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Abstract—Inter-operator spectrum sharing in millimeter-wave
bands has the potential of substantially increasing the spec-
trum utilization and providing a larger bandwidth to individual
user equipment at the expense of increasing inter-operator
interference. Unfortunately, traditional model-based spectrum
sharing schemes make idealistic assumptions about inter-operator
coordination mechanisms in terms of latency and protocol over-
head, while being sensitive to missing channel state information.
In this paper, we propose hybrid model-based and data-driven
multi-operator spectrum sharing mechanisms, which incorporate
model-based beamforming and user association complemented by
data-driven model refinements. Our solution has the same com-
putational complexity as a model-based approach but has the
major advantage of having substantially less signaling overhead.
We discuss how limited channel state information and quantized
codebook-based beamforming affect the learning and the spec-
trum sharing performance. We show that the proposed hybrid
sharing scheme significantly improves spectrum utilization under
realistic assumptions on inter-operator coordination and channel
state information acquisition.

Index Terms—Spectrum sharing, millimeter-wave networks,
coordination, beamforming, machine-learning.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) communications
appear as a promising solution to support extremely

high data rates and low latency services in future wireless
networks [1]. Although mmWave bands offer a much wider
spectrum than the commonly used sub 6-GHz bands, it is
still essential to seek an optimal use of the spectrum with
the ultimate goal of maximizing the benefits for users while
fostering healthy competition in the spectrum market [2].
Spectrum sharing addresses these goals by allowing multiple
service providers (hereafter called operators) to access the
same band for the same or different uses. This paper inves-
tigates the case of spectrum sharing for mobile broadband
services among multiple mobile operators [3]–[7].
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Spectrum sharing provides substantially more bandwidth to
individual operators but gives rise to increased interference
levels. This is usually addressed by heavy coordination
among the base stations (BSs) and computationally-prohibitive
optimization problems. In mmWave networks, however, large
antenna arrays, directional communications, and the unique
propagation environment substantially simplify the problem of
managing interference in a shared spectrum, making it more
feasible [8].

A. Literature Survey

A series of recent works proposed various technology
enablers and performance evaluation methods that help real-
ize the vision of managing the spectrum without bounds and
networks without borders [7], and ultimately making the best
use of radio spectrum, see [5], [9] and references therein. In
particular, Hu et al. [5] conducted a comprehensive survey on
the benefits of spectrum sharing in four application scenarios
of future wireless networks: wider coverage, massive capacity,
massive connectivity, and low latency.

Rebato et al. [4] proposed a hybrid spectrum shar-
ing scheme in mmWave networks, where an operator has
exclusive access to some parts of the mmWave bands but
also some shared access to some other mmWave bands.
The authors showed the advantages of this hybrid method
(where data packets are scheduled through two mmWave
carriers with different propagation characteristics) over tradi-
tional fully licensed or fully pooled spectrum access schemes.
Jurdi et al. [6] used a system-level analysis to show that infras-
tructure sharing can be advantageously combined with sharing
spectrum licenses in the mmWave bands.

Coordination mechanisms have a large impact on the gains
that spectrum sharing can achieve, and are intertwined with
the supporting architectural solutions [3], [5], [8], [10]–[13].
The early work by Mihovska et al. proposed an approach
for both intra- and inter-operator coordination scenarios and
concluded that operators can advantageously pool spectrum
resources when network loads are temporarily uneven among
the cooperating operators [10]. Shokri-Ghadikolaei et al. [8]
showed that the large antenna setting can reduce the need for
inter-operator coordination. In fact, they showed that in the
case of digital beamforming with ideal channel estimations
inter-operator coordination can be limited to cell-edge users.

A large part of the literature utilizes the increasing number
of antennas to form narrow beams, which reduces both intra-
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and inter-operator interference, defined as the interference
within the same or among different operators. However, the
inherent imperfections in terms of errors in the channel
state information (CSI) acquisition, hardware limitations, and
the constraints of quantized code-books make inter-operator
coordination a necessary ingredient of managing a common
spectrum pool [8], [14]. Besides, there is no consensus on
how to properly model the coordination cost.

Due to the complexity and inherent data acquisition dif-
ficulties of coordinating a large set of radio network nodes,
learning-based coordination mechanisms to better manage
the spectrum sharing were recently proposed by [15]–[17].
Unfortunately, the schemes developed in [15] and [16] suit sec-
ondary users and are not directly applicable in inter-operator
spectrum sharing scenarios, in which the participating oper-
ators share the spectrum pool on an equal right basis. In
contrast, the Q-learning framework of [17] facilitates inter-
operator sharing by the mechanism of intelligent user offload-
ing. However, none of these schemes addresses the problem of
optimizing the network utility while maintaining an acceptable
level of coordination and setting the precoders and combiners
to reduce the intra- and inter-operator interference.

B. Model-Based Approaches for Spectrum Sharing

Model-based approaches, while being ubiquitous in com-
munication systems [18], may rely on inaccurate and unre-
alistic assumptions for the sake of mathematical tractability.
Consequently, performance evaluation and protocol develop-
ment based on such approximated and inaccurate models
run the risk of not working well in practice [19]. Data-
driven approaches address this disadvantage by learning
and optimizing from the data – usually acquired by mea-
surements – making minimal assumptions on the system
model. These approaches have been the core of the suc-
cess of modern machine learning and artificial intelligence.
Data-driven approaches, however, may need a large num-
ber of training samples to perform well, which are hard to
obtain in most wireless networks due to their inherent non-
stationary nature [20]. This is indeed the case for general
network optimization problems and in particular for spectrum
sharing [21].

In this paper, we advocate the use of a hybrid approach
for spectrum sharing, in which the model-based part oper-
ates on a small timescale, whilst the data-driven part operates
on a coarser time scale and refines the models used in the
model-based part. The benefit of hybrid approaches has been
demonstrated in the context of speech signal processing for
the localization and tracking tasks [22] and in these parallel
and independent works [23], [24].

C. Contributions of the Present Paper

In this paper, we propose a framework to analyze and
quantify the benefits of spectrum sharing over exclusive spec-
trum access for a multi-operator millimeter-wave network.
More specifically, we capture the trade-offs among the sig-
naling cost, coordination complexity, and overall network
performance by an optimization task that takes as input a

model for the rate functions and returns the optimal association
and coordination policies throughout the network along with
proper beamforming vectors. We then augment this approach
by adding a learning functionality that continuously refines the
rate models to compensate for missing information (mostly
missing CSI) and to keep the signaling overhead manageable.
To enable this new function, every operator runs some care-
fully designed rate measurement tasks, reports the results to
a cloud server that keeps an updated dataset for the learning
and runs the spectrum sharing optimization problem using the
updated data-driven rate models. The main contributions of
our work can be summarized as follows:
• We propose a new generic and tractable approach for

modeling the cost of coordination among multiple BSs,
which is of significant interest on itself, beyond the scope
of this paper.

• We investigate the gains of beamforming and coordina-
tion for spectrum sharing schemes in mmWave networks.
We argue that a pure model-based solution approach to
this problem is infeasible, mainly due to modeling inac-
curacy, the overhead of pilot transmission, and the lack of
sufficient information (including erroneous or completely
missing CSI).

• We develop a hybrid model-based and data-driven
approach where the model-based part optimizes the deci-
sion variables (association and coordination) and finds
proper beamforming vectors, and the data-driven part
sequentially and continuously refines the model. Our
approach has the same computational complexity as the
pure model-based approach but operates with a much
lower signaling overhead.1

• We then use domain-specific knowledge (large antenna
arrays and the sparse scattering environment of mmWave
systems) to properly initialize the learning process to min-
imize its running complexity while guaranteeing the user
performance.

• We discuss how large antenna arrays, limited feedback,
and imperfect/missing CSI affect the learning process and
consequently the spectrum sharing performance.

Conceptually, our hybrid solution could be considered
both in a centralized and in a more realistic distributed
implementation.

D. Paper Organization

The rest of the paper is organized as follows. We intro-
duce our system model, including a novel coordination model,
in Section II. We formulate the problem of spectrum sharing
in Section III and discuss the complexities of pure model-
based approaches. Section IV develops our hybrid solution
approach and numerical performance evaluations. We provide
important engineering insights in Section V, followed by con-
cluding remarks of Section VI. Due to space limitations, we
have provided all the proofs and extended numerical results
in the extended version of this paper [25].

1Among other differences,“hybrid” in [4] refers to the scheduling of the
data packets through two different carriers whereas our “hybrid” refers to the
joint use of model-based and data-driven approached for spectrum sharing at
the mmWave bands, leading to completely different design principles.
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Notations: Capital bold letters denote matrices and lower
bold letters denote vectors. The superscripts (X )T, (X )H,
(X )† stand for the transpose, transpose conjugate, and Moore-
Penrose pseudo-inverse of X, respectively. The subscript
[X ]mn denotes entry of X at row m and column n, and [X ]n
represents column n of X. I x , and 1x , and 0x are the identity,
all-one, and all-zero matrices of size x, respectively. Table I
lists the main symbols used in the paper.

II. SYSTEM MODEL

In this paper, we use the following system model for our
model-based approach that we propose in Section III. This
system model is generic and embraces distinct model ele-
ments for the network, the employed association scheme,
the deployed antenna and channel models, and models for
beamforming and multi-operator coordination.

A. Network Model

We consider the downlink of a multi-operator cellular
network with a total bandwidth W to be shared among Z oper-
ators in the network. Each operator z controls and operates
the subset Bz of the BSs such that B = B1 ∪ B1 ∪ . . . ∪ BZ
is the set of all BSs in the network. With no infrastructure
sharing, for example, {Bz }Zz=1 are disjoint sets. We denote
by U the set of all UEs, by Uz the set of all UEs of opera-
tor z, and by Wz the bandwidth of operator z. Without loss
of generality, we assume universal frequency reuse within an
operator’s network. Consequently, all non-serving BSs of an
operator cause interference to every user equipment (UE) of
that operator in the downlink.

B. Association Model

We denote by abu a binary variable that is equal to 1 if UE
u ∈ U is served by (or associated to) BS b ∈ B. We collect
all binary control variables abu in association matrix a, where
A =

∑
z∈[Z ]Az . Binary matrix Az of size |B| × |U| is the

association of operator z, namely [A]bu = 1 if and only if u ∈
Uz and abu = 1. Let Nb =

∑
u∈U abu and Ab be the number

and the set of UEs that are being served by BS b, respectively.
We also call Nb the load of BS b. Note that without national
roaming, each BS can serve only UEs of the same operator.
Namely, abu = 0 for all b ∈ Bz , u ∈ Uk where z �= k. We first
impose the constraint that national roaming is not permitted,
which will be relaxed in Section III-D to examine the potential
performance improvement due to national roaming.

We define the association period as a consecutive series of
coherence intervals (CIs) over which association A remains
unchanged, see Fig. 1. Although beamforming should be
recomputed every CI, the association is a long-term pro-
cess in the sense that it remains fixed over some CIs [26].
Such an assumption is natural, due to the inherent cost of
handover for re-association. In this paper, we investigate the
performance of optimal association; i.e., we find the optimal
Az for all operators. Using these associations, the BSs and
UEs recalculate their beamforming vectors every CI. To avoid
the interplay between the short-term scheduling and the asso-
ciation problem, which should be handled at different time

TABLE I
SUMMARY OF MAIN NOTATIONS

Fig. 1. A UE-BS association period. Beamforming vectors are fixed only
for one CI, and should be recomputed afterward. The UE-BS association is
fixed over a block of many CI intervals, denoted as association period.

scales, we ensure that each BS can serve all its associated
UEs simultaneously by imposing that the number of served
UEs is compatible with the number of RF chains at each BS.

C. Antenna and Channel Model

We consider a half wavelength uniform linear array (ULA)
of NBS antenna elements for all BSs and a ULA of NUE
antennas for all UEs, albeit our mathematical framework can
be easily extended to other antenna models. We consider a
narrowband mmWave channel model [27]. Let Nbu be the
number of paths between BS b ∈ B and UE u ∈ U , and gbun
be the complex gain of the n-th path that includes both path
loss and small scale fading. In particular, gbun is a zero-mean
complex Gaussian random variable with E[|gbun |2] = Lbu for
n = 1, 2, . . . ,Nbu , where Lbu is the path loss between BS
b and UE u. The channel matrix between BS b and UE u is
given by

H bu =

√
NBSNUE

Nbu

Nbu∑

n=1

gbun aUE

(
θUE
bun

)
aHBS

(
θBS
bun

)
, (1)

where aBS ∈ CNBS and aUE ∈ CNUE are the vector response
functions of the BSs’ and UEs’ antenna arrays to the angles of



1272 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 4, DECEMBER 2020

arrival and departure (AoAs and AoDs), θBS
bun is the AoD of

the n-th path, θUE
bun is the AoA of the n-th path, and (·)H is the

conjugate transpose operator. For a ULA with half wavelength
antenna spacing at the BS, we have

aBS(θ) =
1√
NBS

[
1, ejπ sin(θ), . . . , ej (NBS−1)π sin(θ)

]H
.

(2)

aUE(θ) can be obtained from (2) by changing NBS to NUE.

D. Beamforming and Coordination Models

1) Analog Combiners: To simplify the implementation
requirements, we consider an analog combiner using phase
shifters at the UE side (only one RF chain per UE). With these
phase shifters, each UE can only change its antenna boresight.
Let wUE

u ∈ C
NUE be the combining vector of UE u. Assume

that BS b serves UE u and that the estimates of the channel
gains and the corresponding AoAs are available. We pick for
UE u the analog combiner that maximizes its link budget [28],
namely

wUE
u = aUE

(
θUE
bun�

)
, where n� = argmax

n
|gbun |. (3)

2) Precoders: For the sake of presentation simplicity, we
assume that each BS employs a fully-digital precoder. At the
end of this subsection, we show how to extend our derivations
to the case of hybrid (analog-digital) precoding.

We assume that all the UEs are concurrently served by
their respective BSs with multiuser MIMO. To ensure this,
we impose the condition Nb ≤ NBS for all BSs and all opera-
tors in the next sections. Let W BS

b ∈ C
NBS×Nb be the digital

precoding matrix at BS b whose u-th column wBS
bu ∈ CNBS is

the precoding vector for UE u. We define the transmitted sym-
bols of BS b by

√
λbW

BS
b db , where db ∈ C

Nb are the data
symbols for the Nb UEs of this cell with normalized power,
and ρTx is the average transmit power at each BS. Moreover,
λb normalizes the maximum transmit power of the BS b to ρ,
namely

λb = ρTx/ tr

(

W BS
b

(
W BS

b

)H
)

. (4)

We consider regularized zero forcing (RZF), which is of
practical interest for minimizing the inter-BS (within and
among different operators) interference.2 For every BS b,
define H b as the effective channel that the digital precoder
observes containing (wUE

u )HH bu for several u in its rows;
formally defined later in this section.

Suppose that UE u is being served by BS b, and that
(wUE

u )HH bu has appeared in row m of H b . Using RZF, the
precoding vector of UE u is

wBS
bu =

[(

H b + δ

[
I
0

])†
]

m

, (5)

2We can replace RZF by almost any approach, e.g., minimum mean squared
error (MMSE). Moreover, note that we do not require joint transmission,
which may be infeasible if BSs belong to different operators, due to the
latency involved in signaling through the corresponding core networks.

where δ is an arbitrary (usually very small) positive number,
and I is an identity matrix of proper size.

In the case of hybrid precoding, we can still design W BS
b

based on (5) and then approximate the true hybrid precoding
matrix with a cascade of an analog and a digital precoder,
while satisfying the constant-modulus constraint of the analog
precoder; see, e.g., [29] and [30].

3) Coordination: Let UE u be served by BS b using com-
biner wUE

u . Define the effective channel between any BS
i ∈ B and any UE u as H iu := (wUE

u )HH iu . In fact, the
effective channel is the actual channel between BS i and UE
u processed by the analog combiner of the UE. We define
binary matrix C ∈ {0, 1}|B|×|U| where [C ]iu = 1 if and only
if BS i ∈ B can estimate the effective channel H iu . If i = b,
then acquiring this effective channel has a much lower cost
than if i and b belong to different operators. To model this,
we add a penalty for the coordination to promote the optimal
use of coordinations. For a given association of the BSs and
UEs a, we assign a penalty [P ]iu corresponding to the ele-
ment [C ]iu of the coordination matrix. For sake of simplicity,
in the following, we consider a constant penalty matrix P,
though it can be in general a function of the distance, opera-
tor load, and number of antennas, among others. The penalty
terms may vary for each operator, reflecting various billing
policies.

When UE u ∈ Uz is associated with BS b ∈ Bz , we may
have 0 ≤ [P ]bu < [P ]iu < [P ]ju , where i ∈ Bz \ {b} and
j ∈ Bk , k �= z, incurring almost no cost of estimating the
channel of the own served UEs, a higher cost of estimating
the effective channel of a UE within operator, and an even
higher cost of estimating the effective channel of UEs of other
operators. This abstraction of the penalty matrix facilitates the
cross-layer design of spectrum sharing. Notice there should be
some inter-operator architectural support whose design is out
of the scope of this paper. Interested readers are referred to [3]
and references therein. To implement the penalty matrix, we
recall the set of BSs and UEs of all operators. Furthermore, the
penalty matrix P0 represents the cost associated with channel
estimation, where [P0]bu is the penalty when BS b estimates
the channel of UE u. This penalty may not be identical for all
non-serving operator.

Remark 1: Let 1M×N be an all-one matrix of size
M × N, and blkdiag(·) denote a mapping of the argu-
ments to a block diagonal matrix. By setting C = A, C =
blkdiag(1|B1|×|U1|, . . . , 1|BZ |×|UZ |), and C = 1|B|×|U|, our
approach can model “no coordination,” “partial coordination,”
and “full coordination” scenarios of [8], respectively.

Example 1: Let p and p̄ denote the penalty of intra-operator
and inter-operator coordinations, incurring identical costs for
all operators. The template penalty is then computed as

[P0]bu =

{
p, if b ∈ Bz and u ∈ Uz
p̄, if b ∈ B \ Bz and u ∈ Uz . (6)

Given P0, we then set [P ]bu ← [P0]bu+abu(pb−[P0]bu )
for any b ∈ B, where abu ∈ {0, 1}, u ∈ U , and pb is the
coordination penalty for the UEs associated to BS b. Note
that abu = 1 means BS b serves UE u. The coordination cost
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Fig. 2. An example topology with two operators, red and blue. BSs and UEs
are marked by squares and circles, respectively. Black lines show association.
Green lines show coordination.

in each CI to serve users of operator z is thus
∑

u∈Uz

∑

b∈B
[C ]bu [P ]bu . (7)

Ultimately, the goal is to find the optimal coordination policy
that maximizes a network objective (e.g., sum-rate of the UEs)
while bounding the coordination cost; see Section III. As we
show throughout this paper, under realistic settings for CSI
acquisitions and network topologies, this optimization task is
possible by a hybrid model-based and data-driven approach.

The effective channel H i is a matrix of dimension∑
u [C ]iu × NBS whose rows correspond to the effective

channels H iu for {u|[C ]iu = 1}.
Example 2: To illustrate the notations of this paper, Fig. 2

shows an illustrative example with two operators, each hav-
ing 2 BSs and 5 UEs. We run this example throughout
the paper. Every BS can estimate the effective channel of
its associated UEs. BS 2 can estimate the effective chan-
nel toward UE 5 via intra-operator coordination. Moreover,
BSs 1 and 2 (of operator blue) can estimate their effec-
tive channel toward UE 7 (of operator red). For this
topology, B1 = {1, 2},B2 = {3, 4},Nb = 2 (for all b),
U1 = {1, . . . , 5}, and U2 = {6, . . . , 10}. For all b ∈ B and
u ∈ U , the penalty of coordinating with associated UEs is
pb = 1, while the penalty of intra-operator and inter-operator
coordination is 10 and 100, respectively.

A =

⎛

⎜
⎜
⎝

1 1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1

⎞

⎟
⎟
⎠,

C =

⎛

⎜
⎜
⎝

1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1

⎞

⎟
⎟
⎠,

P =

⎛

⎜
⎜
⎝

1 1 0 0 1 0 100 0 0 0
0 0 1 1 10 0 100 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1

⎞

⎟
⎟
⎠,

H 1 =

⎛

⎜
⎜
⎜
⎜
⎝

(
wUE

1

)H
H 11

(
wUE

2

)H
H 12

(
wUE

5

)H
H 15

(
wUE

7

)H
H 17

⎞

⎟
⎟
⎟
⎟
⎠
,H 2 =

⎛

⎜
⎜
⎜
⎜
⎝

(
wUE

3

)H
H 23

(
wUE

4

)H
H 23

(
wUE

5

)H
H 25

(
wUE

7

)H
H 27

⎞

⎟
⎟
⎟
⎟
⎠
,

H 3 =

((
wUE

6

)H
H 36

(
wUE

7

)H
H 37

)

, H 4 =

⎛

⎜
⎝

(
wUE

8

)H
H 48

(
wUE

9

)H
H 49

(
wUE

10

)H
H 4,10

⎞

⎟
⎠,

leading to a total coordination penalty of 215 for
operator 1 and 5 for operator 2.

Given a, we can find wUE
u from (3). Then, given a coordina-

tion matrix C, every BS i obtains H i and finds wBS
bu from (5).

The data transmission phase then follows.

III. PROBLEM FORMULATION AND SOLUTION

APPROACHES

In this section, we formulate the problem of spectrum shar-
ing among multiple operators. Specifically, we use the models
of Section II and then show the complexity and limitations of
this model-based approach to optimize the beamforming, asso-
ciation, and coordination for spectrum sharing. Note that all
the variables with superscript b are operator-dependent. This
dependency exists since BS b belongs to Bz for some z.

A. SINR and Rate for Model-Based Approach

We define a cell as the set of UEs that are served by the
same BS. The received power at each UE u ∈ Uz when
the serving BS is b ∈ B consists of the desired power ρRx,
intra-cell interference I (1), inter-cell interference I (2), inter-
operator interference I

(3)
bu , and noise power spectral density

σ2. I (1) corresponds to the signals transmitted to other UEs
by the same BS. I (2) denotes the interference from the signals
transmitted by other BSs of the same network operator. I (3)bu
consists of the interference from the signals transmitted by all
BSs of other operators B\Bz toward their own UEs.

We first note that the received power at UE u from BS b is

ρRx
bu = λb |

(
wUE

u

)H
H buw

BS
bu |2. (8)

Recall the definitions of the binary association variables aij
and the set of associated UEs Ai . Each BS serves multiple
UEs at the same time and frequency resources, as UEs are
separable at the spatial domain. The intra-cell and inter-cell
interference to UE u ∈ Uz when served by BS b ∈ Bz are

I
(1)
bu = λb

∑

j∈Ab\{u}

∣
∣
∣
∣

(
wUE

u

)H
H buw

BS
bj

∣
∣
∣
∣

2

, (9)

I
(2)
bu =

∑

i∈Bz \{b}
λi
∑

j∈Ai

∣
∣
∣
∣

(
wUE

u

)H
H iuw

BS
ij

∣
∣
∣
∣

2

. (10)

For UE u, inter-operator interference I
(3)
bu depends on the

set of operators (and BSs) that share the same bandwidth.
Without loss of generality, we assume that Wz = W . With
universal frequency reuse, UE u receives interference from all
BSs of all operators, and the inter-operator interference can be
expressed as

I
(3)
bu =

Z∑

k=1
k �=z

∑

i∈Bk\{b}
λi
∑

j∈Ai

∣
∣
∣
∣

(
wUE

u

)H
H iuw

BS
ij

∣
∣
∣
∣

2

. (11)
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Note that the special characteristics of mmWave networks,
such as high penetration loss and directional communications,
substantially reduce the interference components (9)–(11),
compared to sub-6 GHz systems, as established in [31]. We
use this property later on in Section IV to substantially reduce
the complexity of the hybrid model-based and data-driven
optimization algorithm by a proper initialization.

The long-term rate that UE u will receive from all BSs is

ru =
∑

b∈B
abuWzE

[

log

(

1+
ρRx
bu

I
(1)
bu +I

(2)
bu +I

(3)
bu +Wzσ2

)]

,

(12)

where the expectation is over all random channel gains. Notice
that we do not assume joint transmission, so

∑
b∈B abu = 1

for all u ∈ U . Sharing the spectrum increases the bandwidth
available to each operator (with a prelog contribution to the
rate in high SINR regimes); however, it also increases the
interference power. As we discuss later in this section, not
being able to compute ru due to missing CSI is an important
disadvantage of the model-based approaches.

B. Optimal Spectrum Sharing With Model-Based Approach

For given a and C, and in every CI, BS b estimates H b ,
and finds the digital precoding and analog combiner using (5).
Given that each BS can evaluate the average rate ru for its
associated UEs from (12), a cloud server (logical controller)
collects {ru} from all BSs, computes the coordination cost
per CI from (7), and evaluates a network utility fz (A,C )
for operator z. Given ru in (12), we use a logarithmic utility
that ensures both high network throughput and some level of
fairness among individual UEs [26]:

fz =
∑

u∈Uz
log ru . (13)

Given B and U , the controller computes P0 from (6) and
formulates the following optimization problem to find the
optimal association and coordination strategies:

P1 : maximize
A,C

Z∑

z=1

αz fz (A,C ), (14a)

subject to
∑

b∈Bz
abu = 1, ∀u ∈ Uz , 1 ≤ z ≤ Z , (14b)

∑

u∈Uz
abu ≤ NBS, ∀b ∈ Bz , 1 ≤ z ≤ Z ,

(14c)

[P ]bu = [P0]bu + abu (pb − [P0]bu )

(14d)
∑

u∈Uz

∑

b∈B
[C ]bu [P ]bu ≤ Pmax

z ,

∀1 ≤ z ≤ Z , (14e)

abu = 0, ∀b ∈ Bk , u ∈ Uz , k �= z ,

1 ≤ z , k ≤ Z , (14f)

abu ∈ {0, 1}, cbu ∈ {0, 1},
∀b ∈ B, u ∈ U , (14g)

where {αz }z are a set of positive constants that scalarize
the multi-objective optimization problem, and

∑Z
z=1 αz = 1.

Constraint (14b) guarantees association of each UE to only
one BS, mitigating joint scheduling requirements among BSs.
Constraint (14c) ensures that Nb ≤ NBS, so all Nb UEs that
are associated to BS b can be served together with multiuser
MIMO. If Nb < NBS, some RF chains will be switched
off, and the BS automatically gives higher transmit power
to the active RF chains. Constraint (14e) ensures that the
coordination cost of every operator is upper-bounded by its
maximum budget Pmax

z . Constraint (14f) ensures that the UEs
of operator z can be only served by BSs of the same operator.

Remark 2 (Signaling Complexity): To compute the rate
function, (14a), and thereby solving (14), an operator should
coordinate with all UEs, leading to a coordination cost of∑

u∈U
∑

b∈B [P ]bu . Notice that (14e) is the coordination cost
of network operation when the solution to (14) is deployed.

Special Case (National Roaming Variant of P1): We can
modify P1 to allow for national roaming. To this end, we
should only replace (14b) by

∑
b∈B abu = 1, ∀u ∈ U ,

replace (14c) by
∑

u∈U abu ≤ NBS, ∀b ∈ B, and remove
constraint (14f).

C. Practical Considerations for Model-Based Approach

While theoretically sound, optimally solving P1 (and its dis-
tributed variant) with the signaling and time-limitations of the
conventional radio access and core networks would be infeasi-
ble. To solve P1, for instance, the BSs of every operator should
be able to send (or receive) pilot signals to all UEs of all opera-
tors and exchange a huge amount of information with a central
controller, which should then solve P1. The complexity and
cost of such level of channel estimation and coordination grow
large with the number of BSs and UEs, and are in general over-
whelming for mmWave networks with dense BS deployment.
Moreover, if BSs or UEs belong to different network oper-
ators, a huge inter-operator signaling via the core networks
is required for synchronization and for the calculation of
I
(3)
bu . Furthermore, channel aging may render the exchanged

information outdated before it serves its purpose. To tackle
this problem, most of the works in the literature consider the
noise-limited assumption and ignore the interference terms,
see [32] and references therein, namely I

(2)
bu = I

(3)
bu ≈ 0. This

is a rather limiting assumption, and it has been shown that
a few links may observe strong interference [33]. Moreover,
with the interference-free assumption, there is no gain of using
a precoder to reduce the interference, which would be an
incorrect design decision.

These impairments have prohibited the application of
optimal spectrum sharing in state-of-the-art wireless systems.
Nonetheless, the solution of P1 gives a theoretical upper bound
for the performance of spectrum sharing (a benchmark). In the
following, we take a data-driven approach as a completely dif-
ferent alternative to address the problem of spectrum sharing
in mmWave networks.

D. Illustrative Numerical Results

In this section, we numerically investigate the effect of
the input/design parameters, namely, the number of antennas,
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Fig. 3. Illustration of the association and coordination. Topology is identical
to that of Fig. 2. A black (similarly green) line from BS b to UE u indicates
that [A]bu = 1 (similarly [C ]bu = 1). In (a), every BS estimates only the
channel of its associated UEs. Setting of (b) is identical to that of (a) except an
extra coordination [C ]16 = 1 to reduce inter-operator interference of UE 1.
In (c), every BS estimates the channel of every UEs. (d) shows the optimal
association and coordination for (NBS,NUE) = (8, 2), obtained from a
variant P1 with national roaming with Pmax

z = 120.

network topology, association, and coordination levels. We use
these insights to develop an efficient hybrid approach in the
next section.

We consider an illustrative scenario of two operators, each
having 2 BSs and 10 UEs with the topology of Fig. 2. We
generate 100 random channels, find the beamforming vec-
tors in every realization, and evaluate the interference terms.
We consider two antenna settings: (NBS = 8,NUE = 2)
and (NBS = 64,NUE = 16). For all b and u, we set
pb = 1, the intra-operator coordination penalty to 10, and the
inter-operator coordination penalty to 100. Fig. 3 shows three
example settings for the association and coordination matri-
ces. In the first scenario, Fig. 3(a), we assume no coordination
among UEs and unintended BSs, namely C = A. In the second
scenario, Fig. 3(b), we set [C ]bu = [A]bu and then allow BS
1 to estimate the effective channel toward UE 6 and cancel the
resulting interference. In Fig. 3(c), we assume full coordina-
tion, namely [C ]bu = [A]bu . This level of coordination may
improve the rate performance at the expense of a very high
coordination cost. Moreover, for every antenna setting, we run
P1 and its national roaming variant, introduced in Special Case
of Section III-B. Fig. 3(d) shows the optimal association and
coordination for (NBS = 8,NUE = 2) and Pmax

z = 120 (up
to one inter-operator coordination) with national roaming. To
find this solution, we first apply a continuous relaxation to the
binary constraints of P1 and then rounding to recover binary
solutions. Furthermore, we assume that [A]bu = 1 implies
[C ]bu = 1 for every b ∈ B and u ∈ U , which further reduces
the feasibility space. This is a natural simplification of the
optimization problem, as a serving BS will always estimate
the channels of its serving UEs.

Table II shows the performance of the network under
three scenarios of Fig. 3 and the optimal solution, obtained

Fig. 4. Illustration of our hybrid spectrum sharing approach. White boxes
represent the model-based part, and green box is for the data-driven part.

from P1 and its national roaming variation. From this
table, coordination substantially reduces the interference and
improves both the network sum rate and the minimum UE rate.
This improvement is significant for UE 6, which is served by
BS 3 (belongs to the red operator) but is located very close to
BS 1 (belongs to the blue operator). Imposing [C ]16 = 1 leads
to a substantial reduction of I (3) and thus to an improvement
in the achievable rate.

For the small antenna setting (NBS = 8,NUE = 2) and for
the topology of this example, the availability of national roam-
ing can substantially reduce the overall coordination overhead
by selecting a much better association. The optimal serving
BS for UE 6 is now BS 1, and consequently, the coordi-
nation cost reduces from 100 (i.e., inter-operator cost) to 1
(i.e., pb for associated UEs). The use of large antenna arrays
(NBS = 64,NUE = 16) reduces the interference footprint and
the need for coordination. Still, selecting a better association
and coordination solution lead to an improvement in the rate
performance. However, as mentioned before, this may entail
a formidable signaling overhead.

IV. HYBRID SOLUTION APPROACH

So far, we have observed that neither P1 nor its distributed
variant can be solved in practice due to missing CSI and lack
of proper rate models. Data-driven approaches bypass the need
for precise modeling techniques and are thereby less sensitive
to missing features and modeling inaccuracies. In this section,
we propose that the learning task continuously refines the rate
model of every UE rather than optimizing the decision vari-
ables. The model-based part then uses the updated rate models
to find proper association and coordination strategies.

To enable this hybrid solution approach, we introduce two
types of frames, training and operation, designed to improve
the interplay among the exploration and exploitation and qual-
ity of service at UEs. In the training frames, the BSs and UEs
use a randomized policy to explore the space of “proper” solu-
tions for (A, C), formally described in Section IV-E, and to
improve the rate models. In the operation frames, the opera-
tors apply a previously found good solution to protect the UE
performance from potentially weak rates of some candidate
(A, C). The new solutions will be applied to the operation
frames only after passing a predefined confidence on their
rate performance, measured in several training frames. Fig. 4
illustrates the proposed hybrid approach.

A. Data-Driven Part

Developing a solution approach for P1 is challenging. First,
due to the lack of a closed-form solution, we need iterative
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TABLE II
PERFORMANCE OF ASSOCIATION AND COORDINATION OF FIG. 3. O1 AND O2 STAND FOR OPERATOR 1 (BLUE) AND OPERATOR 2 (RED).

RATES ARE IN GBPS. THE TABLE SHOWS THE AVERAGE OF THE VARIOUS INTERFERENCE TERMS THAT UE 6 OBSERVES, NAMELY

I1 := I
(1)
b6

/ρRx
b6 , I2 := I

(2)
b6

/ρRx
b6 , AND I3 := I

(3)
b6

/ρRx
b6 . NORMALIZED RATE OF UE 6 SHOWS THE RATE IMPROVEMENT WITH

RESPECT TO SCENARIO (a), BASELINE, WITH THE SAME NUMBER OF ANTENNAS. RATE OF UE 6 IS 0.301 GBPS WITH (NBS = 8,NUE = 2),
AND 1.884 GBPS WITH (NBS = 64,NUE = 16). “OPTIMAL,x” CORRESPONDS TO THE SOLUTION OF P1 WITH THE COORDINATION

BUDGET Pmax
z = x . “R,OPTIMAL,x” CORRESPONDS TO THE NATIONAL ROAMING VARIANT OF P1 WITH Pmax

z = x

approaches to solve P1. These solvers must evaluate the objec-
tive function for several A and C matrices, until convergence.
Thus, one needs to send additional pilots to evaluate the
updated combining vectors at the UEs (which change as a is
updated), and estimate some new channels {H bu} for some b
and u. These additional pilot transmissions and channel esti-
mations can be very expensive as we may need many iterations
before convergence, and we may typically end up in a situa-
tion where we have to estimate almost all the channels; clearly
this is impractical in a cellular network. Moreover, it is at odds
with the coordination cost model (7), where we consider the
cost associated with the final solution only. Second, when we
know the effective channels corresponding to the final solu-
tion, every BS computes ρRx

bu and I
(1)
bu from (8) and (9), and

feed them back to the cloud server. However, we have access
only to some summands of I (2)bu and I

(3)
bu for which the respec-

tive entry of C is 1. Consequently, the central controller cannot
compute I

(2)
bu + I

(3)
bu and therefore the objective function.

To address these challenges, the data-driven part takes as
input the network topology, the association matrix a, the
coordination matrix C, the effective channels H b , and out-
puts an approximation of the rate of UE u, denoted by r̂u .
More specifically, the data-driven part is comprised of two
components: a dataset and a learning method. Each entry of
the dataset includes (A,C ,H b ,{ru}u∈U ), while the learning
method approximates the rate function. We maintain a dataset
at the cloud server and update it before and after every training
frame; see Section IV-C.

At every CI, BS b measures ru for its associated UEs (hav-
ing [A]bu = 1). This is simply done by a feedback from the
UE reporting its throughput in this CI. It collects these values
and reports them to the cloud server prior to every training
frame. The server updates the input-output dataset along with
the mapping r̂u(A,C ) for all u ∈ U , and computes the next
tuple (A, C) to be examined in the following training frame.
This is done by the EXPLORE function. After that frame,
the cloud updates the dataset and the rate models and decide
whether to apply new association and coordination solutions
to the subsequent operation frames.

Algorithm 1 Cloud Server
1: procedure UPDATE(A0, C0, {ru})
2: Amend new entry (A0,C0, {ru}) to the dataset
3: Update the rate functions {r̂u}
4: end procedure
5: function INITIALIZE({Lbu} if available)
6: return A(0) and C (0), as described in Section IV-B
7: end function
8: function DOWNLOAD
9: return {r̂u}u for all UE u

10: end function
11: function OPTIMIZE(A(0), C (0))
12: Initialize A(0), C (0) (described in Section IV-B)
13: for k = 1, 2, 3, . . . do
14: Run A-step and find A(k+1) using (17)
15: Run C-step and find C (k+1) using (18)
16: if Convergence criteria met then
17: Set A� ← Ak and C� ← Ck , and break the loop
18: end if
19: end for
20: return A� and C�

21: end function
22: function EXPLORE(A�, C�, F )
23: Set

(

Atf ,C tf
)

←
{

a random (A,C ) ∈ F , with probability ε
(A�,C�), otherwise .

24: return Atf and C tf

25: end function

In Section IV-D, we discuss how to initialize the rate mod-
els. The cloud server then gradually updates these models with
any new entry in the dataset through the UPDATE procedure.
The other functions of this algorithm, called by the operators,
will be illustrated in Algorithm 1.

B. Model-Based Part

Given the updated rate models, the cloud server formulates
and solves an optimization problem similar to P1 and finds the
new association and coordination solutions. In the following,
we derive the modified optimization problem and develop a
solution algorithm.
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We start by re-writing the optimization problem as a
function of A and C. We write (7) as

P = P0 +A(pb1−P0) (15)

where 1 is a matrix of ones having appropriate size. Then, we
can rewrite the coordination cost (7) as
∑

u∈Uz

∑

b∈B
[C ]bu [P ]bu =

∑

u∈Uz

∑

b∈B
[C ◦P ]bu =

∑

u∈Uz

[
PTC

]

uu

(15)
=

∑

u∈Uz

[
(P0 +A(pb1−P0))

TC
]

uu

where ◦ is the Hadamard product, and (·)T is the trans-
pose operation. If required, every operator can obtain an
approximation of the rate functions of its UEs through the
DOWNLOAD function of Algorithm 1, and then find an approx-
imation of fz (A,C ), denoted by f̂z (A,C ), for any a and C,
where f̂z =

∑
u∈Uz log r̂u . We can now write the modified

optimization problem as:

P1R: max
A,C

Z∑

z=1

αz f̂z (A,C ), (16a)

s. t. Constraints (14b), (14c), (14f), and (14g)

(16b)
∑

u∈Uz

[
(P0 +A(pb1−P0))

TC
]

uu
≤ Pmax

z ,

∀1 ≤ z ≤ Z , (16c)

Notice that the computational complexity of (16) is of the
same order of magnitude as that of (14), and we can
reuse the existing solution algorithms of the pure model-
based approach, (16), in the model-based part of our hybrid
approach. However, the main benefit of (16) is having a much
lower signaling complexity and latency to acquire the needed
channel state information. In many cases, we may not be
able to compute the objective function of (14) due to the
heavy signaling complexity and other challenges involved; see
Section III-C.

In general, the objective f̂z is not jointly convex in A and C,
and the space of the problem is combinatorial. Thus, we
employ the block-coordinate descent (BCD) framework (also
known as alternating optimization) [34], where P1R is split
into two subproblems solved iteratively: (A-step) to find
the optimal association and (C-step) to find the optimal
coordination.

Denoting by A(k) and C (k) denote the values for a and C
at iteration k, BCD yields the following update rules:

(A-step):

A(k+1) ∈ argmax
A

Z∑

z=1

αz f̂z

(
A,C (k)

)
, (17a)

s. t. Constraints (14b), (14c), and (14f)

(17b)
∑

u∈Uz

[
(P0 +A(pb1−P0))

TC (k)
]

uu

≤ Pmax
z , ∀1 ≤ z ≤ Z , (17c)

[A]bu ∈ {0, 1}, ∀b ∈ B, u ∈ U . (17d)

Algorithm 2 Hybrid Model-Based and Data-Driven Spectrum
Sharing
Input: CI index n; An indexed sequence of training and operation frames; a

feasibility space for the association and coordination F
Output: Beamforming vectors in every CI, optimal a and C
1: Run (Aof ,Cof ) = INITIALIZE() at the cloud
2: Set A← Aof and C ← Cof

3: for n = 1, 2, 3, . . . do
4: Every BS b estimates H bu for all {u|[A]bu = 1}
5: Every BS b designs wUE

u based on (3) for its associated UEs
6: Every BS b estimates (wUE

u )HH bu for all {u|[C ]bu = 1}
7: Find the precoding vectors from (5)
8: Operate with those precoding and combining vectors
9: Measure ru at the end of CI n and record it

10: if CI n is a training frame then
11: Run UPDATE(A,C , {ru}) at the cloud for rates obtained from

all UEs in CI n
12: Set A(0) ← Aof , C (0) ← Cof

13: Run (A�,C�) = OPTIMIZE(A(0),C (0)) at the cloud
14: Run (Anew,Cnew) = EXPLORE(A�,C�,F)
15: Clear recorded rates at every BS
16: if confidence criteria met for (Anew,Cnew) then
17: Set Aof ← Anew and Cof ← Cnew

18: end if
19: Set A← Aof and C ← Cof

20: end if
21: if CI (n + 1) is a training frame then
22: Run UPDATE(A,C , {ru}) at the cloud for rates obtained from

all UEs in the previous operation frames
23: Set A(0) ← Aof , C (0) ← Cof

24: Run (A�,C�) = OPTIMIZE(A(0),C (0)) at the cloud
25: Run (Atf ,C tf ) = EXPLORE(A�,C�,F)
26: Set A← Atf and C ← C tf

27: Clear recorded rates at every BS
28: end if
29: end for

(C-step): C (k+1) ∈ argmax
C

Z∑

z=1

αz f̂z

(
A(k+1),C

)
, (18a)

s. t.
∑

u∈Uz

[(
P0 +A(k+1)(pb1−P0)

)T
C

]

uu

≤ Pmax
z , ∀1 ≤ z ≤ Z , (18b)

[C ]bu ∈ {0, 1}, ∀b ∈ B, u ∈ U . (18c)

Although the above subproblems are combinatorial, they
may be still be solved effectively using binary programming
or branch-and-bound solvers [35]. We must emphasize that the
use of BCD drastically reduces the size of the search space
from O(2|B|2|U|2), for the joint optimization optimization in
P1R , to O(2|B||U|) for each BCD iteration. Moreover, we can
further seek sufficient conditions on the approximation func-
tions f̂u . For instance, when the learning function is bilinear
in A and C, and the coordination penalty matrix consists of
integers values, then linear program relaxation of these sub-
problems is optimal or close to optimal [35]. In the future,
we will investigate efficient solution methods and relaxations
for P1R . This current work, however, is aimed at showing
the usefulness of this approach, rather than its large-scale
implementation.

Moreover, not being able to show the local optimality is a
known downside of almost all first-order methods (including
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BCD) in a nonconvex landscape. Indeed, the iterative algo-
rithms may converge to a saddle point, which is stationary
but neither local maxima nor minima. However, recent studies
showed that the gradient noise in the stochastic (mini-batch)
gradient along and the use of the perturbed gradient descent
method, as we have used in our work, are efficient approaches
to escape first-order saddle points [36].

Let Aof and C of denote the association and coordination
matrices for operation frames, Atf and C tf denote the associa-
tion and coordination matrices for a training frame, and A(k)

and C (k) denote the association and coordination matrices
at iteration k of BCD. Algorithm 2 is a pseudo-code of our
hybrid solution approach. Below, we show the monotonically
increasing nature of the BCD updates.

Lemma 1 (Convergence of BCD): Let f̂z be continuous
biconcave in a and C. Then, the BCD updates in (17)
and (18) satisfy f̂z (A

(k),C (k)) ≤ f̂z (A
(k+1),C (k)) ≤

f̂z (A
(k+1),C (k+1)). Moreover, the updates converge to a

limit point limk→∞ f̂z (A
(k),C (k)).

Although the convergence of BCD updates to a limit point
is shown using standard BCD results, establishing that the
limit point is stationary with respect to P1R is more challeng-
ing. Indeed, the coupling between a and C in constraint (16c)
implies that the conventional BCD convergence cannot be
applied to show that limk→∞ f̂z (A

(k),C (k)) is a stationary
point of P1R .

C. Training Frames

The OPTIMIZE function of the server will be re-executed
before and after every training frame. The purpose of these
frames is to dynamically refine the current rate models and
thereby find a better association and coordination solution.
Naturally, we expect a high frequency of training frames in the
first few association periods (as we assume no a priori knowl-
edge of the network), while this frequency can be decreased as
we obtain more knowledge on the rate models. In the presence
of non-stationary environments, where the rate distributions
are changing over time, we may need to add enough training
frames to enable the tracking functionality. In Section IV-E, we
numerically investigate how many training frames are required
to find a close-to-optimal solution after a change in the number
of UEs.

Before every training frame, the server gets all the new rate
measurements, updates its models, and re-executes the BCD
procedure. It then runs a randomized policy on a set of fea-
sible solutions F ⊆ {0, 1}|B|×|U| × {0, 1}|B|×|U| and returns
one association and one coordination matrix to be explored in
the following training frame. After this exploration, the cloud
updates the rate models and checks whether there is a new
“reliable” solution to be applied in the operation frames. This
reliability can be measured in terms of some predefined con-
fidence bounds on the objective function. The consequence
of this conservative approach is protecting UEs from service
interruption due to unsure A and C.

D. Initializations

We underline the importance of initializing both the
UPDATE procedure and the OPTIMIZE function. More

specifically, we discuss a “good” starting point to speed up
learning {ru}, and initial solutions A(0),C (0) to the BCD
algorithm.

1) Rate Model: We first observe that severe path-
loss, blockage, and directionality substantially reduce
the interference footprint of mmWave networks in both
cellular [31] and ad hoc [37] settings. In this case, we can use
the well-known Gaussian approximation for the interference
by an i.i.d. realization of a Gaussian process [38]. In
particular,

Î
(2)
bu =

∑

i∈Bz\{b}
Î
(4)
i ,u , Î

(3)
bu =

Z∑

k=1
k �=z

∑

i∈Bk\{b}
Î
(4)
i ,u , (19)

where Î
(4)
i ,u :=

∑
j∈Ai

E[λi |(wUE
u )HH iuw

BS
ij |2] denotes the

interference from unintended BS i( �= b). We can now prove
the following proposition.

Proposition 1: Let A and C be given, [A]bu = 1, Nbu = 1,
θUE
bu and θUE

iu be AoA of the LoS links between UE u and
BSs b and i, respectively. Let Liu = E[|giun |2] for n = 1
(LoS path). Then,

Î
(4)
i,u =

⎧
⎨

⎩
NBSNUELiuρ

Tx

∣∣∣∣sinc
(

NUE(θUE
bu −θUE

iu )
2

)∣∣∣∣, if [C ]iu = 0

0, otherwise,

(20)

where sinc(x) is sin(x)/x for x �= 0 and 1 for x = 0.
Notice that (20) is valid for Nbu = 1, namely single path

between BS b and UE u. However, we have numerically
observed that (20) indeed leads to a very good initialization of
the rate models, which could be due to the sparse scattering
characteristic of the mmWave systems.

From the definition of RZF, Î
(1)
bu = 0 and ρ̂Rx

bu =

NBSNUELbuρ
Tx for any feasible coordination solution in

which a BS obtains the CSI of its associated UEs. Using (20),
we can also simplify the expressions of Î (2)

bu and Î
(3)
bu in (19).

Employing these expressions, the cloud server can initialize
the rate models for every association and coordination matrices
A and C with one of the following three scenarios:
• Full topological knowledge: If the cloud server knows a

priori Liu , θUE
bu and θUE

iu for all i,b,u such that [A]bu = 1
and [C ]bu = 0, then it substitutes (20) into (19), and sets
Î
(1)
bu = 0 and ρ̂Rx

bu = NBSNUELbuρ
Tx.

• Partial topological knowledge: If the cloud server knows
a priori only Liu for all i ∈ B and u ∈ U , then it substi-
tutes Î (4)i ,u = NBSNUELiuρ

Tx if [C ]iu = 0 and otherwise
0. Note that we have used | sinc(x )| ≤ 1 for all x ∈ R.
Also set Î (1)

bu = 0 and ρ̂Rx
bu = NBSNUELbuρ

Tx.
• No topological knowledge: In this case, the cloud

server initiates the learning process by I
(1)
bu (A,C ) =

I
(2)
bu (A,C ) = I

(3)
bu (A,C ) = 0 for all b,u,A,C. In

this case, our initialization reduces to the well-known
interference-free assumption [8], [32], [39]. Moreover, we
set ρ̂Rx

bu = NBSNUEρ
Tx for all BS and UE pairs.

After the initialization, the cloud server gradually updates
the rate models with any update in the dataset through the
UPDATE procedure of Algorithm 1.
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2) BCD Solver: To initialize the BCD iterations for the very
first time, we use the INITIALIZE function (in Algorithm 1)
with one of the following options:
• Full/partial topological knowledge available: We use the

following rule as an approximation of the strongest BS
association. For every z and u ∈ Uz , [A(0)]bu = 1 for
b ∈ argmaxb∈Bz Lbu . We then set C (0) = A(0).

• No topological knowledge available: We randomly allo-
cate UEs to BSs within the same operator. We then set
C (0) = A(0).

In the subsequent frames, we initialize the BCD solver by
the current association and coordination matrices used in the
operation frames.

E. Illustrative Numerical Results

In this section, we numerically investigate the performance
of our proposed spectrum sharing approach. We use the
same network as that in Table II, a CI of 1 ms, and two
antenna configurations, small (NBS = 8,NUE = 2) and large
(NBS = 64,NUE = 16). The network is stationary during
the simulation, so that the optimal association and coordina-
tion are fixed. In this case, the optimal performance of the
solutions are presented in Table II.

For the learning task inside the UPDATE procedure, we use
a fully-connected deep neural network with 1 input layer hav-
ing 2|B||A| nodes, 5 hidden layers each having 20 nodes, and
one output layer having |U| nodes. We use a quadratic loss (for
the regression task) and train the neural network with back-
propagation, mini-batch gradient method with a mini-batch
size of 10 samples [40], and the ADAM optimizer for adaptive
step-size [41]. To ensure escaping the first-order saddle points,
we have also slightly perturbed gradients for a few times once
the iterations stall [36]. Notice that the input layer takes a con-
catenation of the vectorized form of A and C, and the output
layer returns the regression results for {r̂u}u .3

For the INITIALIZE function, we assume the availabil-
ity of the full topological knowledge, so the location of all
nodes and path-loss of all links are available to the cloud.
For the EXPLORE function, we restrict the set of feasible
association by limiting the cell-size to 150 meters. This is a
reasonable assumption in mmWave networks, due to severe
path loss and a dense BS deployment. Moreover, we enforce
that every BS should estimate the effective channel toward
its associated UEs. Moreover, to improve the exploitation, we
gradually decay exploration parameter ε by setting ε← 0.9×ε
after every 1000 CIs. Finding the optimal decrement rate for
ε or even developing a deterministic exploration policy are
interesting topics for future work. We have considered two

3We have selected this learning model as it was easy enough to train and
expressive enough to model the rate function with good accuracy. Moreover,
it offers enough generalization to handle the dynamic number of BSs and
UEs, as numerically verified in the extended version of the manuscript [25].
However, these choices are not unique, and we believe that some other
functional approximation and training techniques (e.g., other neural network
architectures or training algorithms) may be useful as well. Recall that the
main contribution of this work is to develop a hybrid approach and learning-
friendly architecture for spectrum sharing in mmWave networks. A detailed
comparison of the impact of various functional approximation techniques (e.g.,
other neural network architectures or training algorithms) is an interesting
future work.

benchmarks: closest BS association and Oracle (upper bound
on performance). In the first benchmark, every UE is served
by the closest BS. In this case, a BS acquires CSI of only its
associated UEs in every CI (so no inter-BS coordination). The
Oracle benchmark shows the performance of the solution of
the pure model-based approach, P1, given also in Table II, in
which the cloud server needs perfect CSI of all channels in the
network. Although we were not able to find any state-of-the-art
approaches for our problem setting, we should emphasize that
their potential performance would respect our benchmarks. As
we shall see, the performance of our approach is very close
to that of the Oracle in most cases.

Fig. 5(a) illustrates the instantaneous network sum rate of
our hybrid approach.4 From this figure, the envelope of the
sum-rate is increasing with CI index. Interestingly, we also
observe that sum-rate values converge to the Oracle, which
suggests that Algorithm 2 is asymptotically optimal in this
example. This convergence behavior validates our earlier dis-
cussions regarding the importance of initialization for the
learning function; see Section IV-D. We should emphasize that
the particular propagation characteristics of mmWave networks
allow for that initialization. Observe that these conclusions
also hold for large antenna scenario, where the increased sum-
rate is due to a reduction in interference – which is in turn
due to the increased directionality. Moreover, notice that the
fluctuations in Fig. 5 are normal due to the i.i.d. realizations
of the small-scale fading in every CI and the randomness in
the channel estimation error.

Fig. 5(b) shows minimum UE rate for the same numerical
setup, where the above conclusions still hold. Furthermore, the
increased variance of the fluctuations is a result of looking
at the minimum rate, which has inherently more randomness
than the sum-rate. Surprisingly, Fig. 5(b) also reveals that
Algorithm 2 offers good robustness and fairness (with respect
to the minimum rate), although the sum-rate is the objective
that is maximized. Finally, our approach substantially outper-
forms the closest-BS association in terms of both the network
sum-rate and the minimum rate of UEs. The gain is mainly
due to 1) coordination in the small antenna regime, where the
interference may be stronger, and 2) load balancing over the
network in the larger antenna regime, where the interference
may be less dominant.

V. FURTHER DISCUSSIONS AND FUTURE WORKS

A. Performance in the Large Antenna Regime

In this subsection, we evaluate the asymptotic behavior of
spectrum sharing when the number of antennas grows large.
It was shown in [8] that the array response vectors at the BS
and UE, i.e., {aBS(θ)}θ and {aUE(θ)}θ form an orthonormal
basis, which can serve as orthogonal spatial signatures of the
BSs and UEs, as NBS and NUE grow large. Moreover, in this
regime, there exist infinitely many spatial signatures (corre-
sponding to different values of θ). Thus, multiuser interference
vanishes as a result of assigning different signatures to

4Extended version of this paper includes more numerical results on the
scalability of our method and the performance in the presence of dynamic
number of UEs [25].
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Fig. 5. Illustration of the rate performance of our hybrid approach with
Pmax
z = 115. The dashed black line in (a), Oracle, corresponds to the

solution of pure model-based approach, shown in Table II.

different UEs and BSs. In the asymptotic regime, we can
show using similar steps as those in [8, Proposition 1] that
the following holds:

Remark 3: Suppose that a BS has perfect CSI toward
its associated UEs. The interference components, formulated
in (9)–(11), vanish almost surely as either NBS → ∞ or
NUE →∞.

Remark 3 suggests that we can ignore the intra- and inter-
operator coordination completely, and consequently P1 and
its distributed variant (introduced in Section III-B) yield the
same optimal solution. Table II confirms the same trend in the
finite antenna regime, where increasing the number of anten-
nas reduces the contributions of coordination on reducing the
interference components. Notice that in reality, the perfect CSI
assumption of Remark 3 may not hold, leading to a resid-
ual sporadic strong interference [37]. Consequently, we need
some level of coordination to tame strong interference terms.
However, this mandatory level of coordination at the mmWave
bands is much less than that at the sub-6 GHz bands.

B. Imperfect CSI and Hardware

Although this work alleviates the need for a complete
CSI knowledge of the entire network, through the learn-
ing functionality, the BSs should have access to error-free
effective channels of some selected UEs. However, CSI is
estimated using pilots and will inevitably have some esti-
mation errors. These effects are also compounded by the
limited number of RF chains in mmWave MIMO, and quan-
tized analog precoding/combining. But there have been great
strides in efficient methods for channel estimation (exploiting
sparsity [42] or reciprocity [30]), and hybrid precoding that

closely approximates fully digital solutions [29]. Moreover,
in a distributed setting, CSI acquisition (at the network level)
may be done using so-called Forward-Backward training meth-
ods to estimate the CSI in a fully distributed manner [43].
These methods, however, may further increase the coordina-
tion cost. Sensitivity analysis of the proposed hybrid scheme to
the estimation error in the effective channels, convergence with
feedback quantization [44], and the extension of our approach
toward robust learning are important future directions.

C. Signaling and Computational Overheads

In our approach, we have two sources of signaling. In every
CI, we need to acquire CSI from every BS b to UE u for which
[C ]bu = 1, whereas the Oracle need CSI for each BS-UE
pair. This significantly fewer number of pilot transmissions
is feasible due to our rate approximation. To enable it, the
cloud collects the current rate measurements from all BSs, re-
executes the BCD solver, and announces the new association
and coordination (only if they have been changed). This pro-
cess should be done twice for every training frame, once before
the training frame and once after it. Therefore, besides some
CSI estimation in every CI, the signaling/communication over-
head of the proposed hybrid scheme is mainly dominated by
the number of training frames. The frequency of these frames
is inevitably large in the first few CIs since we assume no a
priori knowledge about the network. However, we can grad-
ually decrease the exploration frequency by replacing several
training frames with operation frames. The lower bound on the
exploration frequency depends on many factors, including the
dynamics of the topology and the fluctuations of the network
load, whose characterization is an interesting topic for future
works.

As for the computational complexity, the main contribut-
ing factor is solving the two subproblems using BCD (see
Algorithm 1). Although this entails solving two combinatorial
problems, one can develop low-complexity solutions, e.g., via
relaxations or decompositions. Moreover, the BCD solution is
carried out at the cloud server which has large computational
resources. Another contributing factor is the matrix inversion
in the computation of the RZF precoder at each BS, which
scales cubically with the number of UEs served by the BS.

D. Dynamic Number of BSs/UEs

Our main algorithms have been developed for a fixed num-
ber of BSs and UEs. In a real network, however, some UEs
may join and leave the network, and some BSs may be turned
on or off to save energy.

We should highlight that the special characteristics of
mmWave communications (directionality, blockage, and prop-
agation loss) would substantially reduce the impact of farther
BSs/UEs [19]. In other words, adding/removing some BSs or
UEs will have only local effects, impacting the rate models of
only a few surrounding UEs. In this situation, the INITIALIZE

function can enable fast adaption to dynamic U and B using
a few new samples. In the case of having new UEs, we use
the INITIALIZE function for both finding a good initialization
for the rate function of the new UEs and for adding some
interference terms to the rate models of the existing UEs.
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In the case of smaller U , we can remove their impacts on
other UEs by removing their contributions to the rate function,
approximated by the INITIALIZE function.

In the light of the above discussion, we argue that the
complexity of the functional approximator (e.g., deep neural
network) should be manageable in a real network. The main
reason is that the cloud server trains an individual approxima-
tor for every UE. In our experiments, our neural network was
already over-parameterized. Such a network can easily approx-
imate more complicated rate functions, which may happen for
larger |U| and |B|, as we have shown in our experiments over
a much bigger network; see Figs. 6 and 7 of the extended
version [25]. Moreover, due to the interference locality at the
mmWave networks [19], a reasonable change in the number of
UEs or BSs does not substantially change the hardness of the
rate function (to be approximated). Finally, we reemphasize
the fact that current work is intended as a proof of concept
of usefulness and viability of the proposed hybrid approach.
Several of the issues raised by the reviewers (e.g., scalability
and complexity reduction) will be part of our future research.

VI. CONCLUSION

In this work, we investigated the problem of spectrum
sharing in mmWave networks and argued the formidable
complexity of a pure model-based solution approach. As
a viable alternative, we proposed to complement it by a
data-driven approach to make the spectrum sharing problem
solvable in practical systems. In particular, the model-based
part chooses the beamforming and optimizes association
and coordination decisions, given a set of rate models. The
data-driven part continuously refines the rate models, main-
taining the optimality of our solution even in non-stationary
environments. The resulting algorithm balances the use of
training frames (designed to explore the solution space)
and operation frames (designed to exploit good solutions).
Our hybrid scheme has the same computational complexity
as the pure model-based approach while being robust to
insufficient signaling and missing CSI. Our numerical results
revealed large gains in network sum-rate while satisfying a
predetermined budget on the coordination cost.
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