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Abstract—This paper proposes a communication strategy for
decentralized learning in wireless systems that employs adaptive
modulation and coding capability. The main objective of this
work is to address a critical issue in decentralized learning based
on the cooperative stochastic gradient descent (C-SGD) over wire-
less systems: the relationship between the transmission rate and
the network density influences the runtime performance of learn-
ing. We first present that a dense network topology does not
necessarily benefit the iteration performance of learning than a
sparse one. However, it tends to degrade the runtime performance
because the dense network topology requires a low-rate trans-
mission. Based on these findings, a communication strategy is
proposed in which each node optimizes its transmission rate to
minimize communication time during the C-SGD under the con-
straints of network density. We perform numerical simulations
of an image classification task under both independent and iden-
tically distributed (i.i.d.) and non-i.i.d. settings. The simulation
results reveal that the preferred setting for the network density
depends on the channel conditions and the biases in the training
samples. Furthermore, numerical simulations of an automatic
modulation classification task indicate that the preferred setting
is almost the same even if the training task is different.

Index Terms—Decentralized learning, rate adaptation, stochas-
tic gradient descent, network topology, edge AI.

I. INTRODUCTION

OWING to the rapid development of deep neural networks
(DNNs), numerous machine-learning techniques have

been proposed over the past decade. In general, constructing
an accurate DNN incurs high computational costs and requires
large amount of training data. This problem has motivated
many researchers to investigate machine learning techniques
that utilize distributed computing resources, such as multiple
graphical processing units in one computer, numerous servers
in a data center, or smartphones distributed over a city [2], [3].
When distributed computation resources are efficiently uti-
lized, classifiers (or regressors) can be trained in shorter times
compared to that using only one machine with single-thread
computation.

Manuscript received September 10, 2020; revised February 17, 2021 and
April 5, 2021; accepted April 13, 2021. Date of publication April 22, 2021;
date of current version December 9, 2021. This research was funded by The
Telecommunications Advancement Foundation and the Japan Society for the
Promotion of Science through KAKENHI under Grant 19K14988. A part
of this work was presented at the IEEE ICC 2020 [1]. The associate editor
coordinating the review of this article and approving it for publication was
K. Choi. (Corresponding author: Koya Sato.)

Koya Sato is with the Department of Electrical Engineering, Tokyo
University of Science, Tokyo 125-8585, Japan (e-mail: k_sato@ieee.org).

Daisuke Sugimura is with the Department of Computer Science, Tsuda
University, Tokyo 187-8577, Japan (e-mail: sugimura@tsuda.ac.jp).

Digital Object Identifier 10.1109/TCCN.2021.3074908

Based on the theoretical analysis for distributed machine
learning reported by Ram et al. [4], several novel algorithms
have been proposed. In practice, distributed machine learning
techniques can be categorized into centralized [5]–[14] and
decentralized [15]–[23] settings.

The centralized algorithms, including federated learning
(FL) [9]–[12], assume the availability of a centralized server
and that all nodes can connect to this server. Generally, cen-
tralized algorithms construct more accurate classifiers than
decentralized algorithms because a centralized server allows
such algorithms to exploit the conditions of all the computation
nodes (e.g., the number of datasets, computational capabilities,
and network status), thereby facilitating the construction of an
optimal learning strategy. However, applications of centralized
algorithms are restricted to specific situations because all the
nodes must communicate with the centralized server.

The decentralized algorithms enable these systems to con-
struct classifiers in a distributed manner over the local wireless
network. This paradigm will facilitate novel applications of
machine learning, such as image recognition in cooperative
autonomous driving [24] and detection of white spaces in
spectrum sharing systems [25], without the need for any cloud-
computing and edge-computing servers. To further explore
the applications of machine learning, decentralized learn-
ing algorithms on wireless systems are considered in this
study.

There is a critical problem that must be considered before
realizing decentralized machine learning in wireless systems.
Existing algorithms for decentralized learning mainly consist
of the following two steps: updating the model parameters
of each node and sharing the updated model parameters
between connected nodes. These procedures are iterated until
the training loss converges. However, the model-parameter
sharing process tends to be a bottleneck in terms of run-
time performance because the number of model parameters
that must be communicated is often large. For example,
VGG16 [26] consists of more than 100 million model param-
eters, MobileNetV2 [27] requires over 3 million parameters,
even though it is well known as a lightweight neural network.
Furthermore, in wireless systems, the communication time
required to guarantee successful transceiving tends to increase
owing to path loss and multipath fading [28]. These factors
heavily deteriorate the runtime performance of decentralized
machine learning.

Some theoretical investigations [22], [23] have shown that the
upper bounds on training losses for decentralized learning algo-
rithms depend on the densities of the network topologies. These
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Fig. 1. Trade-offs between the transmission rate for training accuracy of decentralized learning: (a) high-rate transmission (sparse topology); (b) low-rate
transmission (dense topology); (c) a numerical example of the training accuracy of decentralized learning that is dependent on the differences in the network
topology (left: training performance versus the number of iterations; right: training performance versus runtime). A dense network topology slightly improves
iteration performance, but the runtime performance deteriorates compared to the sparse one.

studies argue that the training accuracy of a decentralized algo-
rithm deteriorates in a sparse network topology and they further
suggest that there may be a relationship between the runtime
performance and training accuracy depending on the network
topology.

Let us consider a wireless communication system where the
transmitter can control the communication coverage by adjust-
ing the transmission rate under a given transmission power
and bandwidth (e.g., IEEE 802.11-based systems exploiting
adaptive modulation and coding techniques). In practice, high-
rate transmissions can immediately reduce the communication
time; however, it shrinks the communication coverage, i.e., the
network topology becomes sparse. According to the theoret-
ical analyses in [22], [23], the training accuracy degrades in
such cases. In contrast, low-rate transmissions enable denser
network topologies, meaning that the training performance ver-
sus the number of iterations can be improved; however, the
runtime performance deteriorates because the total commu-
nication time increases. We summarize these relationships in
Figs. 1(a) and (b), and the tradeoffs between training accuracy
and runtime performance that are dependent upon differences
in the network topologies in Fig. 1(c).

In this study, we discuss the performance of decentralized
learning by considering the influences of network topology
on wireless systems. Based on the findings, we propose
a novel communication strategy for improving the runtime
performance of decentralized learning in wireless systems.
This study specifically focuses on cooperative stochastic gradi-
ent descent (C-SGD) [22], which is one of the state-of-the-art
algorithms for stochastic optimization of distributed learning,
as a reference for our discussion. Based on the theoreti-
cal results reported in [22], we first discuss when and how
network density influences the runtime performance of decen-
tralized learning in a wireless channel. This discussion yields
the following insight: a dense network topology does not
necessarily benefit the training performance for the C-SGD
compared to a sparse network topology and degrades the run-
time performance because such a setting generally requires
utilizing a low-rate transmission scheme. This insight suggests
that the runtime performance of the C-SGD could be improved
by high-rate transmission, thereby making the network topol-
ogy sparse, but reducing the communication time between
nodes.

Motivated by this insight, we propose a communication
strategy that renders each node available for high-rate trans-
mission whenever possible. In this method, each node adapts
its transmission rate such that the required communication
time for model sharing is minimized. To perform the proposed
rate adaptation, we introduce a constraint based on the outage
probability of communication depending on the network
density, which is influenced by multipath fading in wireless
channels. By increasing the transmission rate without unneces-
sarily reducing network density, the proposed communication
strategy enables improvement of the runtime performance
of decentralized learning while maintaining training
accuracy.

The major contributions of this study are as follows.
• We present a numerical analysis that demonstrates how

the network topology of a wireless system influences the
decentralized learning performance. This analysis sug-
gests that a dense network topology does not necessarily
benefit the training accuracy compared to the sparse
network topology and degrades the runtime performance.

• We propose a novel communication strategy that enables
the improvement of the runtime performance of decen-
tralized learning while maintaining training accuracy.

• Numerical simulations for decentralized learning in wire-
less systems using convolutional neural networks (CNNs)
demonstrate that the runtime performance of decentral-
ized learning can be improved by setting the network
density appropriately.

The remainder of this paper is organized as follows.
Section II presents a comprehensive review of the related
literature. In Section III, we define the system model for
decentralized learning in wireless systems. Based on this
system model, we provide numerical analysis results for the
influences of network density on decentralized learning in a
wireless channel in Section IV. Section V details the proposed
rate adaptation, and its solver is presented in Section VI.
In Section VII, we report the numerical analysis results to
demonstrate the effectiveness of the proposed communication
strategy on an image classification task. To demonstrate the
applicability of the proposed method on more diverse scenar-
ios, we show the results in a modulation classification task in
Section VIII. Finally, Section IX presents the conclusions of
this work.
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II. RELATED WORKS

A. Centralized Setting

We first review the related works on distributed learning
techniques over the centralized method [5]–[14], [29]–[36].

Parallel SGD (P-SGD) [14] is a fundamental algorithm for
distributed learning in a centralized setting. In this algorithm,
each node computes the value of the gradient of the objective
function for its training samples using the model parameters
received from the central server. The central server updates the
model parameters using the gradient vectors aggregated from
all the nodes. This procedure is iterated until the training loss
converges.

In practical applications of centralized wireless systems,
however, the communication part tends to be a bottleneck
because all nodes must communicate with the centralized
server. Thus, it is essential to reduce the communication
required for distributed learning. Some researchers have inves-
tigated methods for quantization and sparsification of data that
must be communicated to reduce the communication load.
In particular, compressed sensing [6], [29] and digital data
coding [7], [8] have been explored for data reduction when
communicating with a central server. These approaches have
been extended to be applicable to wireless systems. Amiri and
Gündüz have considered impacts of the multipath fading on
FL over wireless networks [30]. Additionally, the study [35]
considered the impacts of imperfect channel state information
on FL.

Federated averaging (FedAvg), employed in FL [11], is
a state-of-the-art communication-efficient algorithm of dis-
tributed learning designed for centralized wireless systems.
Since FedAvg allows a reduction in the number of times for
model-parameter sharing from per loop to a few epochs (the
number of times the model parameter gets updated at each
node), the communication efficiency can be improved more
compared to P-SGD.

However, previous works have reported that FedAvg shows
a somewhat inferior performance in terms of the run-
time because the wireless channel strongly influences the
communication time in FL [9]. To alleviate this problem,
many researchers have proposed algorithms for optimization
of resource allocation [5], [10], [12], [36], selection of
users [33], [37], and joint optimization of wireless resource
allocation and user selection [5], [32], [34] for fast FL.

B. Decentralized Setting

Here, we review previous literature that have proposed
algorithms for distributed learning without the centralized
server [15]–[23], [38].

Decentralized-parallel SGD (D-PSGD) [23] is a state-of-
the-art algorithm in decentralized settings. Each node updates
the model parameters with SGD using its training samples
and then shares the updated model parameter with the neigh-
boring connected nodes. These procedures are iterated until
the global model parameters, which are obtained by averag-
ing those trained at the connected nodes, converge. According
to [23], the training accuracy against the number of iterations

tends to be inferior to that of the P-SGD (i.e., centralized set-
ting) under the assumption that ideal communications have
been guaranteed (i.e., no network latency). In the case where
the communication delay between nodes is non-negligible, it
has been reported that D-PSGD can outperform the algorithms
in a centralized setting in terms of runtime performance.

As already mentioned, network latency is a crucial problem
that must be considered in wireless systems. In practice, decen-
tralized learning requires repeated communications to share
the model parameters between nodes. This suggests that the
communication procedure will be a bottleneck in terms of run-
time performance because DNNs have large numbers of model
parameters.

Motivated by this fact, there are some discussions on
improving the communication in a decentralized setting.
Notably, the reduction of the communication load in the
model-sharing step is crucial to improve runtime performance.
To this end, novel communication strategies of compressed
data (i.e., quantized or sparsified model parameters) have
been proposed in the past decade [15]–[19]. The gossip
algorithm has been exploited for the compressed data com-
munication [17]–[19], [38]. Koloskova et al. [19] proposed
an extension of the D-PSGD based on the Gossip algorithm
to improve the communication efficiency of the network.
Xing et al. proposed an effective communication strategy for
quantized and sparsified model parameters based on time divi-
sion multiple access (TDMA) protocol over wireless fading
channels [38].

Unlike these previous works, we propose the rate
adaptation-aided communication strategy for the decentralized
learning considering the influence of the network topology on
the performance of decentralized learning in wireless channels.

III. SYSTEM MODEL

This section presents the details of our training protocol
for decentralized learning in wireless systems. Note that this
study focuses on the C-SGD algorithm [22], an enabler for
decentralized learning.

A. Radio Propagation Model

Assuming the adaptive modulation and coding (AMC) capa-
bility, our system model allows the nodes to change their
transmission rates under a given transmission power and band-
width. AMC has been widely used in wireless systems such as
IEEE 802.11-based systems or communication standards for
Internet of Things (IoT) (e.g., enhanced machine type com-
munication (eMTC)). Based on this capability, a node with
an appropriate transmission rate can successfully share its
model vector with target receivers. To clarify the effect of the
rate adaptation on the decentralized training, we simplify the
system model: each node transmits its updated model sequen-
tially to orthogonalize the channel, and the transmission power
is fixed.

In a wireless system, the communication coverage is
strongly affected by the relationships between the radio prop-
agation characteristics, bandwidth, and transmission rate [28].
To discuss the influence of these relationships on the
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performance of decentralized learning, we model the instan-
taneous received signal power at a distance d [m] as

P(d) = PTxGAGf

(
d

d0

)−ε

[mW], (1)

where PTx denotes the transmission power in mW, GA is
the antenna gain, Gf is the gain characterized by Rayleigh
fading, d0 is the reference distance, and ε is the path loss
index. Here, we model that the gain Gf follows an exponential
distribution with an expected value of one. Furthermore, it is
assumed that Gf per communication time follows independent
and identically distributed (i.i.d.) random variable and is a
constant.

In this system model, all nodes transmit data with the same
PTx and bandwidth B. We also assume that PTx, B, M, N0,
and ε are constant over the communication area and that they
can be supplied as prior knowledge to all nodes in the network.
Under these conditions, if the data to be communicated can
be orthogonalized, the instantaneous channel capacity at d,
defined as C(d), is represented as1

C (d) = B log2

(
1 +

P(d)

N0B

)
[bps], (2)

where N0 denotes the noise floor [mW/Hz].
To integrate the rate adaptation into the design of decen-

tralized learning, we assume that a node can adjust its
transmission rate R by its AMC capability; when C (d) ≥ R,
the receiver can accurately decode the model parameters. From
the theoretical perspective, a node can speed up the trans-
mission rate indefinitely by using a high-order modulation
with low coding rate. However, the nodes may not decode
the model vector if R → ∞ because C(d) < R everywhere.
We demonstrate the tradeoff between the transmission rate
(i.e., the required time for model sharing) and the commu-
nication coverage, and its impact on the training performance
in Section IV.

B. Training and Communication Protocols

We describe the details of the training and communication
protocols with the radio propagation model described earlier.

Our study focuses on the C-SGD algorithm, which is a
scheme for decentralized learning that enables the unification
of various SGD algorithms, such as P-SGD [14] and D-
PSGD [23]. We modified the original C-SGD to be applicable
for decentralized learning in wireless systems.2

1In practice, the maximal channel coding rate is less than Eq. (2) because of
the finite block-length [39]; additionally, the effect of header information must
be taken into account [40]. However, most deep learning techniques require a
massive number of training parameters (in the order of 107 bits or more), indi-
cating that these effects can be ignored. Even when using light-weight model
parameters, the communication distance in the finite block length communi-
cation shows a similar dependency on the transmission rate as in the infinite
block length case; with the communication distance at the infinite block length
as an upper bound. Therefore, the discussions in this study do not lose their
generality.

2C-SGD enables modeling elastic-averaging SGD [41], which introduces an
auxiliary variable in the model-averaging step to enhance the training accuracy
of distributed learning. However, elastic-averaging SGD is designed for cen-
tralized learning; therefore, the proposed system omits such auxiliary variables
from the original C-SGD framework.

Algorithm 1 C-SGD on the i-th Node
Require: initial model parameters x0,i = x0, updating period τ ,

learning rate η, and the number of iterations K .
1: for k = 0, 1, 2, . . . ,K − 1 do
2: Randomly sample ξk ,i from the dataset of the i-th node.
3: Update the local model parameters using SGD(

xk+1,i ← xk ,i − η∇F (xk ,i ; ξk ,i )
)

.
4: if k mod τ = 0 then
5: Multicast and receive the model parameters to/from the

connected nodes.
6: Average the received and own model parameters
7: end if
8: end for

1) C-SGD: Let us consider a situation in which n nodes are
randomly deployed in a two-dimensional area. The i-th node
stores the datasets Di with the sample size |Di |. Additionally,
the i-th node has the N-dimensional model parameter vector
x i ∈ R

N of the classifier (or regressor) that comprises data
of size M [bits].

The objective of distributed learning in a decentralized set-
ting is to optimize the model parameter vector that can be
modeled as

min
x1,x2,...,xn

1

n

n∑
i=1

Eξ∼U(Di )[F (x i ; ξ)], (3)

where ξ denotes the sample, ξ ∼ U(Di ) indicates the uniform
sampling from dataset Di , and F represents the loss function.
Note that the objective function defined in Eq. (3) includes
various conditions, such as i.i.d. or non-i.i.d. setting, and the
size of the balanced or unbalanced dataset. For example, in
a classification task, a non-i.i.d. setting can be represented if
the number of sampled labels in Di are different between the
nodes. After solving Eq. (3), the i-th node can construct its
own classifier with x i .

C-SGD iterates the following procedure until the value of
the loss function is minimized: (i) updating the model param-
eter (x i ) τ times at each node with the learning rate η using
its dataset, (ii) sharing the updated model parameters with
neighboring nodes, and (iii) averaging the received and own
model parameters. The pseudo-code of the C-SGD is summa-
rized in Algorithm 1. We define the set of model parameter
vectors of the connected n nodes at the k-th iteration as
X k = (x k ,1,x k ,2, . . . ,x k ,n ) in Algorithm 1.

2) Modeling C-SGD Using Averaging Matrix: We reformu-
late the C-SGD to analyse the influences of network topology
on decentralized learning.

Previous studies [22], [23] utilized an averaging matrix
W ∈ R

n×n , which is automatically determined based on
the network topology, for the analysis of decentralized learn-
ing. This averaging matrix W satisfies the condition W1 = 1,
where 1 is an n-dimensional column vector of ones. Based on
these previous studies, we model W with radio propagation
properties. Specifically, each element Wij is defined as

Wij =
Aij∑n
j=1Aij

, Aij =

{
1 if Cij ≥ Ri or i = j ,
0 otherwise,

,

(4)
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where Aij (∈ {0, 1}) and Cij represent the connectivity and
the instantaneous channel capacity between the i-th and the
j-th nodes, respectively. We also define A as an n × n adja-
cency matrix whose element represents Aij . The adjacency
matrix is a binary matrix with rows and columns labeled using
graph vertices. Element Aij determines whether a graph edge
joins the i-th and the j-th nodes (i.e., the adjacent nodes). In
our system model, Aij = 1, if a model vector from the i-th
node is correctly received at the j-th node. In addition, the
transmission rate for the i-th node is denoted as Ri .

When k mod τ = 0, the model-updating rule at the
k + 1 th iteration can be expressed as⎛

⎜⎜⎜⎝
x k+1,1
x k+1,2

...
x k+1,n ,

⎞
⎟⎟⎟⎠←W

⎛
⎜⎜⎜⎝

x k ,1 − η∇F(
x k ,1; ξk ,1

)
x k ,2 − η∇F(

x k ,2; ξk ,2
)

...
x k ,n − η∇F(

x k ,n ; ξk ,n
)

⎞
⎟⎟⎟⎠. (5)

In this study, we utilize Eq. (5) for discussing the influ-
ence of the network topology on the runtime performance of
decentralized learning. Note that the nodes do not need to
know and share W in the training process because each node
simply averages the model parameter vectors received from its
neighbors and treats the averaged model as the updated one.

3) Communication of Model Parameters: We model the
communication protocol of decentralized learning in wire-
less channels. Since our motivation is to improve the runtime
performance with a given training model structure, this study
does not apply any algorithms for model pruning and com-
pression, except quantizing the value of model parameters to
a floating point number in the numerical simulation.

First, we assume that location of each node has been pre-
liminarily shared with all nodes via periodic short-length
communication (e.g., beacon signals). In addition, we assume
that all nodes can be roughly (millisecond order) synchronized
owing to the global positioning system (GPS).

In the communication step (Step 3 in Algorithm 1), each
node multicasts its own updated model parameters with the
transmission rate Ri [bps]. Note that Ri for each node is opti-
mized before communication when the network topology is
constructed (the details of how to optimize Ri are presented
in Section V). To avoid communication collisions between the
nodes, we also assume that the connected nodes share the
spectrum based on time-division multiplexing. In this setting,
the model parameter x i is multicasted to the other connected
nodes in the order of the node index. If the size of the header
packet is much smaller than the data size of the model param-
eters M, the communication time spent per iteration tcom can
be approximately represented as

tcom =
n∑

i=1

(
M

Ri
+Δtcom

)
[s], (6)

where Δtcom [s] is a pre-determined wait time; we intro-
duce this factor to ensure the channel orthogonality even with
communication delays by the network congestion or the imple-
mentation specification (e.g., time scale synchronization error).
For example, if we implement the decentralized learning on
IEEE 802.11-based systems, transmissions based on carrier

Fig. 2. Illustration of the training process using our system model (τ = 4
and n = 4). Each node first adapts its transmission rate Ri based on the
proposed optimizer. With these adapted transmission rates, the nodes iterate
the following procedure until the value of the loss function is minimized:
update the model parameters using its training samples (local training), share
the updated model parameters between the nodes, and average the received
and own model parameters.

sense multiple access/collision avoidance (CSMA/CA) tend
to be delayed for several hundred milliseconds in high-traffic
situations [42]. In this case, we may have to set Δtcom as
1–2 s.

The decentralized learning process using our system model
is illustrated in Fig. 2. Here, we define tcal [s] as the expected
time required for one local training. In practice, this value
is not the same for different nodes, and a node with low-
computational capability may degrade the training runtime (or
break the channel orthogonality in the communication phase).
Thus, we introduce another wait time for the computing pro-
cess Δtcal. According to this protocol, all nodes must wait
for (τ tcal + Δtcal) second even though the local training is
finished until τ tcal.

We do not consider any re-transmission protocol when the
communication fails to avoid requirements for any feedback
from receivers (e.g., ACK and NACK).3 To determine whether
the communication failed or not at the receiver, it is assumed
that each receiver can measure the instantaneous received sig-
nal power value and its signal-to-noise power ratio (SNR)
using an SNR estimation algorithm (e.g., [43], [44]). In the
proposed rate adaptation method, each node can obtain the set
of optimal transmission rates independently (see Section VI).
Therefore, obtaining the instantaneous SNR (and the channel
capacity) allows a receiver to decide whether the communica-
tion succeeds (i.e., whether Cij ≥ Ri ). If the capacity is less
than the transmission rate, the receiver discards the received
model vector that may contain error bits.

When the transmission power PTx and bandwidth B are
constant, the transmission rate Ri must be reduced to extend
the communication coverage (i.e., to make the network dense).

3In the decentralized setting, if a transmitter wants to re-transmit until it
has finished sharing the model with all target receivers, the next transmitter
needs to receive notification of the end of communication from the previous
transmitter without any coordinators to know when to start its communication.
However, if these previous/next transmitters are far away from each other or
have a hidden terminal relationship, they will not receive this signal. Thus,
the next transmitter may not know when to start its model sharing, and the
time synchronization will be broken.
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This fact indicates that there is a tradeoff between the network
density and communication time tcom when sharing the model
parameters. Therefore, even if the training accuracy of decen-
tralized learning for a given number of iterations can be
improved, the runtime performance would deteriorate.

One may consider that (orthogonal) frequency division
multiple access ((O)FDMA) can shorten the communica-
tion time; however, the FDMA-based protocol may not
improve the runtime as expected in this case. When band-
width Bi (where

∑n
i=1 Bi ≤ B ) is allocated to the i-th

node, the communication time can be derived by tcom =
max{M /R1,M /R2, . . . ,M /Rn}, and the nodes have to
optimize B = [B1,B2, . . . ,Bn ] and R = [R1,R2, . . . ,Rn ]
jointly. Therefore, minimizing tcom based on the FDMA can
be categorized into a min-max problem, which is almost
equivalent to max-min fairness (MMF) scheduling in cellular
systems. MMF allocates the resources so that maximizing the
minimum (i.e., bottleneck) throughput. Although this sched-
uler can improve fairness, its total throughput tends to be
inferior to other schedulers [45], [46].

Additionally, minimizing tcom in the TDMA-based model
sharing requires optimization of Ri only, and its channel
capacity can be derived without consideration for inter-
transmitter interference. Since our motivation is to take into
account the effect of network density in the decentralized
learning, we simplify the training protocol by the TDMA-
based model sharing with fixed transmission power and
bandwidth.

IV. EFFECTS OF NETWORK DENSITY ON

DECENTRALIZED LEARNING

Based on the system model described in Section III, we
discuss how the density of the network topology influences
the training performance of the C-SGD in wireless systems.

A. Theoretical Upper Bound of Training Loss of C-SGD

Wang and Joshi [22] analyzed the performance of the C-
SGD from the perspective of convergence of the expected
value of the squared gradient norm E[ 1K

∑K
k=1 ‖∇F (X k )‖2]

(K is the number of iterations in the optimization using C-
SGD). As this value approaches zero, we can construct a
classifier that considers a smaller loss function for training
datasets.

According to [22], the training loss of the C-SGD increases
with increasing the parameter λ = max{|λ2(W )|, |λn (W )|}
(λ2(W ) and λn(W ) denote the second and n-th largest
eigenvalues of W, respectively). The parameter λ approaches
zero as the number of non-zero elements in W, which repre-
sents the network topology in the wireless system, increases.
This behavior of λ suggests that the value of λ character-
izes the sparseness of the network topology because a denser
network topology causes the number of non-zero elements in
W to increase.

The study [22] introduced the following assumptions to
derive a theoretical proof on the evaluation of the performance
of C-SGD:

• (Smoothness): ‖∇F (x )−∇F (y)‖ ≤ L‖x −y‖ (L is the
Lipschitz constant of the loss function F ).

• (Lower bounded): F (x ) ≥ Finf .
• (Unbiased gradients): Eξ|x [g(x )] = ∇F (x ) (g(x ) is the

gradient of x).
• (Bounded variance): Eξ|x [‖g(x ) − ∇F (x )‖2] ≤

β‖∇F (x )‖2 + σ2 (β and σ2 are non-negative constants
that are inversely proportional to the mini-batch size).

• (Averaging matrix): max{|λ2(W )|, |λn (W )|} <
λ1(W ) = 1.

• (Learning rate): learning rate η should satisfy ηL +
5η2L2( τ

1−λ )
2 ≤ 1.

Note that this theoretical analysis also assumes |D1| =
|D2| = · · · = |Dn | and the datasets follow the same probabil-
ity distribution with the i.i.d. sampling. Typical loss functions
that satisfy the first and second conditions include the cross-
entropy loss. Additionally, pure SGD satisfies the third and
fourth conditions [47]. Since the simple averaging of multiple
estimates does not break these conditions, C-SGD with simple
model averaging (i.e., the sum of received models is divided
by the number of received models) also satisfies both third
and fourth conditions. Simultaneously, averaging matrix with
the simple averaging satisfies the fifth condition. In summary,
cross-entropy-loss-based classification using C-SGD with sim-
ple model averaging, such as image recognition demonstrated
in our simulation part, can be used for this discussion if its
learning rate satisfies the sixth condition.

Under these assumptions, if all the local models are initial-
ized with the same model parameter x0, the average squared
gradient norm at the K -th iteration is bounded by

E

[
1

K

K∑
k=1

‖∇F (X k )‖2
]
≤ 2[F (X 1)− Finf ]

ηK
+

ηLσ2

n︸ ︷︷ ︸
(1) fully synchronized SGD

+ η2L2σ2
(
1 + λ2

1− λ2
τ − 1

)
︸ ︷︷ ︸

(2) network error

. (7)

This equation indicates that the upper bound of the average
squared gradient norm can be expressed based on the following
two factors. First, (1) in Eq. (7) is a component obtained from
the fully synchronized SGD (i.e., W = (11�)/(1�1) and
τ = 1). The second ((2) in Eq. (7)) is a component generated
by network errors. Thus, the condition in Eq. (7) implies that
the average squared gradient norm is significantly affected by
λ when K and n are large.

Hereafter, we denote the average squared gradient norm as
“training loss” for simplicity.

B. Effects of Network Density on C-SGD

Based on these discussions, we numerically demonstrate
how the training loss varies depending on the network density.
The effect of the transmission rate on the training loss of the
C-SGD are also analyzed. This is because the network density
can be controlled by adjusting the transmission rate for each
node in the wireless system.
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Fig. 3. Effects of λ (network density) on the C-SGD (L = 1, σ2 = 1, η = 0.01, τ = 1, F1 = 1, and Finf = 0). For different values of K and n, if λ is
below a certain threshold (e.g., λ ≤ 0.99 in (a) with K → ∞, and λ ≤ 0.84 in (b), where n = 20), the upper bound of the training loss does not decrease
significantly, at least on the order level.

1) Effects of Network Density on Iteration Performance:
Fig. 3(a) plots three numerical examples of Eq. (7), where
K = 1, 100, and K → ∞. To highlight the influence of
the network topology on the training loss of the C-SGD, we
obtained three curves: the total upper bound (value of the right
side of Eq. (7)), effects of the fully synchronized SGD (value
of term (1) on the right side of Eq. (7)), and effect of network
errors (value of term (2) on the right side of Eq. (7)). These
examples show that the impact of network density on the train-
ing loss of the C-SGD increases as the number of iterations
K increases. Note that the result in K = 1 means the upper
bound of average squared gradient norm after one local train-
ing and one model sharing because this evaluation assumes
τ = 1 (i.e., the model vectors are shared per one-time local
training).

The effects of the network error become dominant with
respect to the upper bound of the training loss. However, the
effect is small when the value of λ is below a certain thresh-
old. For example, although the effects of λ become significant
when K → ∞, the upper bound in this case is in the order
of 10−2 in all the regions where λ ≤ 0.99. Additionally, in
K = 1, the upper bound follows the order of 102 regardless
of λ.

The effect of the number of nodes n on the upper bound
performance (where K →∞) is shown in Fig. 3(b). Although
the impact of λ on the training loss increases as n increases,
a similar dependence on the λ threshold can be observed in
this case (e.g., λ ≤ 0.84, where n = 20).

The effect of λ on the network error is shown in Fig. 3(c).
We calculated both total upper bound and the network error
under τ = 1, 10, 100, and 1000. The network error linearly
increases in proportion to η2L2σ2 1+λ2

1−λ2 τ . The total upper
bound consists of the sum of (1) performance of fully syn-
chronized SGD and (2) the network error; because the first
term does not depend on τ , the network error becomes the
dominant factor for the total upper bound when τ is large.
However, in any τ , the total upper bound is almost constant
in terms of its order if λ is under 0.9. This example demon-
strates that the value of τ may not affect the preferable setting
of λ.

2) Effects of Transmission Rate on Runtime Performance:
In the wireless channel, the network density can be controlled
by adjusting the transmission rate Ri at each node. Thus, we

simulated the effect of Ri to observe the relationship between
the transmission rate, network density, and training loss. This
simulation randomly deploys six nodes in an area of 500 m
square, as shown in Fig. 4(a). These nodes transmit their
updated models with the same transmission rate R. To analyse
the effect of the transmission rate, we did not consider the
influence of multipath fading in this evaluation (i.e., Gf = 1).

Fig. 4(b) shows the effect of R on λ and the network density.
In this figure, we first calculated both the adjacency matrix A
and averaging matrix W for R; then, λ was obtained from the
eigenvalue of W. Additionally, to visualize the relationship
between λ and the network topology, this figure also plots the
network density. Based on the discussions in graph theory [48],
we can define the network density using the ratio of number
of edges to the maximum number of possible edges,

Network Density =
|A|

n(n − 1)
, (8)

where |A| is the summation of all factors in adjacent matrix
A. This equation results in zero if all links are discon-
nected; in contrast, it results in one if all links are connected.
Since a higher transmission rate shrinks the communication
coverage, this strategy results in a sparse network density.
According to the theoretical analysis of the C-SGD described
in Section IV-A, a sparse W results in a high λ value. Thus,
the value of λ increases in proportion to the transmission rate.

We then simulated the effect of the transmission rate on
the training loss. Numerical examples with K = 1, 100, and
K → ∞ are shown in Fig. 4(c). The value on the y-axis in
this figure is calculated by substituting the value of λ plotted
in Fig. 4(b) (where 0 < λ < 1) into Eq. (7). The depen-
dence of the training loss is insignificant at any K , even when
the transmission rate was reduced from 6 Mbps to 3 Mbps.
This fact indicates that the amount of reduction in the training
loss is insignificant even when the network topology becomes
sparse.

C. Summary of Our Findings

This section discusses the effects of the network density and
the transmission rate on the training loss of the C-SGD. These
numerical examples suggest that the runtime performance can
be improved by making the network topology sparse (i.e.,



SATO AND SUGIMURA: RATE-ADAPTED DECENTRALIZED LEARNING OVER WIRELESS NETWORKS 1419

Fig. 4. Numerical example of the effects of the transmission rate on the training loss of the C-SGD (n = 6, GA = 1, PTx = 1 [mW], N0 = 10−
172
10 [mW/Hz],

B = 1.4× 106 [Hz], and ε = 4). Note that these figures do not consider the effect of multipath fading (i.e., Gf = 1) to analyse the effect of the transmission
rate. Additionally, the transmission rate for each node is assumed to be R1 = R2 = · · · = R. As shown in Fig. 4(b), the network density decreases (and λ
increases) in proportion to the transmission rate. However, Fig. 4(c) reveals that higher transmission rates (i.e., sparser topology) do not degrade the training
loss significantly. For example, the training loss remains in the order of 10−2 even when the transmission rate is increased from 3 to 6 Mbps (where K → ∞).

higher transmission rate) without significant degradation of the
training loss.

V. RATE-ADAPTED DECENTRALIZED LEARNING

As discussed in Section IV, setting a higher transmis-
sion rate while making the network denser than a certain
level will improve the runtime performance of decentralized
learning. Considering the relationships among transmission
rate, network density, communication time, and the training
performance of C-SGD, we propose a novel communication
strategy for decentralized learning in wireless systems, in
which each node selects a suitable transmission rate Ri before
initiating the C-SGD method. Once the optimal transmission
rate Ri is determined, the nodes commence decentralized
learning based on the C-SGD. In the model-sharing step, each
node multicasts its model parameters based on its optimal
transmission rate.

The transmission rate for each node is determined such that
the communication time is minimized under the constraints
imposed by the network topology in a wireless system. We
first detail the constraints introduced for rate adaptation and
then formulate this objective as an optimization problem.

A. Constraint Based on Network Topology

It is desirable to determine the target network topology
that improves the runtime performance without significantly
degrading the training performance of decentralized learn-
ing. However, optimal network topologies vary depending on
certain situations in the wireless systems, such as the node
placement, training target, configuration of the classifier, and
channel conditions. This fact suggests that the target network
density should be predetermined by considering the aforemen-
tioned conditions. To this end, we introduce a hyper-parameter
λtarget, which characterizes the target network density, to
model this constraint. This constraint can be given by,

λ ≤ λtarget. (9)

Next, we introduce another constraint such that the network
topology is strongly connected. This expression means that the
network topology contains directed paths from a node to any

other node [49]; that is, this constraint allows the network
topology to satisfy the condition that all model vectors can
communicate throughout the network. To derive this constraint
formally, herein, we model the wireless network as a direc-
tional graph G = (V, E), where V (= {v1, v2, . . . , vn}) is the
set of nodes and E is the set of edges: E contains an edge from
vi to vj if Cij ≥ Ri . For simplicity, we define an operation
S (G , vi ) that searches for the set of reachable nodes from vi .

With this definition, it can be modeled that this wireless
network is strongly connected if S (G , vi ) = V for all vi .
Therefore, the condition “the network topology is strongly
connected” can be expressed as the following equation:

n⋂
i=1

S (G , vi ) = V . (10)

When the nodes construct a topology that satisfies Eqs. (9)
and (10) simultaneously, we will be able to perform the
decentralized learning accurately.

Here, we consider a communication failure caused by
multipath fading. Herein, an outage event is defined as a case
in which the network topology is sparser than the target one
or is not strongly connected. Using Eqs. (9) and (10), this
constraint is modeled as

Pr

[
λ ≤ λtarget

∣∣∣∣∣
n⋂

i=1

S (G , vi ) = V

]
≥ 1− pout, (11)

where pout denotes the outage probability of the network
topology.

B. Optimization Problem

Using the aforementioned constraints, we model our rate-
adaptation strategy as the following optimization problem:

min
R

tcom, (12a)

s.t. Pr

[
λ ≤ λtarget

∣∣∣∣∣
n⋂

i=1

S (G , vi ) = V

]
≥ 1− pout,

(12b)

Ri ≥ 0 ∀i , (12c)
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where R = [R1,R2, . . . ,Rn ] denotes the set of transmission
rates.

VI. SOLVER FOR EQ. (12)

We describe the details of the solver for the optimization
problem formulated in Eq. (12). Solving Eq. (12) at once is
not easy because the constraint defined in Eq. (12b) cannot
be derived as a closed-form equation. Additionally, multipath
fading causes the network topology to be modeled as a random
geometric graph [50]; this increases the difficulty of finding a
closed-form expression for the cumulative distribution function
of λ.

To solve Eq. (12) effectively, the proposed solver explores
a solution with the following two steps: (i) determination of
the target topology without considering multipath fading, and
(ii) estimation of R for this target topology. An outcome from
the first step can be easily obtained by solving a simple com-
binatorial optimization problem. Furthermore, the second step
can be formulated as a convex optimization problem; thus, the
optimal transmission rate can be estimated effectively. Hence,
this two-step strategy enables efficient determination of near-
optimal solutions for Eq. (12) without modeling closed-form
expressions for Eq. (12b).

Each node independently explores the optimal R with the
proposed solver. Note that the outcome obtained from each
node converges to the same result. This is because the fol-
lowing factors are provided as prior knowledge to all the
nodes before starting the rate optimization procedure (see
Section III): PTx, B, N0, ε, M, and node locations. Our system
takes a different length of the time frame for the optimization
procedure per loop for each node; thus, this time frame needs
to be shared as preliminary information among the nodes.
However, as the transmission rate is known to all the nodes,
the nodes can perform time-division-multiplexing-based model
sharing in a decentralized setting.

A. Determination of Target Network Topology

This step searches for an optimal network topology such
that tcom is minimized without considering multipath fading.
In this condition, a network topology can be obtained from a
channel capacity matrix with Gf = 1 and a set of transmission
rates. In other words, this step estimates the set of optimal
transmission rates for Eq. (12) under the condition of Gf = 1.
After this optimization, we use the topology obtained from the
optimal transmission rates in the next step.

This problem can be represented as,

min
Rmean

n∑
i=1

(
M

Ri
+Δtcom

)
, (13a)

s.t. λ ≤ λtarget, (13b)
n⋂

i=1

S (G , vi ) = V , (13c)

Ri ≥ 0 ∀i , (13d)

where Rmean = [R1,R2, . . . ,Rn ] is a set of transmission
rates for all the nodes when Gf = 1. Note that Rmean is

only used to determine the network topology with the target
network density λtarget.

We discuss the solutions for Eq. (13). Let us define Cmean

as an n × n channel capacity matrix for the average signal-
to-noise power ratio (SNR), whose element Cij is the channel
capacity between the i-th and j-th nodes (defined in Eq. (2))
under Gf = 1. The matrix Cmean can be automatically deter-
mined using radio propagation properties in a wireless system.
We then construct the connectivity matrix A and weighting
matrix W by comparing each element in Cmean with that in
Rmean (see Eq. (4)). In practice, this procedure allows us to
obtain a candidate of Rmean by selecting one Cij from each
row of Cmean. Therefore, this problem can be regarded as a
combinatorial optimization problem.

Using A and W, we try to find optimal transmission rates
such that the value of the objective function is minimized while
satisfying the constraints described in Eqs. (13b)–(13d). To
successfully find the exact result, we search for solutions for
all candidate vectors; excluding the diagonal components of
Cmean. Thus, the number of candidate vectors is (n − 1)n .
Note that this solver works well when n < 10; however, it may
require a more computationally-efficient solver for large-scale
networks. We present a heuristic solver in the Appendix to
discuss the performance of the proposed method under massive
nodes situation.

This search process is performed in the following stepwise
manner. We first compute λ by applying eigenvalue decompo-
sition to W, as described in Section IV-A. We then compare
the computed λ with the predetermined target value λtarget
to check the condition in Eq. (13b). Furthermore, we eval-
uate whether the other constraint in Eq. (13c) is satisfied.
Specifically, it can be performed by applying a depth-first
search (DFS) to A, as in [49]. By performing the afore-
mentioned processes for all candidates of Rmean, we can
obtain the optimal transmission rates. Note that the optimal
connectivity matrix Atarget (i.e., optimal network topology)
can be automatically determined with Rmean using the rela-
tion modeled in Eq. (4). These procedures are summarized in
Algorithm 2.

B. Optimization of Transmission Rates for the Target
Topology

This step estimates an optimal R for the target connectiv-
ity matrix Atarget obtained via Algorithm 2. If the network
topology can be modeled with Atarget, each node in this
network is strongly connected, and its weight matrix W sat-
isfies λ ≤ λtarget. Therefore, the constraints in Eqs. (13b)
and (13c) can be satisfied if the probability of successful com-
munication of all links in the target topology in one round of
communication is greater than (1−pout). Based on these facts,
we formulate an optimization problem as

min
R

n∑
i=1

(
M

Ri
+Δtcom

)
, (14a)

s.t.

n∏
i=1

ni∏
l=1

pS(Ri , γil ) ≥ 1− pout, (14b)

Ri ≥ 0 ∀i , (14c)
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Algorithm 2 Estimation of Target Connectivity Matrix
Atarget

Require: Transmission power PTx, noise floor N0, bandwidth B,
path loss index ε, node locations and λtarget.

1: Calculate the channel-capacity matrix for average SNR Cmean
using Eq. (2).

2: Define a variable tmin →∞
3: for i1 = 2, . . . ,n do
4: for i2 = 1, 3, . . . ,n do
5: · · ·
6: for in = 1, 2, . . . ,n − 1 do
7: Construct Rmean = [C1i1 ,C2i2 , . . . ,Cnin ]
8: Construct the connectivity matrix A and averaging

matrix W using Eq. (4).
9: Apply the eigenvalue decomposition to W.

10: Calculate λ by: λ = max{|λ2(W )|, |λn (W )|}.
11: Check the condition on the density of network topology

(Eq. (13b))
12: Check the condition on the network topology (Eq. (13c))

13: Calculate tcom using Rmean based on Eq. (6)
14: if tmin > tcom then
15: tmin = tcom
16: Rmin = Rmean
17: end if
18: end for
19: · · ·
20: end for
21: end for
22: Determine Atarget with Rmin using Eq. (4).
23: return Atarget

where ni is the number of receivers connected to the i-th
transmitter; i.e., ni =

∑n
j=1Aij − 1 where Aij ∈ Atarget.

The average SNR (per hertz) between the i-th transmitter and
its l-th receiver is given by γil =

PTxGA
N0

(dild0
)−ε, where dil

denotes the distance between the i-th and l-th nodes. In Eq. (14b),
pS(Ri , γil ) represents the communication success probability
when the i-th node transmits its data with transmission rate
Ri under average SNR γil . In the non-frequency-selective
Rayleigh fading channels, the instantaneous SNR (= Gf γ)
follows an exponential distribution with the mean γ. Therefore,
this probability can be calculated as,

pS(R, γ) = Pr

[
R ≤ B log2

(
1 +

Gf γ

B

)]
(15)

= exp

{
B

γ

(
1− exp

(
R ln 2

B

))}
. (16)

By taking logarithms on both sides of Eq. (14b), we
reformulate Eq. (14) as the following optimization problem4:

min
R

n∑
i=1

(
M

Ri
+Δtcom

)
, (17a)

s.t. ln(1− pout)

−
n∑

i=1

ni∑
l=1

{
B

γil

(
1− exp

(
Ri ln 2

B

))}
≤ 0, (17b)

−Ri ≤ 0 ∀i . (17c)

4To avoid the loss of digits, we converted (B/γ)(1− exp(R ln 2/B)) (in
Eq. (16)) into (B/γ)−exp(ln(B/γ)+Ri ln2/B) using XY = exp(lnX +
lnY ).

Since Eq. (17) is convex for Ri > 0, the optimal
R can be efficiently estimated using a typical solver for
the convex optimization. This study solves Eq. (17) using
CVXPY [51], [52], which is a Python library for disciplined
convex programming. We select the splitting conic solver
(SCS) [53], [54] in CVXPY as a solver for Eq. (17); this
optimizer numerically solves convex cone programs using the
alternating direction method of multipliers (ADMM).

VII. PERFORMANCE ANALYSIS

This section presents the numerical results to demonstrate
the effectiveness of the proposed method.

A. Experimental Setup

We simulated cases where six wireless nodes were randomly
placed in a 500 m×500 m area and performed decentral-
ized learning simulations. Our simulations adopted a typical
image classification task for the performance evaluation of the
decentralized learning scheme.

1) Dataset: We used the Fashion-MNIST dataset [55],
which has been widely used as a benchmark for image clas-
sification performance. This dataset includes 60 000 images
for training that are grouped into 10 different categories and
10 000 images for the test data. Each sample is a single-
channel 8-bit image with a resolution of 28 × 28 pixels.

Our simulations considered two situations for the prepara-
tion of the dataset: i.i.d. and non-i.i.d. In the i.i.d. setting,
all the training samples are shuffled and are then distributed
equally to all the nodes; each node has 10 000 training
images without overlaps. In the non-i.i.d. setting, each node
randomly selected a few (e.g., three) labels and then sam-
pled images from the training samples annotated with these
selected labels; each node has 10 000 training images with
overlaps.

2) Neural Network Architecture: A CNN architecture was
adopted to analyse the performance of decentralized learning
for image classification. We configured the CNN with two
pairs of one convolutional layer (obtained with a 3 × 3 fil-
ter using one stride) and one 2 × 2 max-pooling layer, and
four fully connected layers. The convolutional layers consist
of 32 and 64 channels, respectively, each of which is acti-
vated by a rectified linear unit (ReLU) function after batch
normalization [56]. For the fully connected layers, the first
three layers have 2304, 600, and 120 units, respectively, and
were processed with the ReLU activation function. The last
layer has 10 units and is processed with a Softmax activation
function. Additionally, dropout [57] was applied in the first
fully connected layer, with a dropout ratio of 0.25.

The total number of model parameters for this CNN was
1 475 338, and its data size was M = 47 210 816 [bits] (in
32-bit floating-point numbers).

3) Implementation Details: The proposed method was
implemented on Python 3.7.6, PyTorch 1.5.1, and CVXPY
1.1.1. The numerical simulations were conducted on an
Ubuntu 18.04 LTS PC. The model-sharing process between the
nodes was realized with parameters that simulated the actual
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TABLE I
SIMULATION PARAMETERS

wireless channel; as listed in Table I. The CNN was imple-
mented based on a source code available in Kaggle [58].5

The batch size for the C-SGD optimization was set to 1. The
number of iterations K for the C-SGD was K = 200 000.

Note that our simulations assume B = 1.4 × 106 [Hz] to
discuss the performance of the proposed method under M2M
systems (e.g., eMTC). Effects of the bandwidth on the runtime
performances are presented in the Appendix.

4) Definition of Runtime: The runtime is calculated as the
sum of the computation time for the model-update process in
each node and the time required for the model-sharing process
between the nodes. To clarify the impact of the communica-
tion time on the runtime performance, we set the computation
time for the model-update process in each node, denoted as
tcal, as the following constant value: tcal = 0.01[s/loop]. In
contrast, the communication time tcom was calculated using
Eq. (6). Note that any calculation times required for the
other processes, such as the model-averaging process (Step
4 in Algorithm 1), were not considered in this evaluation
because they are sufficiently small compared to tcal and
tcom. Additionally, we first perform the simulations with-
out any delays for communication and local training: i.e.,
Δtcom = Δtcal = 0. Effects of these are discussed in
Section VII-F.

5) Evaluation Procedure of Numerical Simulations: We
measured the test accuracy against runtime to evaluate the
performance of the proposed method. In this context, the term
“test accuracy” indicates the percentage of outcomes that are
correctly classified among the test samples. In particular, the
numerical simulations calculated the test accuracy against the
number of iterations and runtime according to the following
procedure.

(Training):
(i) Deploy n nodes randomly in the 500 m × 500 m area.

(ii) Optimize the transmission rate for each node using the
proposed method.

(iii) Start the C-SGD with its optimized transmission rate
using the training samples.

(iv) Record the runtime required to process O loops and the
model parameters at that time for each node.

The steps from (ii) to (iv) were iterated; each trial was com-
pleted, and we varied the number of loops O by 5 000. This
simulation altered O from 0 to 200 000; thus, 40 measurements
were obtained. For each corresponding runtime, the model
parameters for the six nodes were obtained.

5This code is available under Apache 2.0 open source license.

(Test):
(i) Build the CNN-based classifier for each node for each

measured runtime using the corresponding model param-
eters and perform image classification using the 10 000
test images.

(ii) Calculate the test accuracy for each node for each
measured runtime using the obtained classification out-
comes.

(iii) Average the test accuracy calculated at each node for
each measured runtime.

The sets for “(Training)” and “(Test)” were iterated 10
times. Finally, we averaged the obtained test accuracy and
runtime at each trial. Our discussions adopt this averaged test
accuracy and runtime for runtime performance evaluation.

6) Comparisons: For comparison, we tested the other two
types of training schemes: ideal cooperation and individual
training. In the first scheme, all the nodes are connected to
the other nodes (i.e., W = (11�)/(1�1), and tcom = 0.
The second scheme represents a traditional machine-learning
approach based on single-thread computation. In this scheme,
all the nodes are disconnected from each other (i.e., W =
diag(1, 1, . . . , 1), where diag(·) denotes the diagonal matrix,
and tcom = 0).

B. Results for Runtime Performance Under i.i.d. Setting

1) Results: We present the simulation results for the run-
time performance of the proposed method under the i.i.d.
setting. Fig. 5 shows the iteration and runtime performances
under the i.i.d. setting. We simulated decentralized learning
with λtarget = 0.1, 0.5, and 0.9. The test accuracy perfor-
mances against the number of training iterations where ε = 4.0
are shown in Fig. 5(a); the runtime performance related to each
iteration performance is presented in Fig. 5(b). Additionally,
we show the runtime performances where ε = 3.0 in Fig. 5(c).

As shown in Fig. 5(a), the test accuracy obtained using the
proposed method was higher than the individual training for
any λtarget and iteration numbers. It can also be observed that
our results with a smaller λtarget showed better performance
than those with a larger λtarget. These results agree with the
findings reported by Wang and Joshi [22]; i.e., denser network
topology enables better performance in decentralized learning
in terms of the iteration performance.

The runtime performances where ε = 4 (Fig. 5(b)) reveal
that The proposed strategy with the larger λtarget achieved a
target test accuracy z (e.g., z = 0.88) faster than that with the
smaller λtarget. This is primarily because the communication
process was a bottleneck in a dense network topology in a
situation where the path loss index was high. Based on these
results, we consider that the runtime performance on a dense
topology decreases, although its iteration performance is better
than that of a sparse topology.

Runtime performances where ε = 3.0 (Fig. 5(c)) were eval-
uated to simulate a case where the communication time is
not a bottleneck. At the target accuracy of z = 0.88, there
is almost no difference between the network density settings.
These results indicate that the choice of a preferable λtarget
will depend on the path loss index.
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Fig. 5. Iteration and runtime performances under the i.i.d. setting.

Minimum point
Minimum point

Fig. 6. Effect of λtarget on the runtime performances under the i.i.d. setting.

TABLE II
AVERAGE TEST ACCURACIES IN IMAGE CLASSIFICATION AFTER

TRAINING 200 000 ITERATIONS

2) Preferable Setting of λtarget: To investigate the preferred
setting for λtarget, we evaluated the runtime performance by
varying the path loss index ε and the target test accuracy z.

Fig. 6 illustrates effects of λtarget on the runtime required
for achieving z under the i.i.d. setting where (a) ε = 4.0 and
(b) ε = 3.0. In ε = 4.0, increasing λtarget (i.e., making the
topology sparse) can improve the runtime for any z; in this
case, λtarget should be set as 0.7–0.9. In contrast, at ε = 3.0,
reducing λtarget improved the runtime; λtarget should be set
as 0.1–0.3 regardless of z. If the path loss index is large, a node
must reduce the transmission rate extremely to communicate
with distant nodes (i.e., λtarget is small). Since this fact tends
to be the bottleneck for the runtime, taking a high λtarget will
be a preferable setting. However, if the path loss index is small,
the topology can be made dense even with a comparably high
transmission rate. Thus, setting λtarget small will improve the
runtime performance in this case.

From the results of these analyses, we suggest the following
guidelines for the i.i.d. setting:

• If path loss index ε is large, a large λtarget is desirable
for various target test accuracy z.

• If ε is small, a small λtarget can improve the runtime
performance, especially for a high z.

C. Results for Runtime Performance Under Non-i.i.d. Setting

1) Results: We show the runtime performances under the
non-i.i.d. setting. This simulation evaluated the performances
in which each node can only have training images associated
with three labels. Fig. 7(a) shows the iteration performance
where ε = 4.0 under the non-i.i.d. setting. The individ-
ual training can only achieve 0.3 of test accuracy because
each node individually optimizes the model parameters using
only images associated with three out of ten labels. Both
the proposed method and the ideal cooperation result in test
accuracy higher than that obtained using the individual train-
ing strategy because these strategies enable the sharing of
model parameters between the nodes. Similar to the results
of the iteration performance in the i.i.d. setting (Fig. 5(a)), the
proposed method with the smaller λtarget performs faster than
that with the larger λtarget.

Figs. 7(b) and 7(c) show runtime performances under the
non-i.i.d. setting. Unlike the i.i.d. setting, the proposed method
with a small λtarget exhibits a faster performance than that
with a large λtarget, even though ε is large (Fig. 7(b)). The
results show that a dense setting will be preferable even when
the path loss index is large. These results seem to contra-
dict those obtained under the i.i.d. setting. This is primarily
because the proposed method is designed based on the theo-
retical analysis provided by Wang and Joshi [22], where an
i.i.d. setting was assumed.

2) Preferable Setting of λtarget: To investigate the prefer-
able setting of λtarget under the non-i.i.d. setting, we perform
an in-depth analysis of the impacts of the non-i.i.d. setting on
the runtime performance. Specifically, we measured the run-
time performances required to achieve the target test accuracy
z by varying the number of the sampled labels as 3, 5, and 7.
We summarize test accuracy performances after 200 000 itera-
tions (i.e., 20 epochs) in Table II. We can find that the smaller
the number of sampling labels and the larger the λtarget, the
worse the test accuracy.

Fig. 8 presents the effects of λtarget on the runtime required
for achieving z under the non-i.i.d. setting. This figure plots
the required runtime performances under various numbers of
sampling labels where ε = 4.0. Note that the achievable test
accuracy depends on the number of sampling labels, as shown
in Table II. Additionally, to discuss the communication design
that achieves fast learning under the same sampling conditions,
we selected different values of target accuracy z for each sam-
pling condition. If the target accuracy is small, it is preferable
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Fig. 7. Performances under the non-i.i.d. setting (one node can only have training samples associated with 3 labels).

Fig. 8. Effect of λtarget on the runtime performances under the non-i.i.d.
setting where ε = 4.0.

to take λtarget around 0.7–0.9 as in the i.i.d. setting, regardless
of the number of labels (e.g., z = 0.50 in 3 labels, z = 0.70 in
5 labels, and z = 0.75 in 7 labels). Furthermore, for 7 labels,
this trend is similar even with higher z, indicating that the
communication strategies in i.i.d. setting are compatible if the
data sampling bias is not large. In contrast, in 3 labels and
5 labels, taking λtarget small enables fast learning when z is
high (e.g., z = 0.65 in 3 labels and z = 0.82 in 5 labels).

We also illustrate the effects of λtarget on the runtime
performance in the non-i.i.d. setting where ε = 3.0 in Fig. 9.
As with the i.i.d. setting, a small λtarget (0.1–0.3) achieves a
smaller runtime regardless of z and the number of labels in
this setting.

As summarized in Table II, the effect of λtarget on the
test accuracy in the non-i.i.d. setting is larger than that in the
i.i.d. setting; i.e., the smaller the λtarget, the higher the test
accuracy can be achieved, or the fewer training iterations are
required. Therefore, when the sample bias is strong and the
target accuracy is large, it is preferable to take a small value
for λtarget, unlike the i.i.d. setting.

In summary, the following communication strategy will be
preferable in the non-i.i.d. setting:

• When the sampling bias is not strong and the path loss
index is high, it is preferable to take λtarget large (e.g.,
0.7–0.9): this strategy is almost compatible with the i.i.d.
setting.

• This strategy can improve the runtime even though the
sampling bias is strong if the target accuracy is small.
However, a high target accuracy may require a smaller
λtarget (e.g., 0.1–0.3).

Fig. 9. Effect of λtarget on the runtime performances under the non-i.i.d.
setting where ε = 3.0.

Fig. 10. Effects of outage probability pout on runtime performance (ε = 4.0
and λtarget = 0.9).

• If the path loss index is not large, a small λtarget (0.1–
0.3) can improve the runtime performance regardless of
the number of labels.

D. Effect of Outage Probability pout

We present the impact of the outage probability pout on
the iteration and runtime performances. This simulation made
the network topology sparse (λtarget = 0.9) and considered a
situation where ε = 4.0. The outage probability was set to
pout = 0.1, 0.3, 0.5, 0.7, and 0.9.

Fig. 10(a) presents the runtime performance with various
pout under the i.i.d. setting; additionally, in Fig. 10(b), the
runtime performance under the non-i.i.d. setting (the number
of sampled labels is set to 3) is presented. It can be observed
that the outage probability does not significantly affect the
accuracy performance when training with sufficient time under
both the i.i.d. and non-i.i.d. settings. In contrast, the runtime
performance with a high pout was better than that with a low
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Fig. 11. Effect of λtarget on the average transmission rate (M = 1 [bit]).

pout, especially in the i.i.d. setting. This suggests that setting
a high pout will improve the runtime performance.

E. Impact of λtarget on Transmission Rates

To observe the impact of our communication strategy, we
evaluated the transmission rates only. This simulation mea-
sured the average transmission rate (= 1

n

∑n
i=1Ri ) when the

nodes communicate the model parameters whose data size is
M = 1. We iterated this procedure 1 000 times while changing
the node deployments, and then averaged the measured values
for this evaluation.

Fig. 11 shows effects of λtarget on the average of Ri where
ε = 3.0, 3.5, and 4.0. This figure clarifies that the trans-
mission rate monotonically increases in proportion to λtarget
regardless of ε. Additionally, a higher transmission rate can be
obtained in low path loss index situation.

We also compared the performance of the proposed opti-
mizer with that of the exact optimizer as shown in Fig. 11.
The exact optimizer performs convex optimization in Eq. (17)
for all candidates in the network topology, indicating (n−1)n

times convex optimizations will be required in the worst
case. In contrast, the proposed method requires this convex
optimization only once, although it can obtain near-optimal
transmission rates.

F. Effects of Δtcal and Δtcom

We have assumed Δtcom = Δtcal = 0 in the previous
subsections; however, some implementation issues (e.g., syn-
chronization error or straggler effect) require that Δtcom and
Δtcal are set to non-zero values to ensure that the decentral-
ized learning works. This subsection evaluates the effects of
these parameters on the runtime performance.

Effects of Δtcom on the runtime required for achieving tar-
get accuracy z is shown in Fig. 12. Considering time margin
required in the CSMA/CA-based transmission under congested
situations [42], we changed Δtcom from zero to 3 second. The
required runtime increases in proportion to Δtcom; however,
this effect is not significant if the target accuracy is small. In
contrast, this effect increases in z = 0.90. Even so, the effect
of communication delay is still linear. In ε = 3.0, the required
runtime increases only 1.48 times even in Δtcom = 3.0 (com-
pared with no delay case), which means that the proposed
method will work even if the communication delay caused by
the higher layers is taken into account.

Fig. 12. Effect of Δtcom on the runtime required for achieving accuracy z.

Fig. 13. Effect of Δtcal on the runtime performance where τ = 1000 and
tcal = 0.001 [s] (e.g., Δtcal = 50 [s] indicates 5 times of τ tcal).

Fig. 13 shows effects of Δtcal on runtime performances
where ε =4.0 and 3.0. We adjusted Δtcal between 0–5 times
τ tcal; this scale is based on [59]. The authors in [59] report
that Amazon EC2 has a mix of nodes that are 4–5 times slower
than other nodes. Fig. 13(a) shows that the effect of straggler
is significant when we choose a high target accuracy or a large
λtarget (i.e., the sparser network topology). This is because a
high target accuracy requires the nodes to train with a large
number of iterations. However, the design guideline for λtarget
that minimizes runtime does not dependent of the Δtcal and z,
indicating that our previous discussions have not lost its gen-
erality. Additionally, performance under ε = 3.0 (Fig. 13(b))
indicates a similar characteristic although a small λtarget is
preferable in this case.

Setting Δtcal and Δtcom helps avoid implementation issues;
however, it also leads to a linear degradation of the runtime
performance. Thus, it is important to find minimum values
for Δtcal and Δtcom based on the implementation conditions.
For example, dense CSMA/CA networks tend to be delayed
for several hundred milliseconds in high-traffic situations [42].
If we implement the decentralized learning on IEEE 802.11-
based systems, an appropriate value of Δtcom will be 1–2 s.

VIII. APPLICATION TO LEARNING THE PHYSICAL LAYER

Decentralized learning over wireless networks can be
applied for various systems. In this section, we apply the
proposed decentralized learning to the modulation clas-
sification task, and demonstrate its training performance.
Modulation classification is a classification task in cogni-
tive radios where a node estimates the modulation format
of a transmitter from limited measurement signals. Although
this field has been discussed for a long time, the develop-
ment of deep learning has accelerated the research activity in
recent years, [60]. Applying the decentralized learning to this
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task will improve the spectral efficiency in spectrum-shared
networks.

A. Experimental Setup

We used RadioML2016.10b dataset for this benchmark.6

This dataset contains a total of 1.2 million data for 10 dif-
ferent modulation schemes (8PSK, AM-DSB, BPSK, CPFSK,
GFSK, PAM4, QAM16, QAM64, QPSK, and WBFM) over
-20 to 18 dB SNR; a datum contains 128 time-series samples
for in-phase and quadrature components.

In this simulation, VT-CNN2 [61] was selected as the CNN
for this task. This CNN consists of two convolutional lay-
ers and two fully-connected layers; that classifies the signal
by regarding it as 2 × 128 pixels of single-channel image.
VT-CNN2 is an epoch-making network of CNNs for modu-
lation classification tasks and is widely referred as a baseline
method. The number of parameters in VT-CNN2 is 2 830 170
at 10 classification labels, which is about twice as large as
the CNN used in Section VII. Additionally, dropout was dis-
abled in this simulation. The mini-batch size was set to 64, and
model sharing was performed for each epoch of local training.
Additionally, the number of training dataset was set to 960 000
(16 times larger than Fashion MNIST), and the test accuracy
at 10 dB SNR was evaluated from the remaining data. The
other parameters follow Table I.

B. Results

We first summarize the average test accuracy performances
after 50 epochs training in Table III. In the i.i.d. setting, the
test accuracy was roughly 0.73–0.75 regardless of λtarget; this
result agrees with discussions on VT-CNN2-based modulation
classification with single-computer training such as [62]. In
contrast, the accuracy deteriorated as the number of sampling
labels decreased and λtarget became larger.

Fig. 14 shows the effects of λtarget on the runtime required
to achieve target accuracy z in both i.i.d. and non-i.i.d. settings
where ε = 4.0. The performances under the i.i.d. setting are
shown in Fig. 14; Figs. 14(b)–(d) show those under the non-
i.i.d. setting with 7, 5, and 3 sampling labels.

In the i.i.d. setting, the runtime performance can be
improved by setting λtarget as 0.7–0.9 if the target accuracy
is not high (e.g., z = 0.72). Additionally, a similar strategy
for λtarget enabled a faster runtime than training with a small
λtarget in the non-i.i.d. setting with a low target accuracy (e.g.,
z = 0.60 at 7 labels, z = 0.50 at 5 labels, and z = 0.35
at 3 labels). However, if the target accuracy is high, λtarget
should be set to 0.1–0.3 to make the network topology dense
(e.g., z = 0.67 at 7 labels, z = 0.58 at 5 labels, and z = 0.44
at 3 lables).

The runtime performances where ε = 3.0 are shown in
Fig. 15. Similar to Fig. 14, we evaluated the performances
under both the i.i.d. and non-i.i.d. settings. The performances
under the i.i.d. setting are illustrated in Fig. 15(a); those under
the non-i.i.d. settings with 7, 5, and 3 sampling labels are
presented in Figs. 15(b), (c), and (d), respectively. In this

6This dataset is available at https://www.deepsig.ai/datasets under CC BY-
NC-SA 4.0 license.

TABLE III
AVERAGE TEST ACCURACIES IN MODULATION CLASSIFICATION TASK

AFTER TRAINING 50 EPOCHS

Fig. 14. Runtime performances in the modulation classification (ε = 4.0).

case, setting λtarget as 0.1-0.3 improved the runtime perfor-
mances regardless of the sampling conditions. In contrast, in
the i.i.d. setting (Fig. 15(a)) and the non-i.i.d. setting with
7 labels (Fig. 15(b)), a large λtarget minimized the required
runtime at a small z (e.g., z = 0.60 in the i.i.d. setting); how-
ever, there was no significant improvement compared to the
performance with a high λtarget. These results suggest that
the proposed method enables to achieve a fast training stably
by setting λtarget as 0.1-0.3 if ε = 3.0.

Results in Sections VII and VIII suggest that the preferable
setting for λtarget is roughly the same even if the training task
is different.

IX. CONCLUSION

A. Summary and Findings

This study proposed a novel communication strategy
for decentralized learning based on C-SGD algorithm in
wireless systems employing AMC capability. The proposed
method incorporates the network topology density as a hyper-
parameter in the decentralized learning framework to improve
runtime performance. It was observed that a dense network
topology does not necessarily benefit the training performance
of decentralized learning compared to a sparse one, whereas
the runtime performance in a dense setting is strongly
degraded because a low-rate transmission is required. Based
on these findings, we proposed a rate-adaptation strategy
under the constraints of the network topology. This strat-
egy enables each node of a network to communicate with
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Fig. 15. Runtime performances in the modulation classification (ε = 3.0).

a high transmission rate depending on the network density,
thereby improving the runtime performance of decentralized
learning.

Numerical simulations empirically revealed that the
preferred setting for the density of a network topology should
be determined according to the conditions of the wireless
channel, especially the path loss index, and biases in the
distributions of the training samples.

Major findings under the i.i.d. setting are summarized as
follows:

• If the path loss index is large, a sparse topology is
desirable for various target test accuracy values.

• In contrast, if the path loss index is small, a dense topol-
ogy can improve the runtime performance, particularly
for a high target accuracy.

Further, we list major findings under the non-i.i.d. setting
below:

• When the sampling bias is weak, the preferable commu-
nication strategy is almost compatible with the one under
the i.i.d. setting.

• However, a denser topology is advantageous in terms of
the runtime performance if the sampling bias is large.

This study has evaluated the proposed method using an image
classification task and a modulation classification task. The
results suggested that our findings summarized above are
almost compatible even if the training task is different.

We conclude that the network density can be a novel
hyper-parameter to achieve efficient decentralized learning
over wireless systems; further, this density should be care-
fully designed depending on the conditions of the dataset and
the wireless channels.

B. Future Works

Finally, we summarize future directions of this work. This
study did not consider any pruning and compression algo-
rithms in the communication protocol; in contrast, some recent
works on model pruning or compression reveal the advantages
of such a technique for improving the communication delay in

federated or decentralized learning [15]–[19]. Hence, a com-
bination of the proposed method and these techniques may
accelerate the decentralized training.

Second, we have introduced the wait time between
communications to avoid co-channel interference; how-
ever, the communication time may be improved by
joint power-bandwidth optimization with non-orthogonal
multiple access (NOMA). Designing the decentralized learn-
ing based on NOMA will prove to be a challenging
work.

The analysis presented in Section IV was based on the i.i.d.
setting. Numerical results showed that controlling λtarget can
realize fast decentralized learning in both the i.i.d. and the non-
i.i.d. settings. However, for a more detailed understanding of
the effects of the non-i.i.d. setting on the training performance
and the developments of their countermeasures, theoretical
analysis of distributed machine learning under the non-i.i.d
setting is an important future work. In recent years, a few
researchers in the machine learning community have begun
analyzing convergence behaviors of distributed learning con-
sidering the non-i.i.d. settings [63], [64]. In future research,
we will investigate a novel protocol based on their theoretical
analysis.

APPENDIX

REQUIRED RUNTIME FOR A MASSIVE NUMBER OF NODES

We have discussed decentralized learning performance with
n < 10 with an objective to apply the proposed method
for local wireless networks such as smart factory or V2V
networks. However, decentralized learning can be applied
to various large-scale networks consisting of hundreds or
thousands of decentralized nodes. This Appendix briefly dis-
cusses the required runtime for large numbers of nodes
situation.

The proposed method searches for the optimal tar-
get topology by applying Algorithm 2 for all (n − 1)n

candidates to minimize the communication time fully.
This algorithm works well in the aforementioned applica-
tions; however, decentralized learning with massive nodes
may require a more computationally-efficient algorithm.
To discuss the required runtime for massive number
of nodes, we herein introduce a heuristic optimizer.
This optimizer almost follows Algorithm 2, however,
the number of candidates is squeezed by the heuristic
approach.

This optimizer assumes the equal transmission rates (R1 =
R2 = · · · = R) and then generates candidate vectors by focus-
ing on the fact that the optimal R exists between the minimum
and maximum values in Cmean excluding its diagonal ele-
ments. To generate the candidates, the node first calculates
the minimum and maximum value in Cmean: we define these
as Cmin = minCij and Cmax = maxCij (Cij ∈ Cmean).
Then, we generate an arithmetic sequence of NH elements
with minimum value Cmin and maximum value Cmax; its m-
th element is represented as (Cmin + (m − 1)Cmax−Cmin

NH−1 )
(m = 1, 2, . . . ,NH). The nodes choose one element from
this arithmetic sequence to be the transmission rate of each
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Fig. 16. Runtime required for the decentralized learning with massive number
of nodes: (a) effect of number of nodes on normalized communication time
(i.e., M = 1 [bit] and B = 1 [Hz]); (b) effect of bandwidth on runtime required
for training 20 epochs (where M = 47 210 816 [bit]).

node, generating candidate vector Rmean = [R,R, . . . ,R].
We iterate this process for all elements in this sequence and
apply Algorithm 2 for all candidate vectors. The number of
candidates in this optimizer is NH regardless of n.

Fig. 16(a) shows effect of the number of nodes on the nor-
malized communication time (i.e., M = 1 [bit] and B = 1 [Hz])
where ε = 4.0, λtarget = 0.9, pout = 0.9, PTx = 10 [mW],
and NH = 2000. We deployed the nodes in the 100m × 100m
area. This figure indicates that the communication time
(almost) linearly increases in proportion to the number
of nodes.

We also evaluated the effects of bandwidth on the run-
time required for training 20 epochs (where n = 10, 100,
and 1000). The result is shown in Fig. 16(b); the total
number of training datasets considered in this simulation is
60 000, and the nodes share the updated models per one-epoch
local training. The required runtime increases in proportion
to the number of nodes, however, the proposed strategy can
end the training with a minute order if B = 20 [MHz]
(i.e., a typical wireless LAN scenario) and n = 100.
Additionally, the training can finish within a few hours even
with 1000 nodes.
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