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Abstract—Software Defined Networking (SDN) is an emerging
network platform, which facilitates centralised network manage-
ment. The SDN enables the network operators to manage the
overall network consistently and holistically, regardless the com-
plexity of infrastructure devices. The promising features of the
SDN enhance network security and facilitate the implementa-
tion of threat detection systems through software applications
using open APIs. However, the emerging technology creates new
security concerns and new threats that do not exist in the cur-
rent traditional networks. Distributed Denial of Service attacks
(DDoS) are one of the most rampant attacks that can interrupt
the functionality of the network and make most of the network
services unreachable for network users. The efficient identifica-
tion of DDos attacks on SDN environments in literature is still
a challenge because of the number of network features taken
into account and the overhead of applying machine learning
based anomaly detection techniques. Hence, in this paper, we aim
to use two popular feature selection methods, i.e., Information
Gain (IG) and Random Forest (RF) in order to analyse the
most comprehensive relevant features of DDoS attacks in SDN
networks. Using the most relevant features will improve the accu-
racy of the anomaly detection system and reduce the false alarm
rates. Moreover, we propose a Deep Learning (DL) technique
based on Long Short Term Memory (LSTM) and Autoencoder
to tackle the problem of DDoS attacks in SDNs. We perform our
analysis and evaluation on three different datasets, i.e., InSDN,
CICIDS2017 and CICIDS2018. We also measure the overhead
of the proposed DL model on the SDN controller and test the
network performance in terms of network throughput and end-
to-end latency. The results validate that the DL approach can
efficiently identify DDoS attacks in SDN environments without
any significant degradation in the controller performance.

Index Terms—Anomaly detection, autoencoder, DDoS, deep
learning, LSTM, InSDN dataset, SDN, traditional network.

I. INTRODUCTION

T HE TRADITIONAL IP networks, which are widely
applied today have become complex and difficult in their
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management. If the IT operators need to configure any high-
level network policies, such as Quality of Service (QoS)
or routing policy, they have to access the network devices
(e.g., routers and switches) separately using the vendor-
specific commands, which increases the overall complexity
of the network. Additionally, the IP-based network devices
are vertically integrated. The control plane (responsible for
the decision-making) and the data plane (which decides how
to forward the network traffic according to the instructions
from the control plane) are embedded into the same network
device. Coupling the control and data planes can hamper the
innovation of the network infrastructure and reduce the flex-
ibility of the network for any change or update. Besides,
the rapid growth of networking can increase maintenance
costs and significantly reduce network innovation in traditional
networks. Therefore, developing a new routing algorithm could
take 5 to 10 years and would practically be very costly [1].
Moreover, since all devices are widespread through the entire
network, there is an increase in the number of middle-boxes
devices such as firewalls, load balancers, detection and defense
systems, etc. According to Kreutz et al. [1], 57 of network
enterprises reported that the number of middle-boxes devices
has significantly increased and reached the same number of
other mandatory network devices like routers.

To address many of the traditional IP network limitations,
the emerging network architecture, which is often known as
Software Defined Networking (SDN), offers faster failover and
enables the network to be centrally controlled. The key idea
behind the SDN is to abolish vertical integration by splitting
the underlying infrastructure devices from the control plane.
The key feature of SDN versus traditional network is shown in
Fig. 1. Decoupling the two plane layers increases the network
flexibility and facilitates network management with the aid of
centralised controller. The new paradigm allows the operators
to manage the entire network using software APIs connected
with the SDN controller through the northbound interface
regardless of the underlying network technology. The global
visibility introduced by the SDN system encourages many
business enterprises such as Google, Huawei, Microsoft to
implement the new paradigm in their network data centre [2].

Despite all benefits offered by SDN, security is one of the
significant challenges, which can slow down its widespread
adoption and deployment over different networks. Since the
centralised controller is the heart of the network, it is vulnera-
ble to a single point of failure. In case the attacker successfully
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Fig. 1. Traditional vs SDN architecture.

exploits the controller system, he can hinder or manage the
entire network based on his aspiration. DDoS is one of the
most critical threats in SDN networks. Unfortunately, all SDN
layers, i.e., data, control, and application planes are targets to
DDoS attacks. Besides, the communication channels between
the data plane devices and the control plane have become a
potential target for DDoS attacks. Some mitigation techniques,
as described in [3] suggested a secondary controller to reduce
the damage resulted from DDoS attacks. However, using a
secondary controller is not a practical solution to solve the
problem since it can also be susceptible to DoS/DDoS attacks.

Intrusion Detection Systems (IDSs) are standard security
solutions to monitor and detect malicious activities inside
an organisational network. If the observed traffic from the
incoming or outgoing network is matched with suspicious
activity, an alarm is generated, referring to a detected attack.
Therefore, the development of IDSs is a vital direction for
many researchers [4], [5] since the security challenges are
among the most critical issues facing SDNs. The statistical,
Machine Learning (ML) and DL techniques are widely applied
for anomaly-based detection! solutions [6]. The centralised
control plane architecture in SDN provides new opportuni-
ties to defeat against DDoS attacks. Motivated by this fact,
we apply the DL techniques to temper the problem of DDoS
attacks in SDNs.

On the other hand, feature selection methods are one of the
significant pre-processing phase to success the anomaly detec-
tion models [7]. Such techniques can eradicate the irrelevant
and redundant features, retaining only the most representa-
tive characteristics from the original dataset. Using optimised
subset features not only improves the accuracy and detection
rate of the classifier, but also reduces the execution time. So,
using less number of features can help to develop a lightweight
model able to detect malicious attacks in real time network
with low computational resources and prediction latency. In
addition, avoiding the curse of dimensionality through the
feature selection methods makes the model less prone to

n this article, we use intrusion detection and anomaly-based detection
systems interchangeably to refer for the same concept.
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overfitting problem. Thus, removing significant noisy and use-
less features has gained the attention of many researchers to
use feature selection strategies in many cybersecurity intelli-
gence solutions to achieve a high model performance using
ML/DL tasks [8], [9].

The feature selection can be categorised into three general
methods: filter, wrapper and embedded methods. Some exam-
ples of each method is shown in Fig. 2. The interested reader
may refer to [10], [11] for more details regarding the different
approaches of the feature selection methods.

Although several feature selections with ML models have
been proposed to detect DDoS attacks [8], [12], [13], the
existing mechanisms to prevent DDoS attacks are ineffective
on SDNs. However, one of the significant limitations associ-
ated with the aforementioned work is the lack of the intrusion
dataset for the SDN network. The researchers widely used
a dataset generated based on the conventional network, i.e.,
not the SDN architecture. However, this adaptation may not
be close enough to a real detection techniques in SDNs [14].
SDN has brought its own security threats, and the nature of
these threats is different from those commonly affecting legacy
networks. For example, all unmatched flows at the open flow
switches are triggered to the SDN controller for the policy
request. The intruder can send huge amount of unmatched
flows to overwhelm the controller resources creating a new
kind of DDoS attack. In addition, the attack traffic mimics the
same normal behavior since the normal and malicious traf-
fic is forwarded to the SDN controller for decision making.
Therefore, the relevant features of DDoS attacks based on con-
ventional networks are not necessarily related to DDoS class
on the SDN network. Moreover, using a weak feature selection
algorithms will omit the most relevant parameters and this can
waste significant data information.

Experiencing with the success of DL in several domain
areas, a combination of SDN and DL can improve the
performance of intrusion detection systems and then secure
the network better. However, as network speed becomes faster,
there is an emerging need for IDS to be lightweight with high
detection rates. Therefore, feature selection is a significant
issue and plays a crucial role in intrusion detection to achieve
maximal performance. The efficient feature subset can improve
the training and testing time that helps to build lightweight IDS
guaranteeing high detection rates and making IDS suitable for
real-time and online detection of attacks. In this context, we
evaluate the most relevant features of DDoS attacks with the
ranked top 10 features obtained by using two common feature
selection methods: Information Gain (IG) and RF strategies.
Several experiments based on three different datasets have
been taken to look at the impact of feature selections on
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the classifier accuracy, execution times. The DDoS modeling
process is depicted in Fig. 3.

The key contribution of this work can be summarised as
follows:

e Two popular feature selection methods (IG and RF)
are used to find the most relevant DDoS attack fea-
tures in each dataset individually. The proposed feature
selection method is tested on three benchmark flow
based datasets, i.e., InSDN [14], CICIDS2017 [15] and
CICIDS2018 [15].

e A DL based IDS process (Fig. 3) to detect DDoS
in SDN. This process includes an extension of our
previous DDoSnet model [16] and our feature selection
approaches. The results show that using selected fea-
ture methods with the proposed system helps in reducing
model complexity without any effect on the accuracy of
the model.

e Analysis the network performance of the DL model on
the SDN controller. The result analysis shows that the DL
approach does not significantly degrade the performance
of the controller.

The rest of this article is organised as follows: Section II
briefly provides a theoretical background about SDN opera-
tion and some of the security challenges of the new paradigm.
Related work and various detection and defense techniques
against DDoS attacks in SDNs are discussed in Section III.
Section IV introduces the methodology, the datasets and the
DL model used in this work. The experimental and evaluation
results are presented in Section V. The network evaluation
is discussed in Section VI. Finally, an overall discussion
of the results obtained and the conclusion are presented in
Sections VII and VIII, respectively.

II. BACKGROUND THEORY
A. SDN Operation

The SDN network comprises three functional planes: the
application, control, and data planes [17]. The application
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plane facilities the deployment of several applications and
services through northbound programming interfaces (APIs).
For example, applications such as IDS, monitoring, QoS, load-
balancer, and many other applications that define the network
behavior or offer services for end users can be implemented
easily as APIL. The control plane facilitates the management
of the network from a centralised location. The last layer, i.e.,
data plane layer or underlying network infrastructure contains
the forwarding network devices, e.g., OpenFlow switches. The
controller is separated from the under-layer devices, and the
communication between the two layers is established using
Southbound Interface. The OpenFlow protocol has become the
de facto protocol for communication mechanisms between the
controller and underlying switches. For any incoming flow,
the switch will search if there is any matching entity in one
of its flow tables to handle this flow accordingly. In case
of matching, the flow traffic will be directed to the corre-
sponding destination. Otherwise, the switch will extract the
packet header, encapsulate it in the format of Packet-In
message and send it to the controller for further process-
ing. The controller takes decisions on the incoming flows
(e.g., flow forwarding or dropping) with the assistance of
API programming and returns the flow rule to the switch
in the format of Packet-Out message. Then, the switch
takes the corresponding action according to rules/policies
assigned by the controller. The new rules will be cached in
the flow table to match any similar flow for a period of
time.

B. DDoS Attack Overview

The DDoS attack is an explicit attempt to prevent legitimate
users from accessing the network services. The emergence of
the DDoS attacks typically does not occur suddenly, but the
onset of an attack on a target system produces from a series
of preparatory steps by the adversary that we can identify
and measure. The operation of DDoS attacks follows sev-
eral consecutive phases as shown in Fig. 4 [18]. The intruder
initially starts to compromise multiple agent machines that
are widely distributed geographically by scanning the vul-
nerabilities in these devices. Once an intruder successfully
identifies some system vulnerabilities, he can compromise
these machines using a malicious program such as Trojan
Horse. By replicating the malicious file in multiple agents,
the intruder has the capability to control many devices that
can reach several thousand or millions (commonly referred to
as bots) to initiate DDoS attacks without the awareness of the
device’s rightful owner. The discovery of vulnerabilities and
exploitation process of the agents are usually performed auto-
matically, for instance, by sending e-mail messages with the
attack code attachment. The groups of bots, known as a bot-
net can get orders remotely from an intruder, i.e., bot-master.
The bot-master can perform large-scale DDoS attacks to flood
a legitimate service or network by sending a control com-
mand to the botnet agents to generate useless traffic without
getting noticed. Consequently, the victim resources become
overwhelmed with a crushing volume of traffic in a short dura-
tion, which significantly slows down the system service or the
network ability to respond to the legitimate users.
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Fig. 4. Adversarial Tactics in DDoS Attacks [18].

C. DDoS Attack in SDN

Although there are significant benefits of SDN in several
application domains, several security issues in SDNs remain
unaddressed. Indeed, the security in SDN is a double edge
sword. The centralised location of the controller can improve
the overall network security using new security tools with
the help of the northbound APIs. However, splitting the con-
trol plane from the data plane produces new weaknesses
that lead to attacks which did not exist before in the IP-
based networks. Examples of these attacks include attacks
against the SDN controller or the attacks on the communica-
tion links between the controller and underlying infrastructure
devices [14], [19]. In addition, all reported attacks in the
current networks can also target the SDN network (e.g., appli-
cation attacks). However, the consequences of the attacks in
SDN networks are very significant and can cause crucial dam-
age. On the other hand, the influences of the same attacks
in traditional networks are mild or moderate, since only a
small part of the network is being affected (likely for the
same vendor devices) [19]. When the intruder needs to extend
his attacks against new subnets, additional privileges or new
attacks are required for these purposes.

One of the most serious attacks in SDN is the DDoS.
The attacker can easily generate a high volume of traffic
from spoofed IPs, causing heavy damages to the network
and making the controller unreachable for the legitimate
users. Unfortunately, all SDN layers are susceptible to DDoS
attacks [20], and these attacks have different intuition from
those reported in the traditional networks, even from the ones
that are categorised under the DDoS class. In the following
paragraphs, we will emphasise some of the DDoS attacks that
are specific for the SDN networks.

o Buffer Saturation Attacks [21]: When the switch receives

a new packet with no matching entry, the switch extracts
the packet header and sends it to the control plane to
request a new flow rule. At this time, the packet payload
is temporarily buffered in the memory until new instruc-
tions are being received from the controller. In case the
buffer memory becomes full and has not enough space to
store new data, the switch will send the full packet size
to the control plane. The attacker can exploit this gap by
generating a vast number of fake packets with forged IP
addresses to run out the buffer memory within a short

Execution Attacked hosts and ports

time. When there is no buffer space, the legitimate pack-
ets are unable to buffer too, resulting in buffer saturation
attacks.

o Flow Table Overflow [22]: The switch flow tables
are stored in a memory, known as Ternary Content
Addressable Memory (TCAM). Each entity rule associ-
ated with it is defined with two times, i.e., idle time-
out and hard timeout to address the limited space of
OpenFlow switches. The idle timeout is referred to the
amount of time in seconds when the flow is removed from
the flow tables in case no flow is matching it. The hard
timeout determines how long this flow will stay in the
flow table before being removed, whether or not the flows
match it. The attacker can use this feature and send a large
number of the unmatched flow. After a while, all flow
entities will be replaced by fake flows and the memory
gets full with useless rules. Simultaneously, the switch
will fail to handle any legitimate users and all received
flow will be dropped. However, the switch can handle
a limited number of incoming packets, since the TCAM
memory has limited space. This is because the TCAM
cost can reach 400 times or over the RAM cost and its
usage power reaches 100 times that RAM consumes [23].

e Link Flooding Attack (LFA) [24]: The flow switches
communicate with the SDN controller using southbound
links. In case the intruder generates numerous fake pack-
ets and no buffer space in the switches, the full packet
will be delivered to the SDN controller, and this can
quickly overload the bandwidth, creating a bottleneck for
the legitimate traffic.

o Controller Saturation [25]: The controller is an appli-
cation installed on a virtual machine and has limited
resources, such as RAM and processing power. When
the controller handles a large number of fake packets,
the extensive processing can degrade its resources. The
controller saturation attack has a critical affect on the
SDN controller, since any breakdown or failure for the
controller causes that the entire network to be lost.

The SDN controller is highly targeted by DDoS attacks
and can quickly become a bottleneck if it handles a large
amount of incoming flow. Since all unmatched packets are
relayed to the controller for drawing the new rules, then receiv-
ing a high number of flows can run out its resources very
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fast, regardless the effectiveness of the controller. The over-
whelming of the controller can cause the utmost damages and
may crash the entire SDN network. Therefore, protecting the
network resources from DDoS attacks has become a crucial
aspect for the researchers in recent years.

D. Flow-Based IDS in SDN

The effective detection approaches are running on top of the
controller as a REST API. The centralised behavior of the SDN
architecture allows the controller to take the corresponding
action according to detecting results. Figure 5 represents the
SDN framework to discriminate benign traffic from ordinary
DDoS attacks. The architecture of the framework consists of
three major modules as follows:

o Flow Collection and Extractor Module: This unit gath-

ers flow statistics from the incoming packets using query
rules initiated by the controller every periodic interval.
The controller requests the switch to send the flow statis-
tics for analysis through a standard OFPT_FLOW_MOD
message. The time interval plays an important role on the
efficiency of the detecting module. If the time interval is
very long, it can raise the workload on the controller
and switches, since a huge number of flows are pro-
cessed. Besides, the detection module can take a long
time to respond, giving the attacker a good chance to
harm the network with aggressive fake traffic without
being detected. In contrast, when the trigger time is very
short, the controller will initiate the detection module
very fast, and this can increase the computational cost and
increase the controller resource occupation. Additionally,
a high volume of traffic will be transferred between
the controller and switches, and this may consume the
links bandwidth in a short time. To solve the aforemen-
tioned problem, few works were conducted [26], [27]
to improve the mechanism for the flow data collection,
to avoid the overhead and high computational cost on
the control plane. The controller will extract the specific

characteristics from the collected data. The extracted fea-
tures are essential to discriminate between normal and
DDoS malicious traffic.

Identification Module: This is the core of the framework
and comprises the trained detection module, e.g., IDS.
This module performs the identification on the attributes
extracted from the previous step in order to distinguish
whether the incoming flow is malicious or normal. The
IDSs are widely classified into two different classes:
signature-based and anomaly-based [28]. The signature-
based systems (e.g., Snort) match the signature of attacks
with some rules stored in an acknowledge database. Such
techniques achieve high accuracy (i.e., can reach over
99%), but unfortunately, their performance is abysmal
in detecting zero-day attacks. The attacker can easily
bypass the functionality of signature-based techniques
without being notified if s/he successfully manipulates
the attack signature (even for small amendments). On
the other side, anomaly-based techniques have received
a significant attention from the research community in
the last decade, since they theoretically have the capa-
bility to detect new attacks by observing any deviation
from the normal traffic pattern. However, the anomaly-
based detection solutions suffer from high false alarms,
which can slow down their implementation on network
productions or commercial products. The quality of any
anomaly detection system relies on the quality of the
training dataset. Therefore, the dataset should be updated
periodically in order to include the new attack patterns.
The DDoS detection module will analyse each received
packet before the controller processes it. If the received
packet is normal, the controller will instruct the switch
to install a new flow rule, while the malicious traffic will
be sent to the next mitigation management module to
handle it.

o Mitigation Management Module: Whenever a malicious

flow is identified by the identification module, the con-
troller utilises the corresponding attack defense measures
as soon as possible to avoid any damage to the network.
Various mitigation strategies are broadly applied to deal
with the incoming malicious traffic. The most popular
solution is to block the attack flows by activating a
new flow entry in SDN switches with the action field
set as Drop. Another mitigation solution, introduced by
Alshamrani et al. [29] is to move all the excessive
malicious flows to another honeypot server for further
detection as shown in Fig. 6 [29] shows that the SDN
controller receives a large amount of traffic packets at the
beginning of DDoS attacks, while the amount of received
packets at the honeypot is significantly low. Once the
detection module identifies the attacks, all traffic is redi-
rected to the honeypot server for further investigation.
Thus, the amount of received packets at the controller
decreases with time, while the honeypot receives a large
amount of traffic size. Therefore, the high false alarms of
the detection module can be avoided and its performance
in unknown attacks will be enhanced. Additionally, it is
also important to remove the malicious flow entries from
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TABLE I
SUMMARY OF THE STATE-OF-ART SOLUTIONS AGAINST DDOS ATTACKS IN SDNS

Type Publication Description OF the Solution Used Dataset

Advantages Limitation

“An entropy-based detection mechanism was used 1o mitigate TCP SYN
flooding attacks in the SDN. TCP flags and destination IP were used to
calculate the value of the entropy.

Prashanter al. [31]

~Broadly depend on the security researchers experience 1o define
beforehand the threshold value. However, the network traffic is
dynamic and is not consistent all the time.

- A joint entropy was used for DDoS detectionnthe TP and TCP attribute
Kalkan et al. [32] flags are used to find the value of the entropy.

- Procide mechanisms, which are lightweight, fast in their
calculation and consume less amount of computational resources

- Selecting the optimal threshold value need several claculations
and requires the past observation of the network behaviour

Combined the entropy scheme with the ensemble learning techniques Tor
DDo$ attacks detection. The information entropy was claculated for
the destination IP at the edge switches .

Statistical Information

Entropy Based Solutions | Y ¢/ @ [33]

- The modern attack traffic has a egree of similarity with
normal traffic e.g. Low-Rate DDo$ attack), which is hard to be
identified using the threshold-based method.

Shannon entropy was used to recognise and mitigate DDOS attacks.

Mishra ef al. [34] Three thresholds were employed to reduce the false alarm rate.

Generalized Entropy (GE) based metric was used (0 detect the.

Sahoo et al. [35] low rate DDoS attack to the control layer.

A detection and mittigation Tramework agains DDoS attacks. The detection

Tan et al. [27] model combined the K-Means and KNN algorithms together.

Simulated

Dong et al_ [39] Tntroduced an improved KNN based model for DDoS detection in SDNs. Simulated

- They have a low ability in the network flow traffic.

Tntroduced a detection and mitigation framework for DDoS attacks and

Lingfeng et al. [40] performed traffic analysis based on SVM algorithm.

KDD'99 dataset

- Require small amount of data for training - Sustained with high false alarms and low detection rates.

Machine Learning

Designed an efficient platform for DDOS attacks detection by adopting
Based Solutions i

Yu et al. [41] Simulated

- Achieve reasonable results when the dataset size has low amount
- Require less training time

SVM algorithm.

of samples

"Applied six ML algorithms, i.e. REP Tree, SVM, MLP, RF, J48 and

SUS ef
JESUS er al. 2] Random Tree for DDoS attack detection under the SDN context.

CIC-DD0S2019

- Limited tuning capabilities - Fail to provide significant results when applied on large traffic data.

“Applied four ML algorithms i.¢. C4.3, NB, SVM and RF (0 solve the

- Need lot of domain expertise, human intervention

. et al. [4 —

Abdulrahman er al. (431 | 0 D8 atacks CICIDS2017
Six ML techniques were used in the classification phase to est cach

Bindra er al. [44] method separately. used different feature selection methods to find CICIDS2017

the most relevant features of DDos attacks.

compared the performance of ANN with various classical ML

Ahuja et al. [45] algorithms for DDoS attacks detection in SDNs.

Simulated

~The existing studics validated their models using a dataset produced
based on traditional TP networks and not on SDN platforms.

tang et al. [46] GRU was introduced to solve the problem of DDoS attacks in SDN networks. | NSL-KDD

- The SDN encounters new vulnerabilities that can motivate the attacker
0 casily create new attacks, causing confusion for IDSs in the SDN.

- Significantly solve the inherent problems of traditional
ML techniques,

Deep Leamning
Based Solutions

Three DL algorithms T.¢. CNN, LSTM and RNN were used (o built an

Lieral [47) efficient security defense mechanism using DL algorithms.

ISCX dataset

- Eliminates the need of domain expertise and hard core
feature eng

- Most of these solutions included few types of DDoS attacks for evelaution
process, without considering the attacks that can target all layers.

Employed four ensemble DL approaches against DDoS attacks

Haider er al [48] in the SDN network.

CICIDS2017

- Moreover, the generated attacks in the simulated datasets were produced
using simple tools eg. Scapy or Hping3, and targeted only the network layer
of the OSI model, without including the attacks against the application layer

Novaes ef al._[49] GAN framework to alleviate the impact of DDoS attacks in SDNs.

CIC-DD0S2019
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Fig. 6. Traffic burst at SDN controller vs Honeypot [29].

the switches to release the memory space and to avoid
any latency process for normal traffic. In practice, the
controller sends OFPFC_DELETE message to open flow
switches to delete the flow entries that consume large
storage space resources.

III. RELATED WORK

In recent years, several defense and mitigation techniques
have been proposed to tackle the problem of DDoS attacks in
SDNs. Although the centralised controlling point of SDN can
combat the problem and facilitate the detection of attacks, it
can also create new attack vectors that are being reported in
traditional networks. In our previous work [30], we demon-
strated that the intruder could quickly degrade the network
performance or deplete its resources by generating a large
number of flows toward the controller with the help of only
few hosts under his/her control. Thus, securing the SDN
networks from DDoS attacks is essential to keep the network
running and avoid any crash to the network services or
equipments.

In this section, we explore the most comprehensive solution
to debate the DDoS attacks under the context of SDNs. Several
techniques have been proposed to tackle this problem; either
(1) implemented statistical information entropy, (2) machine
learning algorithms, and (3) deep learning based solutions. The
summary of these different techniques is depicted in Table I.

A. Statistical Information Entropy Based Solutions

Kumar et al. [31] introduced a SAFETY scheme to mitigate
TCP SYN flooding attacks in the SDN by using an entropy-
based detection mechanism. Only few attributes of TCP flags
and destination IP were used to calculate the value of the
entropy. The proposed technique avoided the static threshold
by employing an adaptive threshold during the detection pro-
cess. However, the proposed approach was dedicated only for
TCP SYN attack, without considering various types of DDoS
that can occur in the network.

Kalkan et al. [32] utilised a joint entropy for DDoS detec-
tion under the SDN context. Similar to [31], the IP and
TCP attribute flags are used to find the value of the entropy.
However, the utilised method provided acceptable results only
for known attacks and failed to provide a desirable accuracy
for any types of unfamiliar attacks.

Yu et al. [33] combined the entropy scheme with the ensem-
ble learning techniques for DDoS attacks detection in SDNs.
A lightweight model based on entropy strategy was adopted
at the edge switches to calculate the information entropy of
destination IP. In case of suspected anomalies, another detec-
tion technique based on Random Forest (RF) will be initiated
on the controller for further detection. However, the authors
employed the open flow switches for detection tasks, which is
against the core functionality of SDN, to avoid any decision
making in the underlying forwarding devices.

Mishra et al. [34] used Shannon entropy to recognise and
mitigate DDoS attacks in SDN networks. Three thresholds
were employed to reduce the false alarm rate. The authors
claimed that the proposed method achieved an accuracy of
over 98.2% with a false-positive rate of 0.04%.

Sahoo et al. [35] proposed a Generalized Entropy (GE)
based metric to detect the low rate DDoS attack on the control
layer. The experimental results showed that the Generalized
Entropy achieved better performance compared to Shannon
metric and with other information distance metrics.

Although all mechanisms based on entropy are
lightweight [36], fast in their calculation and consume
less amount of computational resources, these techniques
broadly depend on the security researchers’ experience
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Fig. 7. Visualisation result of NSI-KDD dataset. The t-SNE algorithm is
used to understand the distribution of data intuitively.

Fig. 8. Visualisation result of InSDN dataset.

to define beforehand the threshold value. However, the
network traffic is dynamic and is not consistent all the
time. For example, the size of traffic is relativity high
during the production time, while it becomes less in the
evening or on weekend days. Therefore, selecting the optimal
threshold value needs several calculations and requires the
past observation of network behaviour. Also, the nature of
network traffic is changed continuously over time, i.e., new
protocols are developed frequently, while other protocols are
no longer used. Consequently, the modern network traffic
is very complex since the intruder can easily create new
attack traffic with a high degree of similarity with normal
traffic (e.g., Low-Rate DDoS attack), which is hard to be
identified using the threshold-based method. We discussed
this issue in our previous research work [37], [38]. Selecting
a sub-optimal threshold value is reliable for old network
data, which was produced long time ago since the cluster of
normal and attack traffic are spatially separated from each
other, as shown in Fig. 7. While the clusters of modern traffic
data are spatially combined (Figure 8), tuning the threshold
substantially leads to higher false-alarm instances, since the
mitigation module is not able to discriminate between normal
and malicious instances. Hence, threshold-based methods are
not significantly conceived for detection and classification
applications. Therefore, valid and reliable security solutions
are still needed to efficiently secure the networks from
malicious traffic.
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B. Machine Learning Based Solutions

In recent days, ML based anomaly detection techniques are
efficiently used for DDoS attacks detection in SDN networks.
The ML has the capability to learn and identify patterns
from data automatically with the help of the training data.
These techniques have the capability to detect the abnor-
mal behaviour of the network data and provide a better
performance than the signature based techniques.

Tan et al. [27] introduced a novel detection and mitigation
framework to defend DDoS attacks in SDNs. The frame-
work combined the K-Means and KNN algorithms together
for a detection mechanism. 5-tuples entries were employed
to identify the DDoS attacks. A new trigger mechanism was
developed to reduce the controller workload and to overcome
the computational overhead on the communication channels
by avoiding periodic traffic collection. However, the authors
used the Scapy tool to simulate the legitimate and DDoS
attacks for creating the training dataset. The simulated traffic
lacked the attack variety and was free from any application
DDoS attacks. Nonetheless, the application attacks have a high
degree of similarity with normal traffic and are not easy to
detect using the traditional ML algorithms. In addition, the
performance of the detection model was further evaluated on
the outdated NSL-KDD dataset, which was generated based
on traffic traces from two decades ago.

Dong and Sarem [39] introduced an improved KNN based
model for DDoS detection in SDNs. Few attributes (i.e., flow
rate, flow size, flow duration, flow length) were used for
model training. The dataset was generated using SDN topol-
ogy, contained one server and ten virtual machines. However,
the simulated traces lacked the diversity of DDoS attacks that
can occur on different layers of OSI model, such as application
layer attacks.

Yang and Zhao [40] introduced a detection and mitigation
framework for DDoS attacks and performed traffic analysis
based on SVM algorithm. The detection model was evaluated
on KDD’99 dataset using only eight features that are easy to
obtain from the SDN network. However, the KDD’99 dataset
is outdated since it was generated two decades ago and is
lacking modern traffic data. In addition, it has a high number
of redundancy records, and this can increase the likelihood of
overfitting problem.

Yu et al. [41] designed an efficient platform for DDoS
attacks detection by adopting SVM classification algorithm.
The authors utilised the rate of PACKET_IN message per time
as a trigger mechanism to initiate the classifier model in the
SDN controller. The normal traffic in the dataset is based on
traces of real traffic collected between Japan and the United
States. The DDoS attacks traffic was simulated using Scapy
and Hping3 tools. Eight features were extracted for the attack
detection process. However, the number of records that are
used for training and testing the data are significantly small
(i.e., 1200 samples for training and 1700 for testing). Using
only few amounts of samples can lead to underfitting problem
since the less number of samples are not enough for the
model to extract the discriminatory information from the input
data.
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Pérez-Diaz et al. [42] applied six ML algorithms, REP
Tree, SVM, MLP, RF, J48 and Random Tree for DDoS attack
detection under the SDN context. The CIC-DDo0S2019 dataset,
was used to validate the performance of proposed approaches.
Once the attacks are detected by one of the used ML algo-
rithms, a mitigation strategy is started to block the malicious
traffic before crashing the entire network. The IDS module was
installed on a separate platform and connected to the controller
through an Identification API. Although the implementation of
the IDS on an individual platform can reduce the controller
workload, it also increases the required resources, which can
increase the total cost of the IDS framework.

Abdulrahman and Ibrahem [43] applied four ML algorithms,
ie., C4.5, NB, SVM and RF to solve the problem of DDoS
attacks. The IG feature selection method was used in the first
stage to select the best 10 features of the CICIDS2017 dataset.

Bindra and Sood [44] used different feature selec-
tion methods, i.e., Recursive Feature Elimination (RFE),
’SelectPercentile’, ’SelectFromModel’, and  Principal
Component Analysis (PCA) to find the most relevant
features of DDos attacks using CICIDS2017 dataset. The size
of best-selected features is in the range of 12 to 15 in most
feature selection methods. Six ML techniques were used in
the classification phase to test each method separately. The
RF and KNN provided the highest performance, while LR
and NB have the lowest accuracy.

The aforementioned approaches [27], [39]-[44] are based
on traditional ML techniques and categorised under shallow
learning algorithms. Although these methods are often used
and successfully achieve high performance in various applica-
tions and domain areas, they have a low ability in the network
flow traffic. The shallow learning techniques are sustained with
high false alarms and low detection rates, since they cannot
meet the requirements to detect complex malicious attacks.
On the other hand, these approaches achieve reasonable results
when the dataset size has low amount of samples. On the con-
trary, they fail to provide significant results when applied on
large traffic data.

C. Deep Learning Based Solutions

Nowadays, Deep Learning (DL) approaches play a vital role
in anomaly detection techniques. Such techniques have the
capability to capture the deep structure from the input data
automatically without any human intervention. However, only
few works utilised the DL for DDoS attacks in SDN networks.

Ahuja et al. [45] compared the performance of Artificial
Neural Network (ANN) with various classical ML algorithms
for DDoS attacks detection in SDNs. A DDoS dataset was
created in an emulated environment with the help of mininet
and Ryu controller. The results demonstrated the potential of
ANN for attack detection with an accuracy that reached 98.2%.

A DL approach [46] based on Gated Recurrent Unit (GRU)
was introduced to solve the problem of DDoS attacks in
SDN networks. Only six selected features from the NSL-KDD
dataset have been employed for DDoS attack classification.
The authors claimed that their proposed model achieved an
accuracy reached 89% .
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Li et al. [47] built an efficient security defense mech-
anism using DL algorithms against DDoS attacks in SDN
networks. Three DL algorithms, i.e., CNN, LSTM and RNN
were used for the proposed model and the proposed model
was evaluated on the ISCX dataset. Their model successfully
achieved an accuracy of 99%, and 98% in training and test
data, respectively.

Another study [48] employed four ensemble DL approaches
against DDoS attacks in the SDN network. The results showed
that the deep convolutional neural network (CNN) based
model achieved the highest accuracy of 99.45% compared
to other hybrid state-of-the-art algorithms. The CICIDS2017
dataset was used to evaluate all proposed DL models.

Novaes et al. [49] used Generative Adversarial Network
(GAN) framework to alleviate the impact of DDoS attacks
in SDNs. The emulated and the public dataset, i.e., CIC-
DDoS2019 were used for experiments evaluations. The authors
compared the obtained results from the GAN framework with
different DL algorithms, e.g., LSTM, CNN, MLP.

Although the DL techniques can significantly solve the
inherent problems of traditional ML techniques, most of the
existing studies validated their models using a dataset pro-
duced based on traditional IP networks and not on SDN
platforms. However, the characteristics and the operation
behaviour of SDNs are largely different from the cur-
rent networks. Besides, the SDN uses new protocols (e.g.,
OpenFlow) that are different from those used in traditional
networks. The OpenFlow protocol encounters new vulnerabil-
ities, and this can motivate the attacker to easily create new
attacks, causing confusion for IDSs in the SDN. Adding to
these factors, many studies are still using outdated datasets,
such as KDDCup-‘99’ and NSL-KDD. These datasets are not
only produced based on traces of two decades ago, but they
also lack the current Internet traffic. However, the modern
intrusion attack types are constantly growing and are becom-
ing more sophisticated, i.e., not easy to identify. On the other
side, the previous studies, which emulated the SDN network to
create a new dataset for evaluation process, only included few
types of DDoS attacks, without considering the attacks that
can target all layers. Moreover, the generated attacks were pro-
duced using simple tools, e.g., Scapy or Hping3, and targeted
only the network layer of the OSI model, without including
the attacks against the application layer. However, the DDoS
attacks against the application layer are not easy to detect
since they are very similar to normal traffic. On the contrary,
the DDoS attacks at the network layer are largely deviated
from normal traffic and are easy to be detected using simple
algorithms.

IV. METHODOLOGY

This section discusses in detail our experimental setup, the
datasets used for our experiment evaluation, the feature selec-
tion methods, and the DDoS detection approach. We explore
the potential of DL techniques for DDoS attack detection in
the SDN environments. The detailed process of the proposed
framework is summarised in Fig. 9. At the first stage, the
SDN-specific features are selected manually from three input
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Fig. 9. The flow diagram of the DDoS Detection module.

datasets. Then, various preprocessing steps, as described in
Section IV-C are used to fit the input data for the DL model.
Additionally, We apply two feature selection methods to find
the most relevant features for the DDoS attacks in each dataset.
In this work, several experiments are executed to validate the
capability of the DL approach for DDoS attacks detection.

A. Dataset Description

The quality of the training datasets plays an essential role in
building an efficient anomaly detection-based IDS. However,
the availability of high quality datasets for intrusion detec-
tion and network traffic, in general, is a significant problem.
In different application domains, such as language translation
and computer vision, a bunch of various datasets with high
quality are available for the public online. On the contrary,
the network data can contain sensitive customer information,
and it is illegal or against privacy to reveal such data to the
public. Hence, we can find the most real datasets for intru-
sion detection are anonymised payload data, which largely
alter the performance of the classifier models [50]. In addi-
tion, the majority of the available datasets are outdated, lack
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traffic diversity, and are unreliable for modern attack detec-
tion techniques. Using non-compatible datasets can create a
rigid model and may cause a mismatch between the model
and the new technology, since the network traffic is dynamic
and the enterprises can change the used protocols continu-
ously. For example, the Flash and Silverlight protocols were
widely used until 2010 for the most popular video enterprises,
i.e., YouTube and Netflix. Currently, they have been replaced
with the HTMLS protocol [51]. Therefore, several research
works have been proposed to simulate new datasets for the
research purpose. The Canadian Institute for Cybersecurity
(UNB) is one of the significant centers over the world, that
it has contributed to generate reliable and validated datasets.
The UNB created intrinsic and publicly available datasets
using network typologies that mimic the real network data-
centers. Although the produced datasets by UNB are widely
used in many research works in SDNs, they were created
based on conventional or traditional IP networks, i.e., not
from SDNs. However, as previously discussed in Section II,
the IP-traditional network and SDN are significantly differ-
ent in their operation. In addition, decoupling the data plane
from the control plane makes the network susceptible to new
attack vectors, different from those reported in traditional IP
networks. For example, decoupling the SDN controller from
the network devices increases the attacker chances to carry
out various types of attacks in data communications systems
or on the SDN controller itself. However, such attacks are
hard to be detected since the attacker is connected to the vic-
tim server in an authorised way. Thus, using a non-suitable
dataset can mislead the detection system and create high false
alarms. In addition to the aforementioned problem, to our best
knowledge, there is no publicly available dataset for testing
and evaluation of IDS in SDNs environment. The majority
of anomaly detection work in SDNs has implemented stan-
dard datasets generated based on the conventional network. To
tackle all of these problems, we used our InSDN dataset [14]
to test the performance of the proposed DL models. In addi-
tion, the CICIDS2017 and CICIDS2018 datasets are also used
in this work for further evaluation. The description of the three
different datasets is discussed, as follows:

e InSDN [14]: The InSDN dataset considers the new struc-
ture of the SDN network. It was created using four virtual
Machines (VMs). One VM acted as an SDN controller,
i.e., ONOS, while the second VM was used to act as
an Open Virtual switch (OVS). The third VM, i.e., Kali
Linux was used to represent the intruder machine, while
several venerable applications (i.e., Metasploitable2) were
installed on the last VM. Additionally, four internal vir-
tual hosts were created using a mininet emulator tool
to represent the normal users and some inside mali-
cious hosts. Therefore, the dataset simulated a variety of
attack classes from inside and outside the SDN network.
The normal traffic in the InSDN dataset reflected several
application services, such as HTTPS, DNS, SSH, FTP,
email, etc. For this purpose, some internal hosts are
allowed to access the Internet and collect intrinsic traffic
from different websites, such as YouTube, Facebook,
SKYPE, etc., to mimic the real-world traffic. The total
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number of instances in InSDN dataset is 361,317, where
the size of samples for normal and attack classes is 68,424
and 292,893, respectively.

e CICIDS2017 [15]: The dataset contained network traffic
of five days, generated in the period between Monday,
July 3, and Friday, July 7, 2017. The CICIDS2017 was
created using a complete network topology with several
devices such as routers, switches, firewalls, and differ-
ent operating systems platforms. The authors used the
concept of profiles to create the normal traffic in the
datasets. The dataset was publicly available online in both
PCAP and .CSV formats. The CICIDS2017 includes a
total number of instances equal to 2,830,743, where the
size of attacks represented 19.7% of the total data.

e CICIDS2018 [15]: The authors of [15] extended the
CICIDS2017 project to create a new realistic dataset in a
scalable manner. The CICIDS2018 traces were gathered
in 10 days with a total number of instances 16,233,002,
where the size of attacks represented 17% of the entire
data. The same concept of profiles was used to create
the normal and attack classes, but the authors used the
Amazon Web Services (AWS) platform instead of the old
network infrastructure.

The three dataset features are generated using the
CICFlowMeter tool [52] and have more than 80 network flow
features in the format of .CSV file. The three datasets contain
a variety of attack classes. This work only focuses on DDoS
attacks, so the other attack classes are excluded from our study.
However, the size of the InSDN dataset is significantly small
compared to other datasets, so we take all labels categorised
under normal and DDoS classes. Nonetheless, only the Friday
afternoon (July 7) file is picked from CICIDS2017 for our
experiments, while Wednesday (February 21) file is used in
the case of the CICIDS2018 dataset.

B. SDN Specific Features

This section explains some representative features that can
be derived in SDN networks. The features of the three datasets
were obtained using the open source CICFlowMeter tool
[52]. The CICFlowMeter generates more than 84 flow fea-
tures. However, not all of these features can be extracted
inside the SDN environment. In SDN, only statistical features
can be extracted from the SDN controller through OpenFlow
calls to the SDN switches (e.g., flow duration, number of
packets, number of bytes). For this goal, we use the same
framework of [53] to find the sub-features, which are easily
retrieved directly by the SDN controller quarries or by com-
petition calculation of the flow statistics. For example, we can
use manual computational to calculate some features such as
standard deviation (Std), Min, Max, and mean of the flow fea-
tures. Table II represents the corresponding mapping between
derived features from the SDN environment to the InSDN
dataset features. In addition, Table III shows extra features that
can be calculated from the manual competition. Nonetheless,
the original framework [53] utilised a subset of 50 features for
their research objective. In this article, a subset of 48 features
is only used, as the source and destination IPs are excluded
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TABLE II
THE EXTRACTED TRAFFIC FEATURES FROM SDN CONTROLLER [53]

No. | Feature Description SDN Derived Features | InSDN Dataset

1 Length of the connection Duration Flow Duration

2 Protocol_type Protocol Protocol

3 Max. expire time of flow Hard_time_out Flow use

4 Flow permanence time Idle_time_out Flow idle

5 Packets in bidirectional flow Packets Packets

6 Data bytes in bidirectional flow | Bytes_count Bytes

7 Data bytes from source to dest. | Tx_packets Src2dst_packets

8 Data bytes from dest. to source | Rx_packets dst2src_packets
TABLE III

THE EXTRA TRAFFIC FEATURES [53]

InSDN Feature
Packet rate (src2dst)
Packet rate (dst2src)

No. | New Feature

1 Packet/s from source to dest. (PPS)
Packet/s from dest. to source
Inter-arrival time (IAT)

(min, avg, max, std)

Inter-arrival time from source .
4 to dest.(min, max, mean, std) Inter time (src2dst)
Inter-arrival time from dest.

Inter time

5 to source (min, max, mean, std) Inter time (dst2src)
TABLE IV
THE 48 EXTRACTED SUBSET FEATURES IN SDNS
No. Feature Name No. Feature Name
1 Protocol 25 Forward_IAT_Total
2 Flow_duration 26 Backward_IAT_Min
3 Total_Length_of_Fwd_Packets 27 Backward_IAT_Max
4 Total_Length_of_Bwd_Packets 28 Backward_IAT_Std
5 Total_Forward_Packets 29 Backward_IAT_Mean
6 Total_Backward_Packets 30 Backward_IAT_Total
7 Forward_Packet_Length_Std 31 Forward_Header_Length
8 Forward_Packet_Length_Mean 32 Backward_Header_Length
9 Forward_Packet_Length_Min 33 Forward_Packet_s
10 Forward_Packet_Length_Max 34 Backward_Packet_s

11 Backward_Packet_Length_Std 35
12 Backward_Packet_Length_Mean | 36
13 Backward_Packet_Length_Min 37
14 Backward_Packet_Length_Max 38

Max_Packet_Length
Min_Packet_Length
Packet_Length_Mean
Packet_Length_Std

15 Flow_Packet_s 39 Packet_Length_Variance
16 Flow_Bytes_s 40 Average_Packet_Size

17 Flow_IAT_Min 41 Active_Min

18 Flow_IAT_Max 41 Active_Max

19 Flow_IAT_Std 43 Active_Std

20 Flow_IAT_Mean 44 Active_Mean

21 Forward_IAT_Min 45 Idle_Min

22 Forward_IAT_Max 46 Idle_Max

23 Forward_IAT_Std 47 Idle_Std

24 Forward_IAT_Mean 48 Idle_Mean

from our experiments. The two attributes may be changed
from one network to another; besides, the attacker can use the
same IP address of legitimate users. Thus, training the clas-
sifier model using such features can make the model biased
toward those socket features, causing the overfitting problem.
The obtained features in SDNs are depicted in Table IV.

C. Data Preparation

Data preprocessing is a crucial step taken on the input
data before the model training to build an accurate detection
system. The original data is not suitable for building and train-
ing ML/DL models; hence some steps are taken to transform
the input dataset into an understandable and readable format
as follow:
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TABLE V
THE SIZE OF SAMPLES IN DATASETS

Dataset training testing

Normal DDoS Normal DDoS
InSDN 47,732 85,524 20,692 36,418
CICIDS2017 | 68,436 89,561 29,250 38,464
CICIDS2018 | 252,673 | 240,619 | 108,160 | 103,252

e The CICIDS2017 and CICIDS2018 datasets contain a
huge amount of infinity and missing (nan) values. The
first step to build an accurate model is to clean the
data. In practice, two different methods can be taken to
handle the missing and infinity values in any particu-
lar column, which has the missing values. We can either
remove these values or calculate the mean and replace
them with the results. In this article, since the two datasets
have adequate samples, we drop all null and infinity val-
ues without causing any significant effect on the model
efficiency.

e ML/DL techniques are based on mathematical equa-
tions, so the categorical data are converted into numerical
values to keep only numbers in the equations. The
OneHotEncoder class is used to replace the text of
the labeled column with number. In these experiments,
only binary classification is employed to classify normal
or DDoS attacks. Thus, the normal traffic takes the value
of 0 and DDoS attacks are encoded to the value of 1.

o The dataset features have different scales, and this can
cause some issues in the DL model. For example,
some dataset columns or features have a small range
of values, while other columns take a large range of
values, i.e., higher than the value in another column.
We limit the range of variables by using feature
scaling, so the common ground can be used for the
comparison. There are two different methods of scal-
ing: normalization and standardisation. The
normalization scales the features between 0 and
1, while the standardisation converts the input
attributes into a new scale, which has a zero mean (u) and
a standard deviation (o) of 1. In this work, we applied the
standardisation method for all datasets according

to Eq. (1).
o w(i) — p((2))
z(i) = : (1)
o(z(i))
e We split the dataset into a 70:30 ratio using

test_train_split from the sklearn library,
which means that 70% of the dataset are utilised for train-
ing, while the remaining 30% are reserved for the model
test to check how accurately we can predict it. The total
number of training and testing samples for all datasets is
depicted in Table V.

D. Deep Learning Classifier

Recently, DL techniques have gained popularity on a broad
variety of tasks, e.g., speech recognition, computer vision, lan-
guage translation. DL techniques use multiple hidden layers
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Fig. 10. The LSTM-autoecoder for DDoS attacks detection [16].

to solve more complex problems, which are difficult for solv-
ing using a linear function. The DL techniques can address
the limitation of traditional ML algorithms since the tradi-
tional methods often require complex feature engineering,
while the DL techniques have the capability to extract the
features from input data automatically without human inter-
vention. The performance of DL is significantly high at dealing
with high non-linearity degrees of data points. Therefore, it is
expected to improve cybersecurity trends, such as IDSs. This
section represents the DL approach to tackle the problem of
DDoS attacks in SDN networks.

1) The proposed DL Model: We use our previous model,
i.e., DDoSnet [16], which composites from autoencoder and
Recurrent Neural Network (RNN). The proposed model effec-
tively detected DDoS attacks with great performance and low
false alarms in comparison with traditional ML algorithms.
However, in this article, we enhance the model performance
by using LSTM, which is a specific type of RNN, instead of
simple RNN in order to avoid the problem of vanishing gradi-
ent. Gradients are used to update the weight values of a neural
network, as shown in equation (2). However, when a gradi-
ent value becomes extremely small, it does not contribute too
much learning as it back propagates through time. The RNN
suffers from small gradient updates, especially in the earlier
layers. Thus, it is unable to keep the information for the long
sequences.

New weight = weight — learning rate * gradient. (2)

The overall structure of the DL approach is illustrated
in Fig. 10. The model has two phases: (1) Pertaining
phase, which uses unsupervised learning; (2) fine-tuning phase
and uses supervised learning. The unsupervised learning is
employed in the first stage without any labels to extract the dis-
criminatory features of the raw data. The autoencoder takes the
represented information in the original space and transforms
it into another space. Each dense layer in the original autoen-
coder is replaced with an LSTM layer to improve the model
performance. The nature of the network traffic is the key idea
behind the using of LSTM in DL approach since the temporal
correlation of the input data generates sequential traffic. Thus,
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TABLE VI
LSTM-AUTOENCODER SPECIFICATIONS

Parameters Optimal values
Hidden-layers 3

Number of channels (neurons) | 32, 16, 8
Activation function ReLU

Number of epochs 100

Loss function MSE

Learning rate 10e-4
Optimizer type Adam

Batch size 128

building the DL model with such techniques will eliminate the
loss, as the output of any layer does not only depend on the
current input but also based on the previous output.

2) Experimental Setting: Tuning hyper-parameters values
is one of the significant challenges in DL training due to the
lack of theoretical foundation. Unfortunately, there is no secret
rule for choosing the optimal values of hyper-parameter. So,
several experiments and combinations based on trial and error
have been conducted to find the best number of network lay-
ers, number of neurons in each layer, number of iteration,
batch size, etc. To demonstrate the best values of hyper-
parameters, we analyse the performance of the DL model by
testing different values of learning rate (), i.e., 0.0001, 0.001,
0.01, and 0.1. For each value of )\, we examine the model
performance on other different parameters. For example, we
test the impact of hidden layer numbers, size of channels in
each layer, iteration, and the activation function on the entire
performance of the DL approach. The best classifier accuracy
is obtained when the number of hidden layers is equal to three.
Repeating experiments several times, the results have shown
that for the given data, the highest performance was obtained
when we used the hyper-parameters as shown in Table VI. The
value of hyper-parameters can be changed from one dataset to
another. For simplicity, we used the same hyper-parameters as
described in Table VI for all datasets since the variation in the
results can be ignored.

At the encoder phase, the input dimensions are reduced to
32, 16, and 8 through the three hidden layers, respectively.
The final output of the encoding phase is compressed input
data. The decoded step is a reverse order of the encoded phase
with the following number of channels: 8, 16, and 32, respec-
tively. After building the model and finding the best values
of weight and bias, the hierarchical features are obtained from
unlabeled data. In the second stage, fine-tuning is used to opti-
mise the network and train the highest layers of the network
using labeled data (i.e., supervised learning). Finally, the out-
put of the model is obtained by adding the softmax function
at the output layer. The softmax layer generates an output
in the range of (0, 1) for each output class, where all classes
probability is equal to 1. In this work, we only examined sam-
ples from normal and DDoS attacks. So, binary classification
is used to assign a digit 0 for normal and 1 for malicious
or DDoS attacks. The categorical cross-entropy is
used with the softmax layer, while the Adam optimiser is
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employed to update network weights iterative. We trained the
model using 100 epochs and 128 for the batch size.

E. Feature Selection Algorithms

This section utilises the feature selection techniques to find
the relevant features of DDoS attacks in each dataset sepa-
rately. The feature selection methods explore the most relevant
features for each class label while ignoring the redundant
or irrelevant features. Therefore, training the detection model
using few features can help to build a lightweight classifier,
less prone to overfitting. Further, the lightweight model can
be deployed easily in the network platform without causing
any significant computational cost on the system resources [8].
While the strategy of finding the importance features is dif-
ferent from one feature selection algorithm to another, we
used two different methods, i.e., Random Forest (RF) and
Information Gain (IG).

1) Information Gain (IG): Is one of the most popular algo-
rithms to compute how much each variable is contributing to
the decision. It comes under the category of filter methods and
identifies the importance of features based on the concept of
information theory. A common measure for the information
is Shannon entropy. The entropy quantifies the uncertainty of
each feature according to its relevance in determining different
classes. We can calculate the entropy for specific attack class
H(C) using the following equation:

n

H(C) ==Y p(i)logp(i). 3)

1=0

The IG used a simple attribute rank by measuring
information weight of each feature and eliminating the irrele-
vant features for each class label. A feature that has a small
information gain, has also a low affect on the data classifica-
tion and can be ignored without any degradation on the model
performance. The IG for each individual input feature F in the
dataset is obtained by calculating the reduction in the entropy
according to the following equation:

IG(C; F) = H(C) = H(C|F) )

where IG(C;F) is information gain of the feature F, taking
into account the class features C, and H(C|F) is the average
conditional entropy of C.

2) Random Forest (RF) [54]: Is widely used to solve the
problem of individual Decision Trees (DTs) with a good
predictive performance and less prone to overfitting. It is cat-
egorised under Embedded methods, which combines the filter
and wrapper techniques. The key idea behind the RF is to
measure how much each feature contributes on the prediction.
If the change is large, this is an important variable. Similarly,
when the change is small, this means the feature does not
provide a significant information. The RF is a combination of
several hundreds of decision trees (Fig. 11) which are built
based on random observation from the dataset and random
extraction of the features. The number of features can vary
from one tree to another, and this immunes the model from
overfitting since the trees are de-correlated. The RF calculates
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Fig. 11. The general architecture of random forest.
TABLE VII
THE BEST SUB SELECTED FEATURES BY RF AND IG
Dataset New Subset Features
InSDN 1, 2,5, 15, 18, 26, 31, 32, 33, 34
RF | CICIDS2017 | 3,5,7,8, 10, 13, 22, 23, 25, 31
CICIDS2018 | 3,5, 7, 8, 10, 21, 23, 26, 31, 33
InSDN 1, 2, 15, 18, 20. 27, 29, 30, 32,34
1G CICIDS2017 | 3,4, 8, 10, 12, 14, 22, 31, 32, 40
CICIDS2018 | 5,6, 7,8, 10, 11, 12, 21, 31, 32

the importance of each variable using two ways. The first mea-
sure is based on the decrease of Gini impurity when a variable
is chosen to split a node. The second measure is based on how
much the accuracy decreases when the variable is excluded.

F. Feature Selection Process

Although the datasets hold the same number of features,
the importance of these features is different from one dataset
to another. Table VII shows that there are 7 common features
(i.e., 3,5, 7, 8, 10, 23, 31) between the CICIDS2017 and
CICIDS2018 in case of using the RF algorithm. However,
the InSDN dataset has only 1 common feature (i.e., feature
number 5) with the CICIDS2017, while it is combined with
CICIDS2018 in 4 features (i.e., 5, 26, 31, 33). Similarly, in
the case of using the IG algorithm, the CICIDS2017 and
CICIDS2018 have five common features (i.e., 8, 10, 12, 31,
32), while the InSDN dataset has only one common feature
(i.e., 32) with other two datasets. Additionally, the RF and 1G
are common for CICIDS2017 on five features (i.e., 3, 8, 10,
22, 31), while they are combined on six features (i.e., 5, 7,
8, 10, 21, 31) in case of CICIDS2018. In a similar way, six
features (i.e., 1, 2, 15, 18, 32, 34) are common between RF
and IG for the InSDN dataset.

The common features between the RF and IG indicate that
the CICIDS2017 and CICIDS2018 have participated on three
features (i.e., 8, 10, 31), while they have not shared any fea-
ture with the InSDN dataset. This is due to the fact that both
CICIDS2017 and CICIDS2018 datasets were generated from
the same infrastructure behaviour, i.e., the two environments
are based on conventional networks. Thus, some features,
which are more related to DDoS attacks are still common
between the two datasets since the behaviour of the attack
is similar in the two network environments. On the contrary,
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the SDN platform has different characteristics and operations
functionality than the traditional network. In addition, separat-
ing the control plane from the data plane produces new DDoS
attacks, which have different behaviour from those reported in
other networks.

On the other side, not only the importance of the features
varies from one network to another, but the identity of these
features can also vary from one environment to another. For
example, the flow duration in conventional networks indicates
the length of connections in seconds between the source and
destination hosts, while the flow duration in SDN networks
indicates the time during which the flow entry remains in the
switch flow table [45]. Therefore, we can see the duration
feature is more specific for DDoS attacks in SDNs. During the
DDoS attacks, the malicious flow spends a long duration in the
switch flow table compared to the legitimate traffic [45]. Thus,
the flow, which remains active for a larger duration, is a good
indicator for malicious DDoS attacks. Moreover, the attacker
can flood the SDN network with a high amount of useless
flows using spoofed IP addresses. Thus, the average number of
packets per flow will decrease during the DDoS attacks since
the attacker aims to flood the flow switches, consuming its flow
tables space without sending data packets. So, some attributes
like 'Flow_IAT_Max’ are important features to identify the
malicious DDoS traffic. Such attributes will decrease in case
of attacks, while it has a high value for normal traffic.

V. EXPERIMENTAL RESULTS AND FINDINGS
A. The Evaluation Metrics

The performance of the model is evaluated using the most
popular performance measures like the accuracy, precision,
recall, and F-score metrics and are computed as the following
equations.

N B TP + TN -
Y = TP TN £ FP + FN
TP
Precision —
recision = —5——0p o (6)
TP
l= ——— 7
Recall = 757 @
Foscore — 2 x Precision x Recall ®)

Precision + Recall

where, True Positive (TP) and True Negative (TN) represent
the correctly predicted values, while False Positive (FP) and
False Negative (FN) indicate misclassified events.

B. Analysis Tools

We evaluated the performance of the DDoS attack detec-
tion model with Python programming language using Keras
Library with Tensorflow backend. The testbed hardware and
software parameters are depicted in Table VIII.

C. Experimental Results

This section discusses the experimental results of the
proposed approach. Table IX shows the percentage of
Precision, Recall and f1-score for datasets with a different sub-
set of features. The model provided the highest results when
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TABLE VIII
EXPERIMENTAL ENVIRONMENT

Operating System Windows 10 pro 64-bit

Memory 16 GB
CPU Intel(R) UHD Graphics 620, 17-8650U CPU @ 1.90GHz (8 cores), 2.1GHz
Python 3.7.0
Keras 242
Tensorflow 220
Accuracy of the Trained Model on InSDN and CSE-CIC-IDS2018.
100 220 == InSDN

. CICIDS2018

90 88.21 83.09

Accurecy (%)

48-Sub Features

10-Sub Features
(RF)
Selected Features.

10-Sub Features

Fig. 12.  Accuracy of the Trained Model by CICIDS2017 on InSDN and
CICIC2018.

48 sub-features are used in the training process, while the
performance of the model is slightly declined when only 10
sub-features are used for both RF and IG algorithms. However,
the decline in the performance can be ignored, so we can build
a lightweight model with less number of features. Building a
lightweight model will consume less amount of resources and
make it more suitable for the SDN platform. It can also be
noticed that the overall performance of the IG algorithm is
slightly higher than the RF method.

We also validate our reclaim and demonstrate how the
model performance can be significantly decreased when we
evaluate it on different datasets produced from different
environments.

In the training phase, we train the proposed DL approach
using CICIDS2017 dataset, but we analyse its performance
on the test portion of InSDN and CICIDS2018 datasets. We
firstly train and test the model using all 48 sub features,
and later we only use the best 10 features from RF and
IF, which were selected earlier from the perspective of the
CICIDS2017 dataset. The obtained results are described on
Table X and Fig. 12. The results show that when we test
the model performance on CICIDS2018 dataset using sub
of 48 features, the evaluation metrics are significantly high
and greatly near to those reported in Table IX. However,
the performance is sharply declined on InSDN dataset. The
reported accuracy for both CICIDS2018 and InSDN datasets
are 99.61% and 55.18%, respectively. Moreover, when the
model is trained on only 10 features, the performance for
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both datasets is largely reduced, but the decline is signifi-
cantly huge for InSDN compared to CICIDS2018. The model
failed to identify any DDoS entity for InSDN dataset. The
overall accuracy is 88.21% and 36.22% for CICIDS2018 and
InSDN dataset in the case of the RF method, while the overall
accuracy is 89.09% and 32.94% when the IG method is used.

To further evaluate the performance of the model and to
indicate the effect of the feature selection process, we represent
the execution time of the model for all datasets, as shown in
Fig. 13. The graph shows that the execution time of the model
is relativity high for CICIDS2018, while it is low for InSDN.
This is due to the fact that the size of samples in CICIDS2018
is very large compared to other datasets. It is also noticed that
the model spent a long time for training when all 48 sub-
features are used, while the execution time is relativity small
in the case of RF but slightly higher for IG.

D. Comparative Analysis With State-of-the-Art

1) Comparative Analysis With DDoSnet: We further eval-
vate the model with our previous DDoSnet [16] approach.
In [16], the DDoSnet was compared with several ML algo-
rithms, such as Naive-Bayes (NB),Logistic Regression (LR),
DT, RF, and SVM. The obtained results for different methods
are depicted in Table XI. The results show the potential of the
DL techniques for DDoS attack detection compared with the
traditional algorithms. However, using the LSTM in the cur-
rent model provides a high accuracy compared to the simple
RNN algorithm.

We additionally estimate the performance of our model by
calculating the lower and upper bounds of the confidence
interval. The confidence interval is a way of quantifying the
uncertainty of an estimate [55]. The lower and upper bounds
within which the statistic can vary are usually referred to as
the margin of error. It provides a very clear understanding of
how the true result may differ from the estimated results and
how much more or less than the stated percentage the real-
ity might be. The experimental results showed that the lower
and upper bounds on the model’s classification accuracy are
0.001, 0.002, respectively. While, the lower and upper bounds
on the previous DDoSnet classification accuracy are 0.002,
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TABLE IX
EVALUATION METRICS OF 48 AND 10 SUB-SET FEATURES

Dataset Precision (%) Recall (%) fl-score (%)
Normal DDoS Normal DDoS Normal DDoS
48-Sub Feature InSDN 99.93 99.96  99.93 99.96  99.93 99.96
CICIDS2017  99.79 99.97 99.96 99.84  99.88 99.90
CICIDS2018 100 99.99  99.99 100 99.99 99.99
InSDN 99.90 99.89  99.82 99.94  99.86 99.92
10-Sub Feature (RF)  CICIDS2017  98.20 99.20  98.96 98.62  98.57 98.91
CICIDS2018  99.99 99.98 99.98 99.99  99.98 99.98
InSDN 99.96 99.91 99.95 99.93 99.95 99.92
10-Sub Feature (IG)  CICIDS2017  99.84 99.30  99.07 99.88 99.46 99.59
CICIDS2018 100 99.99  99.99 100 99.99 99.99

TABLE X

RESULTS OF THE TRAINED MODEL BY CICIDS2017 ON INSDN AND CICIDS2018

Dataset Precision (%) Recall (%) fl-score (%)
Normal DDoS Normal DDoS Normal DDoS
48-Sub Feature InSDN 44.14 85.59 89.41 35.72 59.11 50.41
CICIDS2018  99.73 99.53 99.55 99.72 99.64 99.63
10-Sub Feature (RF)  InSDN 36.22 20.41 99.98 0.10 53.18 0.21
CICIDS2018  81.42 99.57 99.69 76.18 89.64 86.32
10-Sub Feature (IG)  InSDN 34.06 0 90.93 0 49.56 0
CICIDS2018  81.37 99.31 99.49 76.14 89.52 86.19

TABLE XI
COMPARISON TO DDOSNET MODEL [16]

Techniques Accuracy (%)
NB 57
DT 77
RF 86
SVM 93
LR 95
DDoSNet 99

Proposed (InSDN) 99.95

0.003, respectively. Therefore, the classification error of the
represented classifier is less than the error described in the
DDoSnet, which indicates the high efficiency of the proposed
model.

2) Comparative Analysis on CICIDS2017 Dataset: We fur-
ther carried out a comparative analysis with two different
studies [44] and [43] on CICICI2017. Table XII represents
a comparative analysis of the two studies with the proposed
model. In [44] and [43], several ML algorithms have been
employed with the feature selection methods. It is noticed
that our DL approach provided the highest accuracy compared
to other work. The reported accuracy of the proposed model
with IG and RF selection methods is 99.50% and 98.76%,
respectively.

VI. NETWORK PERFORMANCE ANALYSIS

This section provides a detailed analysis of the proposed
DL approach on the performance of the SDN controller. We
used the same framework of [46] to evaluate the impact of
the proposed model on the network performance in terms of

throughput and latency. The Chench tool” is utilised to evalu-
ate the performance of the controller with various numbers of
OpenFlow switches. The Cbench tool is used to evaluate the
overheads of the DL model on the SDN controller. It provides
two different options to test the throughput and latency as the
follow:

1) In the throughput mode, Cbench generates a stream
of packet-In message to the SDN controller and
then records the packet-Out message that have been
received in a period of time. Calculating the sending and
receiving stream provides a good indication of the aver-
age number of flows that the controller can handle for
each switch per second.

2) In the latency mode, the Cbench sends a packet-In
message to the controller and waits for the response
before sending the next packet. Hence, we can find aver-
age number of milliseconds that a flow consumes to be
installed in each switch.

The model is written in Python programming language and
embedded on top of the SDN controller as an application layer.
We compare our model performance in terms of throughput and
latency on the Ryu controller after training it on three various
datasets. The experiments are conducted on a Linux virtual
machine running 64-bit Ubuntu 18.04 LTS, 8 GB of RAM,
Core-i7 CPU, and installed on a VMware workstation 15 Pro.

A. Throughput Results

The throughput represents the size of the packets that the
controller can handle per second. The throughput size is varied

2https:// github.com/trema/cbench
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TABLE XII
COMPARATIVE ANALYSIS ON CICIDS2017 DATASET

Solution Feature Selection Method Accurecy (%)
Bindra et. al. [44] (CICIDS2017) Select Percentile (K=15), 96.1
RFE (LinearSVC and Components=15) | 82.4
RFE with Lasso (15 features) 96.65
PCA (n=25) 95.6
SelectFromModel (12 features) 96.5
Abdulrahman et. al. [43] (CICIDS2017) | 1G (10) 86.80
Proposed (CICIDS2017) RF (10) 98.76
1G (10) 99.50
. Throughput Evaluation Latency Evaluation
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Fig. 14. Throughput Evaluation. Fig. 15. Latency Evaluation.

from one SDN controller to another. For simplicity, we test the
effect of the detection model on the Ryu controller. Figure 14
illustrates the throughput of the controller with our model
using different datasets. The graph shows that the through-
put of the running standalone Ryu controller is limited at
3800 packet/s, which is very low compared to other con-
trollers [56], [57]. However, the standalone Ryu Controller
provides a high throughput compared to the embedded DL
model. Therefore, we take it as a baseline for evaluating the
detection model. The throughput of the Ryu controller and the
embedded model are declined with increasing the number of
switches. However, the performance of the model is varied
according to the used dataset. The decline in the through-
put can be ignored in small network typologies when the
model is trained on InSDN or CICIDS2018, while the drop is
significantly high for the CICIDS2017.

The throughput of the model in the case of using the InSDN
dataset is dropped by about 2.86% and 3.1% when the number
of switches increases from 32 to 256, respectively. Compared
with the CICIDS2018, the throughput decreases by 3.7 and
4.1% and is significantly reduced by 2.8% and 6.37% for
CICIDS2017. It can noticed that the training dataset not only
plays a vital role in the potential of the classifier capability;
but it is also effective in determining the performance of the
model inside the network. We can see that the model with
InSDN data provides less overhead on the controller compared
to other datasets.

B. Latency Evaluation

The latency test is represented in Fig. 15. Similar to the
aforementioned throughput results, the latency increases with
the increase of the topology size. The standalone controller has
less latency compared to the embedded model, regardless the
dataset used. Integrating the security model with the controller
can quite increase the controller latency. However, the model
with InSDN dataset experienced a small latency, followed by
CICIDS2018, while the trained model on CICIDS2017 has the
highest latency, almost for all networks typologies.

The above results indicate that there is a trade-off between
network performance and security. Implementing security can
comprehensively decrease network performance. Therefore,
tuning the network relies on the IT operations to find the best
adjustments based on their requirements, either by enhancing
the network security with a little delay or keep it fast [58].

VII. DISCUSSION AND LIMITATION

Although the SDN is a promising solution for anomaly
detection systems, the SDN itself can be a target for several
attack threats. Unfortunately, all SDN layers are susceptible
to DDoS attacks, which can easily consume its resources
and prevent or even delay the network services for legiti-
mate users. Therefore, eliminating the impact of these attacks
has gained significant attention from the research commu-
nity in the last decade. Instantaneously, there is an increasing
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direction of using machine and deep learning techniques for
anomaly detection systems to solve the problem of DDoS
attacks in SDNs. However, the quality of the training dataset
is a key pillar of any model efficiency.

On the other hand, one of the main challenges, which seri-
ously hinder the performance of the ML/DL models is the
problem of overfitting. The model can effectively perform very
well during the training but fails to display a good tendency
with the unseen data. There are many reasons that can cause
this problem such as, the complexity of the model and the low
amount of data used to create a suitable approach. Thus, the
best practice to test the efficacy of intrusion detection mod-
els is to evaluate how it can work with new data that have
never been seen before during the training. This is what we
investigated and successfully achieved in this work.

Nonetheless, the majority of the current anomaly detection
techniques in SDNs have been evaluated using a dataset gen-
erated based on IP-traditional networks and not from SDNs.
However, the SDN platform generates new attack vectors that
did not exist before in traditional networks. Thus, training the
detection model using an improper dataset can deceive the
classifier model and make it easily prone to overfitting. In
addition, the behaviour of the attacks is different from one
environment to another. For example, the attacker can exploit
the operation of the SDN and employ some existing attacks
such as “Port scan” and “IP sweep” to overwhelm the con-
troller with a heavy volume of unknown traffic, creating a
new DDoS attack vector [59]. However, conventional detec-
tion systems can easily identify “Port scan” and “IPsweep”,
but the functionality of these attacks are different in SDNss, i.e.,
work as DDoS. Moreover, DDoS attacks are rapidly evolving
threat and can cause a crucial impact on the performance of
network services running over SDN [60]. Hence, the avail-
ability and response time of SDN services are significantly
degraded at presence of attacks. In this article, we demon-
strate how the importance of features is being changed from
one dataset to another, regardless of the fact that the used
datasets have the same attack classes or a similar number of
features. However, some of attributes that are widely used for
model classifiers on IP based networks can have less impact
in the SDN and vice versa [61]. Based on the analysis and
the above results, we showed that the behaviour and operation
of the SDNs are varied from other networks. Thus, the struc-
ture of the new platform should be taken due to the design of
anomaly detection systems.

Likewise, our proposed model is experienced to some
limitations which are listed below:

e We test the performance of the model using only one
SDN controller; however, the throughput and latency are
varied from one controller to another. Thus, several con-
trollers should be examined for fair awareness and to
represent how the embedded model can work efficiently
with other controllers.

e We trained and evaluated the DL model in offline mode
using virtual simulation without implementing a physical
SDN networks. However, the detection of attacks online
is very important to understand how this IDS can handle
the intrusion in real-time.
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o In this article, we employed the DL model to produce
a lightweight model against DDoS attacks. Despite the
DDoS attacks being one of the most dangerous attacks
in the SDN, the SDN is vulnerable to many other attacks
that can compromise its normal operation. In the near
future, we will train the DL model to consider new attacks
in the SDN. In addition, a new experimental test should
be used to classify the data categories into normal or
attack classes, i.e., using multi-classification instead of
binary classification.

o The adversaries can actively adapt and modify their
threat models to learn the decision boundary of the
anomaly detector. They aim to compromise the integrity
of anomaly detectors by reducing the confidence and
modifying the input (an anomalous sample) in order to
output (nominal class) by the detector [62]. Therefore,
understanding the adversary threat model will help avoid
mistakes and reduce the false positive alarms of the
anomaly detectors. However, the attack methodology,
which adversarial examples reside is beyond the scope
of this paper. The interested reader can refer to [62]-[65]
for more information regarding the general strategies that
an attacker can use against any anomaly detector.

VIII. CONCLUSION

Training the network intrusion detection system using a
high-dimensional dataset increases the complexity of proposed
classifier, which result in excessive training and classification
time. The pre-processing feature selection methods play an
essential role in identifying the important features from the
original dataset, and this would help to improve the classi-
fication accuracy and avoid the curse of high computational
complexity. The aim of this work is to reduce the redundant or
irrelevant features without any significant impact on the classi-
fication accuracy. We have selected 10 features out of available
48 features using two common feature selection methods IG
and RF. A modified DL model based on LSTM-Autoencoder
was used for experimental purposes, while the DDoS attacks
were considered as a case study. Our approach provides a
high detection rate and presents a more efficient better time
to build the model. We further tested the trained model on the
performance of the SDN controller to evaluate how the used
dataset can impact on the performance of the SDN controller.
The results showed that the proposed approach does not dete-
riorate the network performance. In our future work, we will
analyse new attack classes for the test evaluation. Also, we
plan to apply our proposed model on real SDN network in
order to understand how this IDS can handle the intrusion in
real-time.
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