optimiza-
tion [29]. We demonstrate the accuracy and robustness of
the method, called implicit sparse identification of nonlinear
dynamics (implicit-SINDy), on three representative dynamic
and networked biological models. Our combinatorial selection
criteria is related to information criteria through a compari-
son of the Pareto analysis of implicit-SINDy to a likelihood
function that minimizes the difference between the model and
data. The Pareto front discovers the most parsimonious model,
similar to AIC and BIC, while penalizing additional terms.

A. Biological Networks

Biological networks produce a diverse range of functional
activities. Regulatory and metabolic networks are critical for
cellular function. Breakdown of the function and control circuits
of such networks can lead to cancer and other deadly diseases,
motivating therapeutic gene modulation or pharmaceutical inter-
vention [6], [7]. Understanding the network structure and the
time-dependent dynamic behavior of the signaling molecules
can potentially improve our ability to design such interven-
tions [8], [9]. In addition, better models for metabolic networks
could facilitate metabolic engineering of designer drugs using
microorganisms as bio-chemical factories [30].

Regulatory and metabolic networks have a number of fea-
tures that make them candidates for dynamic inference using
sparsity promoting methods. First these networks are known
to be intrinsically sparse, meaning not every component in
the network interacts with every other component [31]–[34].
Second, there is growing availability of high-quality exper-
imental data [35], [36]. Third, the system interactions and
dynamics have been successfully described using ordinary dif-
ferential equation models with mass-action kinetics– usually
polynomial interactions of order 5 or less. Using these mod-
els, systems biologists have characterized a relatively small
number of motifs that determine network behavior such as
autoregulation, feed-forward loops, feedback loops, and cas-
cades [37]. These network motifs have been detected across
bacteria, yeast, plants and animals, suggesting that many
biological networks can be characterized in this way [38].
Developing a mechanistic intuition and validating these mod-
els usually involves painstaking iteration between theory and
experiment [39]. Therefore, we capitalize on the inherent spar-
sity of the networks and to identify dynamic, mass-action
kinetic models, that can be easily interpreted using familiar
network motifs.

B. Biological Network Inference

Network inference methods designed for genomic, tran-
scriptomic, proteomic, and metabolomic data include a
broad variety of approaches including machine learning,

compressive sensing, genetic programing, feature
selection, regression, mutual information, correlation,
system identification and statistical inference methods
(see [1]–[4], [40]–[42] and references therein). Recent
methods have been successful in inferring the networked
dynamical equations with heuristically selected nonlinear
functional forms including: sparse Bayesian inference on a
library of Hill functions [42], [43], Bayesian inference on the
chemical reaction graph and kinetic parameters using a library
of Hill functions [44], [45], an alternating regression using
the compact S-system representation [2], [46], and a method
combining diffusion maps for dimensionality reduction, a
library of Hill functions, and a Markov chain Monte Carlo
method for parameter estimation [47]. Alternative methods
such as genetic programing and trees [2] can generate very
general functional forms, but require significantly more
computational time, and risk not comprehensively evaluating
model space. In all cases, inferring the connectivity structure
of large networks remains an open and challenging problem,
which our method circumvents by a fundamentally different
construction.

C. Contribution of This Work

In this work, we develop an implicit algorithm to dis-
cover networked dynamical systems with rational function
nonlinearities. Nonlinear dynamics of metabolic and regula-
tory networks often include rational terms, motivating this
innovation. It is difficult to construct a library containing ratio-
nal nonlinearities for use with the sparse regression, since a
generic rational function is not simply a sparse linear com-
bination of a small set of basis functions. Instead, we write
the system as an implicit differential equation in terms of
the state and derivatives, and then search for the sparsest
vector in the null space of all mixed state and derivative
terms, which results in a non-convex optimization problem.
To select the model terms in implicit-SINDy, we make use
of an optimization formulation by Wright et al. [29], and
a new non-convex algorithm using the alternating directions
method [48], to find the sparsest vector in the null space. This
provides an entirely new algorithm to select active rational
nonlinearities in the dynamics, which is not possible by sim-
ply applying sparse regression in an augmented library. We
demonstrate the algorithm to be robust, accurate and fast when
applied to three canonical models of biological networks:
Michaelis-Menten enzyme kinetics, the regulatory network for
competence in bacteria, and the metabolic network for yeast
glycolysis.

In the following sections, we provide background on the
existing SINDy method [49], and describe the new non-convex
sparse selection algorithm. We next validate the algorithm
on simulated data for three important biological models: the
most fundamental model for enzyme kinetics, a canonical
model for regulation of bacterial competence, and a seven-
node metabolic network describing glycolysis. Finally we
discuss the practical application of implicit-SINDy to real
biological systems, including overcoming challenges such as
noise and increased system size and incorporating perturbative
measurements.
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Fig. 1. Methodology for sparse identification of nonlinear dynamics (SINDy) from data. First, data is generated from a dynamical system, in this case a
biological network. The time series of data is synthesized into a nonlinear function library, and the terms in this library are related to the time derivative by
an overdetermined linear regression problem. Enforcing sparsity ensures that only a small number of coefficients are nonzero, identifying the few active terms
in the dynamics that are needed to model the system.

II. BACKGROUND: SPARSE IDENTIFICATION

OF NONLINEAR DYNAMICS (SINDy)

Discovering dynamical systems from data is an age old pur-
suit in mathematical physics. Historically, this process relied
on a combination of high-quality measurements and expert
intuition. With growing computational power and vast quan-
tities of data, the automated discovery of dynamical systems
and governing equations is a relatively recent phenomenon.
Broadly speaking, these techniques may be classified as sys-
tem identification, where methods from statistics and machine
learning are used to identify dynamical systems from data.

Nearly all methods of system identification involve some
form of regression of data onto dynamics, and the main dis-
tinction between the various techniques is the degree to which
this regression is constrained. For example, the dynamic mode
decomposition (DMD) [50] generates best-fit linear models.
Recent nonlinear regression techniques have produced nonlin-
ear dynamic models that preserve physical constraints, such
as conservation of energy [51]. Genetic programming has also
been used to discover dynamical systems and conservation
laws from data [52], [53]. These methods are highly flexible
and impose very few constraints on the form of the dynamics
identified. More broadly, there is a considerable body of work
in the control literature on nonlinear system identification with
explicit connections to AIC and BIC [54]–[56].

Here we review the recent sparse identification of nonlin-
ear dynamics (SINDy) method, which leverages advances in
machine learning and sparse regression to discover nonlin-
ear dynamical systems from data [49]. SINDy uses sparse
regression [57] for improved numerical robustness in noisy
overdetermined problems, as opposed to earlier methods [58]
that use compressed sensing [59]–[61]. It should be noted that
the SINDy method is incapable of handling the rational func-
tion nonlinearities present in many biological networks. It is
due to this fundamental limitation that we have developed the
present implicit-SINDy method.

SINDy relies on the fact that many dynamical systems

ẋ = f(x) (1)

are sparse in a given function space. The relevant terms that are
active in the dynamics are solved for using an �1-regularized
regression that penalizes the number of active terms. The
general framework for SINDy is shown in Fig. 1.

Algorithmically, time-series data is collected from Eq. (1),
resulting in a data matrix:

X = [
x(t1) x(t2) · · · x(tm)

]T
, (2)

where T denotes the matrix transpose. The matrix X is m × n,
where n is the dimension of the state x ∈ R

n and m is the
number of measurements of the state in time. For our purposes
the state variables are the measured biological components in
the network (enzymes, metabolites, transcription factors etc.).
Similarly, the matrix of derivatives

Ẋ = [
ẋ(t1) ẋ(t2) · · · ẋ(tm)

]T
, (3)

is collected or computed from the state data in X; the total-
variation regularized derivative [62] provides a numerically
robust method to compute derivatives from noisy data.

Next, a library of candidate nonlinear functions, described
as features in [63], is constructed from X:

�(X) = [
1 X X2 · · · Xd · · · sin(X) · · ·], (4)

where Xd denotes the matrix containing all possible column
vectors obtained from time-series of the d-th degree polyno-
mials in the state vector x. For example, for a system with two
states x = [x1, x2]T , the matrix X2 = [x2

1(t), (x1x2)(t), x2
2(t)],

where t is a vector of times at which the state is measured.
Thus, the vector x is a symbolic variable, while the matrix X
is a data matrix.

It is now possible to relate the time derivatives in Ẋ to the
candidate nonlinearities in �(X) by:

Ẋ = �(X)�, (5)
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where each column ξ k in � is a vector of coefficients that
determines which terms are active in the k-th row equation
of Eq. (1). To enforce sparsity in the dynamics, we solve for
each column ξ k using sparse regression. One option is to use
the LASSO [57]:

ξ k = argminξ ′
k

∥∥Ẋk − �(X)ξ ′
k

∥∥
2 + λ

∥∥ξ ′
k

∥∥
1, (6)

where Ẋk is the k-th column of Ẋ. However, in the original
SINDy method, a sequential thresholded least-squares algo-
rithm was implemented instead of LASSO. Once the sparse
coefficient vectors ξ k are determined, a model of the nonlinear
dynamical system may be constructed:

ẋk = �(x)ξ k, (7)

where xk is the kth element of x and �(x) refers to a row
vector whose elements are symbolic functions of x, as opposed
to the data matrix �(X).

Using sparse regression to identify active terms in the
dynamics from the candidate library �(X) is a convex opti-
mization. The alternative is to apply a separate constrained
regression on every possible subset of nonlinearities, and then
to choose the model that is both accurate and sparse. This
brute-force search is intractable, and the SINDy method makes
it possible to select the sparse model in this combinatorially
large set of candidate models.

The polynomial and trigonometric nonlinearities in Eq. (4)
are sufficient for a large class of dynamical systems. For
example, evaluating all polynomials up to order n is equiv-
alent to assuming that the biological network has dynamics
determined by mass action kinetics up to n-mers (monomers,
dimers, trimers, etc.). However, if there are time-scale separa-
tions in the mass action kinetics, fast reactions are effectively
at steady state, and the remaining equations contain rational
functions [64]. As we consider systems where the dynam-
ics include rational functions, constructing a comprehensive
library becomes more complicated. If we generate all rational
nonlinearities:

f (x) = fN(x)

fD(x)
, (8)

where fN(x) and fD(x) are both polynomial functions, the
library would be prohibitively large for computational pur-
poses. Therefore, we develop a computationally tractable
framework in the next section for functional library construc-
tion that accounts for dynamics with rational functions.

III. INFERRING NONLINEAR DYNAMICAL SYSTEMS

WITH RATIONAL FUNCTIONS

Many relevant dynamical systems contain rational func-
tions in the dynamics, motivating the need to generalize the
SINDy algorithm to include more general nonlinearities than
simple polynomial or trigonometric functions. The original
SINDy algorithm bypasses the computation and evaluation of
all Np candidate regression models, as enumerated in Section I,
by performing a sparse approximation of the dynamics in a
library constructed from the Nm candidate monomial features.
However, it is not possible to simply apply the original SINDy

procedure and include rational functions, since generic ratio-
nal nonlinearities are not sparse linear combinations of a small
number of rational functions. Instead, it is necessary to mod-
ify the sparse dynamic regression problem to solve for the
sparsest implicit ordinary differential equation according to
the following procedure.

Consider a dynamical system of the form in Eq. (1), but
where the dynamics of each k = 1, 2, . . . , n variables may
contain rational functions:

ẋk = fN(x)

fD(x)
(9)

where fN(x) and fD(x) represent numerator and denominator
polynomials in the state variable x. It is important to note that
these rational terms in an ordinary differential equation are
fundamentally nonlinear, as opposed to the rational functions
used to describe the transfer function of a linear system in the
frequency domain. Linear systems theory has a rich history
estimating rational transfer functions [65]–[67]. In contrast, (9)
describes a nonlinear dynamical system with a rational func-
tion in the time domain. For each equation in this nonlinear
dynamical system, it is possible to multiply both sides by the
denominator polynomial, resulting in the equation:

fN(x) − fD(x)ẋk = 0. (10)

The implicit form of Eq. (10) motivates a generalization of
the function library � in Eq. (4) in terms of the state x and
the derivative ẋk:

�(X, ẋk(t)) = [
�N(X) diag(ẋk(t))�D(X)

]
. (11)

The first term, �N(X), is the library of numerator monomi-
als in x, as in Eq. (4). The second term, diag(ẋk(t))�D(X),
is obtained by multiplying each column of the library of
denominator polynomials �D(X) with the vector ẋk(t) in an
element-wise fashion. For a single variable xk, this would give
the following:

diag(ẋk(t))�(X)=[
ẋk(t) (ẋkxk)(t)

(
ẋkx2

k

)
(t) . . .

]
. (12)

A schematic of this library is shown in Fig. 2. In most
cases, we will use the same polynomial degree for both the
numerator and denominator library, so that �N(X) = �D(X).
Thus, the augmented library in Eq. (11) is only twice the size
of the original polynomial library in Eq. (4).

We may now write the dynamics in Eq. (10) in terms of the
augmented library in Eq. (11):

�(X, ẋk(t))ξ k = 0. (13)

The sparse vector of coefficients ξ k will have non-zero entries
for the terms active in the nonlinear dynamics. However, it is
not possible to use the same method of sparse regression as in
the original SINDy algorithm, i.e., to find the sparsest vector
ξ k that satisfies Eq. (13), since the sparsest vector would be
identically zero.

To find the sparsest non-zero vector ξ k that satisfies Eq. (13),
we note that any such vector will be in the null space of
�. After identifying the null space of �, we need only find
the sparsest vector in this subspace. Although this is a non-
convex problem, there are straightforward algorithms based
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Fig. 2. SINDy algorithm for rational functions. Assemble a matrix, �(X, ẋk) where each column is a nonlinear function evaluated for time series data
x1, x2, x3.. and one species derivative ẋk(t). Next, calculate N a orthonormal basis for the null space of �. Then, use an alternating directions method [48]
to find a sparse vector, ξ , in the null space. The sparse vector ξ , then satisfies �ξ = 0. Using the sparse coefficients from ξ and the functional library �
assemble the inferred model. This algorithm must be performed for the derivative ẋk of each species.

on the alternating directions method (ADM) developed by
Qu et al. [48] to identify the sparsest vector in a subspace.

A. Algorithm for Sparse Selection of Rational Functions

The algorithm for finding ξ k is illustrated in Fig. 2. First,
we build our functional library �(X, ẋk(t)) using both the
time series data of the state variables and derivative, as dis-
cussed above. Second, we calculate a matrix, N, with columns
spanning the null space of �. We wish to find the linear com-
binations of columns in N that produces a sparse vector ξ .
For this third step, we use the alternating directions method
developed by Qu et al. [48] that finds the sparsest vector in
a subspace. We enforce some magnitude of sparsity using a
threshold, λ. For the fourth and final step, we select the active
nonlinear functions using ξ and �, and assemble the inferred
model.

As the appropriate λ is unknown a priori, we repeat the
third and fourth steps for varying λ. Increasing λ increases
the sparsity (decreasing the number of terms) in ξ , as shown
in Fig. 3A. Each ξ(λ) produces an inferred model of vary-
ing accuracy and sparsity. From these models we calculate a
Pareto front and select the most parsimonious model, as shown
in Fig. 3B. A Pareto front is calculated by plotting the num-
ber of terms on the x-axis vs an error indicating how well ξ

satisfies our implicit equation, |�ξ |, on the y-axis. The most
parsimonious model is readily identifiable at the sharp drop-off
in error. As we will show, this method succeeds at identifying
the correct rational terms and coefficients.

B. General Formulation for Implicit ODEs

The procedure above may be applied to identify more
general implicit ordinary differential equations, beyond those
just containing rational function nonlinearities. The library
�(X, ẋk(t)) contains a subset of the columns of the library

Fig. 3. A. Increasing the sparsity threshold λ during ADM creates coefficient
vectors, ξ , with monotonically decreasing number of terms. B. For each ξ(λ)

we calculate an error as |�ξ |, and produce the Pareto Front. For the cases
tested here, a large cliff in the error indicates the best choice of ξ(λ) (circled
on A. and B.) and the most parsimonious model.

�([X Ẋ]), which is obtained by building nonlinear functions
of the state x and derivative ẋ. Identifying the sparsest vector
in the null space of �([X Ẋ]) provides more flexibility in
identifying nonlinear equations with mixed terms containing
various powers of any combination of derivatives and states.
For example, the system given by

ẋ3x − ẋx2 − x3 = 0 (14)

may be encoded as a sparse vector in the null space of
�([X Ẋ]). It is also straightforward to extend the formu-
lation to include higher order derivatives, by increasing the
features in the � library. For example, second-order implicit
dynamical systems may be formulated in the following library:

�
([

X Ẋ Ẍ
])

. (15)

The generality of this approach enables the identification of
many more systems of interest, in addition to those systems
with rational function nonlinearities explored below.
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Fig. 4. Algorithm applied to the Michaelis-Menten kinetics for an enzymatic reaction. Step 1) Generate two time series of the single state variable, x(t),
and time derivative, ẋ(t). Step 2) Discovered active functions and their corresponding coefficients are indicated by color. The error drops sharply at 4 terms
on the Pareto front (circled) . The most parsimonious model has four active functions: two in the numerator and two in the denominator (indicated by color).
Step 3) Allowing for rational function factorization, the inferred model is equivalent to the original model.

IV. RESULTS

The implicit-SINDy architecture is tested on a number of
canonical models of biological networked dynamical systems.
Validation of the method on these models allows for potential
broader application. We demonstrate that the method is fast,
accurate and robust for inferring Michaelis-Menten enzyme
kinetics, the regulatory network for competence in bacteria,
and the metabolic network for yeast glycolysis.

A. Simple Example: Michaelis-Menten Kinetics

Perhaps the most well known model for enzyme kinetics is
the Michaelis-Menten model [68], [69]. This model captures
the dynamics of an enzyme binding and unbinding with a
substrate (x), and then reacting irreversibly to produce a prod-
uct, as shown in Fig. 4. A separation of time-scales argument,
where binding and unbinding dynamics are fast, or a more
general steady state assumption [70], reduces the dynamics to
a single state-variable equation with a rational function in the
dynamics. Traditionally, biochemists vary the initial concentra-
tion of x in a titration experiment to fit the Michaelis-Menten
equation to the data.

Using time series data from only two initial concentrations,
our algorithm extracts the correct functional form from a larger
subset of possible functions and fits the coefficients accu-
rately (Fig. 4). First we generate data from the single dynamic
equation

ẋ = jx − Vmaxx

Km + x
, (16)

with some flux source of x, jx, and an enzymatic reaction of
the Michaelis-Menten form consuming x. Here, Vmax is the
maximum rate of the reaction and Km is the concentration of
half-maximal reaction rate. Generally the time series data of
the concentration, x(t), is measurable, while the time series
data for the derivative can be calculated from x(t).

Next, we apply implicit-SINDy to determine the coefficient
vector ξ and sparsely select the active functions in the dynam-
ics. The library contains polynomial terms up to degree four
and has 10 columns. The Pareto front for this system has
a sharp drop off in error from around 0.01 to 10−5 at four
terms, indicating the λ for the most parsimonious model. The
associated ξ selects 4 active terms from the function library.

Finally, the rational function constructed from � and ξ

needs to be factored to be interpreted as the source flux and
Michaelis-Menten terms. When rearranged, the coefficients
match the original system. Unsurprisingly, the inferred model
matches the original model for time series generated from new
initial conditions that were not used in the training data.

B. Regulatory Network: B. Subtilis Competence

Having shown that our method works for the simplest ratio-
nal model relevant to biological networks, we next test it on a
regulatory model with two state variables [71]. Süel et al. [71]
demonstrated that a dynamic gene network enables cells to
switch between multiple behaviors – in this case B. subtilis
bacteria switch between taking up DNA from the environ-
ment (competence) and vegetative growth. Other regulatory
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Fig. 5. Algorithm applied to a regulatory network with two measured state-variables: x1 (blue) and x2 (pink). Pointed arrows indicate activation and blunted
arrows indicate repression. The functional library �, sparse vector ξ , and Pareto Front for x2 are shown in Step 2. 10 of 56 terms are active in the library
for the most parsimonious model: 4 in the numerator and 6 in the denominator. The inferred model is nearly equivalent to the original model for test data.

networks such as the circadian clock [72], [73] and cell cycle
oscillators have been successfully described using models with
similar structure and dynamics. In particular, similar dynamics
may drive cancer-relevant systems like the tumor suppressor
p53 [74].

The dynamics of bacterial competence regulatory system
with two states can be described by the following two non-
dimensional equations:

ẋ1 = a1 + a2x2
1

a3 + x2
1

− x1

1 + x1 + x2
, (17a)

ẋ2 = b1

1 + b2x5
1

− x2

1 + x1 + x2
. (17b)

These two equations are a reduction of dynamical system
with six states. Each rational function arises from a steady
state (or time-scale separation) assumption about the regula-
tory processes. The second term (scaled by a2) in Eq. (17a)
represents protein x1, ComK, activating its own production
in an autoregulatory, positive feedback loop. The first term
(scaled by b1) in Eq. (17b), describes x1 mediated repres-
sion of x2, ComS, in a negative feedback loop. Both of these
terms have a Hill-function form, where the power indicates
the number of x1 proteins involved cooperatively in the regu-
latory complex [37]. The combination of positive and negative
feedback results in the network’s functional capabilities. The
last term in Eqs. (17a) and (17b) describes degradation of x1
and x2, mediated by a third unmeasured protein, MecA.

Using this model we generate 40 time series for the regu-
latory system, as shown in Fig. 5. This model challenges our
method in two ways. First, the method must correctly identify
the dynamic dependence on two state variables. Second, the
model contains polynomial functions up to the 5th degree in
the denominator of one term in Eq. (17b). To include this term,
the library must contain polynomials up to degree six. Even
without knowing the highest polynomial power ahead of time,
it is possible to use the implicit-SINDy by trying libraries of
increasing polynomial degree. If the library does not have all
the required terms, there will be no clear drop off in the Pareto
front as there is in Fig. 5.

The library with degree six polynomials in two state vari-
ables contains 56 columns, of which 10 are active in the
most parsimonious model for x2 dynamics. The constructed
models for x1 and x2 match almost exactly with test data gen-
erated from the original model. As with our first example, the
extracted rational function can be factored to recover exactly
the form of Eq. (17b). Additionally, the coefficients identified
are within 2% error of the true coefficients shown in Table I.

C. Metabolic Network: Yeast Glycolysis

As a final example, we test our method on a metabolic
network. Glycolysis, the process of breaking down glucose
to extract energy (ATP and NADPH), is part of central
metabolism for all cells. Uncovering the metabolic network
for glycolysis took over 100 years from its initial discovery
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Fig. 6. Algorithm applied to a metabolic network for yeast glycolysis. Step 1). The 7 measured state variables are indicated with separate colors consistent
with time series. Arrows indicate reactions between components. Not all data required to infer the network is plotted. Step 2) shows functional library �
and corresponding coefficient vector ξ for x2. Seven functions are active: 5 in the numerator and 2 in the denominator. Step 3) The inferred model is nearly
equivalent to the original system for test data. One time series is shown for all 7 state variables.

TABLE I
PARAMETER IDENTIFICATION FOR REGULATORY NETWORK

by Pasteur [75]. Accelerated inference of metabolic networks
would aid metabolic disease intervention [76]. Bacteria per-
form a wide range of yet-to-be discovered chemistry which
could be harnessed through metabolic engineering to produce
high-value products such as drugs and biofuels [77], [78].

Not only does the yeast glycolysis model we analyze have
a larger number of interacting state variables, but it is oscil-
latory [79]. This network has also been previously analyzed
as a test case for model inference [80]. The network shown
in Fig. 6 has three equations with rational functions and four
with polynomials:

ẋ1 = c1 + c2x1x6

1 + c3x4
6

(18a)

ẋ2 = d1x1x6

1 + d2x4
6

+ d3x2 − d4x2x7 (18b)

ẋ3 = e1x2 + e2x3 + e3x2x7 + e4x3x6 (18c)

ẋ4 = f1x3 + f2x4 + f3x5 + f4x3x6 + f5x4x7 (18d)

ẋ5 = g1x4 + g2x5 (18e)

ẋ6 = h1x1x6

1 + h2x4
6

+ h3x3 + h5x6 + h4x3x7 (18f)

ẋ7 = j1x2 + j2x2x7 + j3x4x7. (18g)

Given sufficient data, implicit-SINDy correctly infers the net-
work structure and coefficients. In Fig. 6, we show the sparsely
selected terms and Pareto front for Eq. (18c). The method
correctly selects 7 terms from a library of 3432 functions: 5
in the numerator and 2 in the denominator. Table II shows
the true and extracted coefficient values for the model. Some
of the parameters, c1 for example, had incorrect functional
dependence on x6 after factoring the discovered polynomial.
However these dependencies were very small, meaning the
coefficient of the first erroneous term in a Taylor expansion
was < 0.1% of the magnitude of the correct leading term.

The equations for x3, x4, x5, and x7 did not require a library
with polynomials up to degree six, and could be inferred more
quickly. On the other hand, Eq. (18g), required over twice
as many measurements as the other equations with rational
functions (Eqs. (18c) and (18b)).

D. Noise and Measurements With Implicit-SINDy

The implicit-SINDy algorithm can recover the underlying
dynamic equations with the addition of noise. Degraded data
compromises the calculation of the null space in Eq. 13 caus-
ing all of the singular values of � to be nonzero. Recent work
by Gavish and Donoho provides an optimal singular value
threshold for truncating the SVD of a data matrix corrupted
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TABLE II
PARAMETER IDENTIFICATION FOR METABOLIC NETWORK

Fig. 7. Pareto front for the Michaelis Menten model from section IV-A with
measurement noise added to the concentration time series. Noise is normally
distributed with standard deviation σ = 10−4. There is a plateau in the cross
validated root-mean-squared-error (RMSE) at 4 terms. The inset table shows
the coefficients for the models corresponding to lowest error for 3, 4, and 5
terms.

with noise [81]. This principled truncation criteria can be effi-
ciently incorporated into the algorithm for implicit-SINDy
by approximating the data library � allowing for the null
space calculation. As a specific example, we can recover the
Michaelis-Menten governing equation in Section IV-A with the
addition of normally distributed noise of magnitude σ = 10−4

(SNR O(104)). Further, the error of the reconstruction is shown
with the Pareto analysis shown in Fig. 7. The error was calcu-
lated by reconstructing each inferred model for varying levels
of sparsity and cross validating with time series data from

TABLE III
SIZE OF PROBLEM AND DATA REQUIRED TO

INFER NETWORK DYNAMICS

three new initial conditions. The table inset in Fig. 7 shows
the recovered coefficients for the lowest cross validated error
models with 3, 4, and 5 terms. The coefficients for the 4 term
model are within 0.05% root mean square error of the coeffi-
cients recovered without noise (see Fig. 4). Note, the 5 term
model is the same as the 4 term but with an extra, small
coefficient that survived the larger threshold value.

Table III presents the amount of data required for each
system explored in this article. The measurements are gen-
erated by randomizing initial conditions within a range that
is reasonable for each natural system. These numerical mea-
surements are intrinsically information-poor, as they often
overlap. We anticipate a substantial decrease in the number
of measurements required for perturbation experiments, such
as knockouts or knockdowns, which have been shown to have
much higher information content, see Supplement of Ref. [1,
Sec. 5.2].

V. CONCLUSION

In this work we developed an implicitly formulated method
for sparse identification of nonlinear dynamics: implicit-
SINDy. The method allows for the construction of nonlinear
dynamics with rational functions using a library of functional
forms that is still computationally manageable for reasonably-
sized biological networks. An alternating directions method for
selection of a sparse vector in the null space of the library [48]
enables us to find and construct a parsimonious model from
the full library. Using implicit-SINDy on time-series data com-
putationally generated from three biological models (enzyme
kinetics, regulation, and metabolism), we are able to accu-
rately reconstruct the underlying system in each case. Indeed,
we correctly recover the coefficients to within 2% of the orig-
inal values. These results make implicit-SINDy a promising
method for model discovery of biological networks.

SINDy is a data-driven methodology, meaning it selects the
connectivity and dynamics based on the information content
of the data alone. It has many advantages, including the fact
that there is no parameter tuning in the inferred models aside
from a sparsity threshold which is determined by a Pareto
front. Moreover, implicit-SINDy greatly expands our ability to
rapidly select a model from a large class of candidate dynami-
cal systems, even when nonlinear derivative terms are present.
In practice, the method functions much like a highly efficient
unsupervised learning algorithm, sparsely selecting dynamics
from a large library of possibilities. It differs from informa-
tion theoretic techniques where a number of viable models are
posited and selection of the best model is based upon the min-
imization of information loss. Such alternative techniques rely
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on physical insight (supervised learning) to generate individual
models, thus potentially limiting the dynamical systems con-
sidered. Given the large number of biological models driven by
mass-action kinetics, the implicit-SINDy method can be a crit-
ically enabling method for data-driven discovery of underlying
biological principals.

There are many intriguing future directions for the method,
both in theory and practice. A rigorous connection between
the selection process for implict-SINDy and information cri-
teria such as AIC and BIC remains an open question. There are
strong similarities in the selection process between information
criteria and the Pareto analysis for implicity-SINDy. However,
there is an ambiguity in choosing an error metric and log-
likelihood interpretation for IC to nonlinear dynamic systems,
as discussed in [21]. Application of information criteria to the
models discovered by implicit-SINDy would allow quantita-
tive comparison between models. Further, relative-information
criteria would provide a systematic strength-of-evidence com-
parison between models [82]. We expect that these methods
could differentiate between true model identification and false
drop off on the Pareto front when the functional library is
missing terms, an essential state-variable is not included, or
the noise level is too high. Further, these methods can be
extended to handle large signal-to-noise ratios and stochastic
variation, including experimentally relevant data studies such
as ensemble averaging and non-regular data acquisition for
linear and minimally non-linear regression models [4]. We
believe establishing a rigorous connection between informa-
tion theory metrics and sparse selection will address these
challenges for implementation on experimental data.

An additional challenge is in choosing the correct variables
with which to build a regression model. Recent work has indi-
cated that even if key dynamic variables are not included in the
measurements, it may be possible to obtain regression mod-
els using delay coordinates. This is based on the celebrated
Takens embedding theorem, which states that under certain
conditions, delay coordinates on limited measurements may
provide an attractor that is diffeomorphic to the attractor in
the original dynamic variables. The use of delay coordinates
for dynamic regression is a promising and actively developing
field of research [49], [83]. The next critical step in build-
ing a dynamic regression model is constructing a library of
candidate nonlinearities that is complete enough to capture
the system under consideration. In the examples in this paper,
dynamics are known to be governed by rational nonlinearities,
motivating the particular approach developed. More generally,
additional nonlinear terms may be required for other problems.
It is also possible to concatenate multiple libraries of candidate
nonlinearities. These future directions build upon the success
already demonstrated by the implicit-SINDy mathematical
architecture.
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