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Abstract—In this paper, a reinforcement learning-based spatial
reuse scheme for wireless local area networks (WLANs) is
proposed and analyzed. In this scheme, when an access point
(or a station) overhears an on-going transmission, it decodes
the information in the frame header to identify the transmitter
and decides whether or not to exploit spatial reuse accordingly.
Specifically, it decides whether to stop receiving the remaining
part of the frame and start its own transmission or to refrain from
channel access until the detected transmission finishes. Through
the repeated update Q-learning (RUQL) algorithm, the agent
learns the optimal decision in the sense of reducing the media
access control layer delay. Moreover, we compare the proposed
scheme with the spatial reuse operation in IEEE 802.11ax, which
makes the spatial reuse decision only based on a binary identi-
fication of the detected interferer, i.e., whether it is in my cell
or neighboring cells. The proposed scheme, however, treats dif-
ferent interferers differently for exploiting spatial reuse. From
a theoretical perspective, we derive a theoretical bound on the
gains in the value function, i.e., the discounted sum of delay,
due to making non-binary identifications. Simulation evaluations
confirm that the proposed scheme achieves high throughput by
reducing the time of freezing backoff counter while not increasing
the time of failed transmissions.

Index Terms—IEEE 802.11ax WLAN, spatial reuse, stochastic
decision process, reinforcement learning, state partition.

I. INTRODUCTION

THE SIGNIFICANT growth in the number of wire-
less local area networks (WLANs) devices in recent

years [1]–[3] has resulted in the common occurrence of over-
lapping basic service sets (OBSSs), i.e., co-located WLANs
cells operating in the same frequency channel. In dense
OBSSs scenario, the throughput degradation becomes a severe
problem because concurrent transmissions among OBSSs
were not allowed in previous IEEE 802.11 standards, e.g.,
IEEE 802.11n, 11ac. In particular, an access point (AP) or
a station (STA) has to defer its channel access when it detects
the transmission of any other APs or STAs.
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Fig. 1. The OBSS_PD-based spatial reuse operation approved in the
IEEE 802.11ax. Interested readers may refer to [1]–[4] for further information.

The IEEE 802.11ax standard has approved a new operation
called the OBSS packet detect (OBSS_PD)-based spatial reuse
operation to improve spatial frequency reuse in high-density
scenario [1]–[4]. This operation improves spatial reuse by
allowing concurrent transmissions among OBSSs. As shown in
Fig. 1, once an AP or an STA has detected an on-going trans-
mission, it immediately identifies whether this transmission is
in OBSS or not. This identification is done by checking the
basic service set (BSS) color field in the frame header. If the
detected transmission is in OBSS and its interference power
is lower than a predefined threshold, i.e., OBSS_PD, the AP
or STA stops receiving the remaining part of the frame and
regards the wireless medium as idle, i.e., it is feasible to start
transmission.

This OBSS_PD-based spatial reuse operation, however,
has a major challenge. The challenge is that comparing the
interference power with the predefined threshold OBSS_PD
has limited predictive value in determining the success or fail-
ure of concurrent transmissions. In other words, a transmitter
can not guarantee that its receiver receives its transmis-
sion successfully under the interference from OBSS, even
if the interference is less than OBSS_PD. This results in
performance degradation since if packet loss occurs, the con-
current transmission would be nonsense and should not be
performed.

There are at least two reasons causing this unreliability of
the OBSS_PD-based spatial reuse operation. First of all, this
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TABLE I
PREVIOUS WORKS ON WLANS SPATIAL REUSE

Fig. 2. The OBSS_PD-based spatial reuse operation only identifies whether
the transmission is in my BSS or in OBSS. It treats interferers in different
OBSSs indifferently. In this example, it is desirable if AP 0 can identify
which interferer is transmitting before deciding whether or not to transmit
concurrently with that interferer.

operation only identifies whether a detected transmission is
in my BSS or in OBSS. It, however, treats interferers in dif-
ferent OBSSs indifferently. Consider the example in Fig. 2,
where AP 0 tries to send a packet to STA 0. OBSS AP 1
is close to STA 0 and OBSS AP 2 is far from STA 0. In
case (a), AP 0 detects the transmission of OBSS AP 1 whose
interference power is I. In case (b), AP 0 detects the trans-
mission of OBSS AP 2 whose interference power is also I.
Although the measured interference at AP 0 is identical in
cases (a) and (b), the receiver experiences different amounts of
interference power. Concurrent transmission with OBSS AP 1
is more likely to fail. Hence, it is desirable if AP 0 can identify
which interferer is transmitting before deciding whether or not
to transmit concurrently with that interferer. Besides the first
reason, another essential reason is that it is hard to establish
an accurate and universal model of the one-to-one correspon-
dence between interference power and packet loss probability
in the actual wireless channel [5], [6].

To overcome this challenge, in this paper, we formulate the
spatial reuse of WLANs as a stochastic decision process and
propose a learning-based spatial reuse scheme. The proposed
scheme has two distinctive features. First, the proposed scheme
utilizes the information in the detected frame header to iden-
tify the interferer and makes decisions accordingly. This solves
the problem in Fig. 2 in that the proposed scheme has the free-
dom of deciding whether or not to transmit concurrently with
a particular interferer, rather than setting a common thresh-
old to all OBSS interferers. Second, the proposed scheme
learns from past experiences of success or failure in concurrent

transmissions. The main merit of using learning-based scheme
is that it does not assume any prior knowledge of the cor-
respondence between the interference power and the packet
loss probability. Besides, the proposed scheme does not need
additional information report from the receiver other than
acknowledgment (ACK).

Moreover, in this paper, we theoretically analyze the
performance gains due to identifying interferers in exploit-
ing spatial reuse. The key idea of our analysis is to partition
the state space of the original decision process. Thereby, we
use the partitioned decision process to model the spatial reuse
operation where the agent does not identify interferers. By
calculating the deviation between the partitioned decision pro-
cess and the original decision process, we derive a theoretical
bound on the gains in the value function due to identifying
interferers.

The novelty and contributions of this work are as follows:
• A learning-based spatial reuse scheme which utilizes the

information in the detected frame header to identify the
interferer and makes decisions accordingly.

• We use a stochastic decision process and its partition to
model the spatial reuse operations where the transmitter
does and does not identify interferers, respectively. We
further calculate their deviation in Markov environment.

• By using this deviation, we derive a theoretical bound on
the gains in value function due to identifying interferers.

The remainder of this paper is organized as follows. Related
works are summarized in Section II. Stochastic decision pro-
cess formulation is presented in Section IV. The learning
algorithm is presented in Section V. Section VI theoretically
analyzes the gains in the value function due to identifying
interferers in exploiting spatial reuse. Evaluation results are
presented in Section VII. Section VIII concludes the paper.

II. RELATED WORK

Several previous works have been performed to improve
spatial reuse in dense WLANs. A brief comparison between
related works and this paper is presented in Table I.

A category of previous works [7]–[10] discusses the optimal
setting of the clear channel assessment (CCA) threshold, i.e.,
OBSS_PD. Recent works [11]–[13] that use stochastic geom-
etry approach to study the optimal CCA threshold also belong
to this category. This category of works mainly aims at
providing theoretical insights. They develop theoretical mod-
els of achievable throughput and study the optimal trade-off
between spatial reuse and interference mitigation. The optimal
CCA threshold is usually derived by considering homogeneous
network density or regular topologies.
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Another category of works proposes to dynamically adapt
CCA threshold to network conditions. Two survey papers of
adaptive CCA methods can be found in [3], [18]. An adaptive
CCA method in which an AP adjusts CCA threshold according
to the packet error rate (PER) is proposed in [20]. Dynamic
sensitivity control (DSC) that adjusts CCA threshold based
on the communication distance also belongs to this category.
Evaluations of DSC-like methods are presented in [14]–[17].
All these schemes, however, treat interferers in different OBSS
interferers indifferently. As shown in Fig. 2, more desirable
operations can be achieved by identifying which interferer is
transmitting.

Reference [19] is similar to this paper in that it proposes
to adapt the CCA threshold to individual OBSS interferer.
The scheme in [19], however, is model-based and requires the
prior knowledge of the correspondence between interference
power and packet loss probability. For example, it assumes
that STAs are aware of the required signal-to-interference ratio
(SIR) for successful receptions. In practice; however, it is
often hard to establish an accurate and universal model of
such correspondence [5], [6]. In contrast, our proposed scheme
is learning-based and does not require such prior knowledge.
Moreover, the scheme in [19] requires periodically information
reports between the transmitter and the receiver, which is not
supported in the IEEE 802.11ax standard. In contrast, our
proposed scheme only needs modifications on the transmitter
side whereas the receiver does not require any modifications
beyond the IEEE 802.11ax standard.

III. PRELIMINARIES: EARLY IDENTIFICATION OF

INTERFERING TRANSMITTERS

Before starting to describe the proposed scheme, in this sec-
tion, we explain how to utilize the information in the detected
frame header to identify the interferer [4].

In IEEE 802.11ax, the physical (PHY) preamble contains
a mandatory high efficiency signal-A (HE-SIG-A) field. It
lasts for 16 μs and provides some basic information about the
frame. One information that we are interested in is the BSS
color. It is a 6-bit numerical identifier of BSSs. An AP and
all its associated STAs share the same BSS color, while co-
located co-channel APs use different BSS colors. Besides the
BSS color bits, the HE-SIG-A field also contains information
showing whether the frame is sent in downlink or uplink.

Note that, when an AP or an STA overhears a frame, it
always first decodes the PHY layer preamble. By decoding
the BSS color bits in the preamble, it can make an early iden-
tification of which BSS the frame belongs to. Furthermore, if
the detected frame is sent in downlink, we can uniquely iden-
tify the transmitting AP, since there is only one AP in each
BSS. Note that, this identification is done before we start to
receive the remaining part of the frame.

IV. A STOCHASTIC DECISION PROCESS FORMULATION

OF SPATIAL REUSE

In this section, we formulate the spatial reuse in WLANs
as a stochastic decision process. We focus on the spatial reuse
from a single-agent perspective. In particular, we consider an

Fig. 3. State transition diagram. For illustrative simplicity, we mainly show
the transitions of the MAC state ωMAC.

AP that is sending packets to an associated STA. We treat
all other interferers as a part of the environment. Note that,
although we consider the AP as the transmitter and the STA
as the receiver, it works in the same manner if the transmitter
is an STA. Hereafter, we refer to the AP under consideration
as the agent.

A stochastic decision process is defined as a four-tuple
(Ω, A , q ,R), where Ω denotes the set of states and A(ω[t ])
denotes the set of possible actions under state ω[t ] ∈ Ω. When
the agent selects an action a[t ] ∈ A(ω[t ]) at instant t, the
state transits to ω[t + 1] ∈ Ω according to a probability dis-
tribution given by qt . The agent receives a stochastic reward
R(ω[t ], ω[t + 1], a[t ]) at the same time.

The Markov decision process (MDP) is a special type of
stochastic decision process where the state transitions satisfy
the Markov property. Let q(ω[t ], ω[t + 1], a[t ]) denote the
probability that the state transits to ω[t + 1] when the agent
selects an action a[t ] ∈ A(ω[t ]) at instant t.

Note that, in practice, the environment is not a station-
ary MDP due to many factors, e.g., topology changes, STAs
arrivals or departures, the existence of multiple agents. In these
cases, the probability distribution qt is time-varying. In this
work, we only assume stationary MDP for the theoretical anal-
ysis presented in Section VI. The simulation evaluations in
Section VII, however, evaluate the proposed scheme in var-
ious scenarios including time-varying topology and multiple
agents scenarios.

A. State

As shown in Fig. 3, the state space Ω is defined from the
union and the Cartesian product of the media access control
(MAC) state space ΩMAC, the backoff stage state space ΩBS,
the channel state space ΩCH, and the data rate state space
ΩDR.

The MAC state space ωMAC[t ] ∈ ΩMAC has four possi-
ble values, i.e., ΩMAC := {S0,S1,S2,S3}. State S0 denotes
that the agent is ready to contend for channel access. State S1
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denotes the state of backoff, where the agent keeps on sens-
ing the channel while reducing the backoff counter. State S2

denotes the state that the agent has detected the preamble of
a transmission. State S3 is an absorbing state, which denotes
that the packet has been successfully received.

The backoff stage state ωBS[t ] ∈ ΩBS denotes the cur-
rent backoff stage, i.e., the times of consecutive transmission
failures at present. In IEEE 802.11 WLANs [21], the con-
tention window size doubles after a failed transmission and
is reset after a successful transmission. We consider ΩBS :=
J := {0, 1, . . . , Jmax}, i.e., the contention window size does
not grow further after Jmax times of consecutive transmission
failures [21].

The channel state ωCH[t ] ∈ ΩCH denotes the index of the
transmitting interferer that has been identified by the agent.
Note that, the agent keeps on sensing the channel during the
backoff period. If the agent detects a transmission, we assume
that the agent immediately identifies the interferer through
checking the information in the detected frame header. Note
that, if multiple interferers are transmitting preambles at the
same time, there are two possibilities. Either the preamble
with the strongest received power is decoded or any pream-
ble is unable to be successfully decoded, i.e., preamble error.
This depends on whether the SINR requirement for decod-
ing the preamble is met. Note that, the preamble is modulated
using the lowest modulation and coding scheme (MCS), i.e.,
BPSK. [21]

The channel state space is defined as ΩCH := {0} ∪ N :=
{0, 1, 2, . . . ,N }, where ωCH[t ] = 0 denotes that the channel
is idle or the interferer is unable to be identified.

The data rate state ωDR[t ] ∈ ΩDR denotes the currently
chosen data rate for transmission. We consider ΩDR = K :=
{1, . . . ,K}, where K denotes the number of available MCS.

As shown in Fig. 3, the backoff stage state ωBS is defined
if the MAC state is S0, S1, or S2. The channel state ωCH and
data rate state ωDR are defined if the MAC state is S1 or S2.
In summary, the entire state space Ω is defined from the union
and the Cartesian product of four spaces as follows:

Ω := ({S0} × ΩBS)
∪ ({S1,S2} × ΩBS × ΩCH × ΩDR) ∪ {S3}. (1)

B. Description of State Transitions

The stochastic decision process denotes the entire process
of transmitting a packet as illustrated in Fig. 3. When a new
packet arrives at the head of the transmission queue, the state
is initialized as ωMAC[0] = S0, ωBS[0] = 0. When the packet
is successfully received, the state transits to S3. State transi-
tion happens when following events occur: the agent begins
contending for the channel access, the agent detects an on-
going transmission, the agent makes a CCA decision, or the
agent transmits.

• When the MAC state is S0, i.e., when the agent is ready
to contend for channel access, the agent selects a data
rate from A(ωMAC = S0) for transmission. Then, the
MAC state transits to S1, the channel state transits to 0,
and the data rate state transits to the chosen data rate.

• When the MAC state is S1, i.e., during the backoff period,
the agent keeps on carrier sensing while reducing the
backoff counter. If the agent detects the preamble of a
transmission, the MAC state transits to S2 and the channel
state transits to the index of the detected interferer.

• When the MAC state is S2, the agent decides whether to
wait until the detected transmission ends or to transmit
concurrently with the identified interferer i. If the agent
chooses to wait, the agent freezes the backoff counter
until the detected transmission ends. After that, the MAC
state transits from S2 to S1. The channel state ωCH is
reset to 0. On the other hand, if the agent chooses to
transmit concurrently with interferer i, the MAC state
transits from S2 to S1, the channel state ωCH stays to
be the index of the identified interferer. In this case,
the agent also adjusts the data rate for concurrent trans-
mission. The data rate state transits to the re-selected
data rate.

• The agent starts transmission when the backoff counter
is reduced to 0. According to the transmission results,
the MAC state transits to either S0 or S3. If the trans-
mission has failed, the MAC state transits to S0 and the
backoff stage ωBS[t ] transits to min(ωBS[t ] + 1, Jmax).
If the packet is successfully transmitted, i.e., the agent
has received the ACK from the receiver, the MAC state
transits to S3.

The MAC state S3 is an absorbing state with zero reward.
It indicates that the packet has been received successfully.
The learning episode ends when the MAC state reaches S3

and there is no further state transition. When a new packet
arrives at the head of the transmission queue, another learning
episode begins and the state is initialized as ωMAC[0] = S0,
ωBS[0] = 0.

C. Action

The set of available actions depends on the MAC state. First
of all, when the MAC state is S0, i.e., when the agent is ready
to contend for channel access, the agent needs to select a data
rate for transmission, i.e., A(ωMAC = S0) = K .

Second, when the MAC state is S2, i.e., when a transmis-
sion is detected, the agent chooses whether or not to ignore
the detected transmission. If the agent chooses to ignore the
detected transmission, i.e., to transmit concurrently with inter-
ferer i, the agent also adjusts the data rate for concurrent
transmission. Hence, A(ωMAC = S2) = {0}∪K , where a = 0
means to wait until the interferer ends its transmission.

Finally, when the MAC state is S1, i.e., when the back-
off counter has not been reduced to zero, the only avail-
able action is to continue carrier sensing. We denote it as
A(ωMAC = S1) = {0}.

D. Metric and Reward

The metric that we use to evaluate a spatial reuse operation
is the MAC layer service time [22] of a packet. Formally, the
MAC service time is defined as the duration from the instant
when a packet arrives at the head of the transmission queue
and the agent begins contending for the channel, to the instant
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when the agent has received an ACK from the receiver [22].
It comprises four parts. Given that the agent has successfully
transmitted a packet after J times of consecutive packet trans-
mission failures, where J ∈ N≥0, the MAC service time of a
packet includes:

• the duration of J times of failed transmissions,
• the duration of the successful transmission,
• the backoff duration before each transmission attempt,
• the duration that the agent freezes its backoff counter.

The MAC service time of a packet is formulated as fol-
lows [22]:

D =
J−1∑

j=0

Cj

︸ ︷︷ ︸
J times of failed

transmissions

+ TJ︸︷︷︸
Successful

transmission

+
J∑

j=0

Bj

︸ ︷︷ ︸
Backoff

countdown

+
Y∑

i=1

Fi

︸ ︷︷ ︸
Freeze

, (2)

where Cj , TJ , Bj , Y, and Fi are stochastic values. Here,
Cj denotes the duration of the unsuccessful transmission in
backoff stage j, which includes the duration of transmitting
the header, data, ACK timeout, and DIFS [21]. TJ denotes
the duration of the successful transmission, which includes
the duration of transmitting the header, data, ACK, SIFS, and
DIFS [21]. Bj denotes the backoff countdown duration in
backoff stage j. Y denotes the number of times that the agent
has freezed its backoff counter. Fi denotes the duration that
the agent freezes its backoff counter.

Note that, the MAC service time D of a packet is exactly the
duration from the initial state to the absorbing state as shown in
Fig. 3. Since we are interested in reducing the MAC service
time, in this paper, we consider the reward as the negative
value of the MAC service time.

The agent measures the duration of each event and calcu-
lates the corresponding reward when state transition happens.
In particular, the agent receives a reward −Bj −Cj when the
transmission failed, i.e., when the MAC state transited from
S1 to S0. The agent receives a reward −BJ − TJ when the
transmission succeeded, i.e., when the MAC state transited
from S1 to S3. The agent receives a reward −Fi when it has
frozen the backoff counter to wait until the detected transmis-
sion ends, i.e., when a = 0 and the MAC state transits from
S2 to S1.

V. LEARNING-BASED SPATIAL REUSE OPERATION

The ultimate goal of the learning algorithm presented in
this section is to find the policy of making spatial reuse deci-
sions such that the maximum discounted sum of rewards can
be achieved. Intuitively speaking, we hope the agent can learn
to transmit concurrently with those OBSS interferers whose
interference is tolerable at the receiver. On the other hand, we
hope the agent can learn to refrain from transmitting concur-
rently with those interferers whose interference is not tolerable
at the receiver. Since we have already formulated the problem
as a stochastic decision process, we can apply reinforcement
learning algorithms to solve this problem.

A. Learning Algorithm

A policy π is a solution concept of the stochastic decision
process. It is a mapping from the state space Ω to the action

space A(ω[t ]). Given a state ω0 and a policy π, let V π(ω0)
denote the expectation of the discounted sum of reward the
agent would receive within one episode, i.e.,

V π(ω0) = E

[ ∞∑

t=0

γtR[t ]
∣∣∣ω[0] = ω0

]
, (3)

where γ ∈ [0, 1) is the discounted factor. Note that, in the
considered stochastic decision process, the physical meaning
of V π(ω0) is the negative discounted value of the MAC ser-
vice time, which we hope to maximize. The discounted factor
γ indicates how important future rewards are to the current
state. Generally, a large γ yields a better outcome after con-
vergence, but it requires longer time to converge [23]. The γ
is often set to a value close to one in related studies, e.g., [23].
In this paper, we consider γ = 0.99.

It is known that the Q-learning (QL) algorithm derives the
optimal policy in a stationary MDP environment [24]. The
proposed scheme, however, does not directly apply the con-
ventional QL as the learning algorithm. The reason is that the
real environment is not always stationary due to many fac-
tors, e.g., changes in communication distance, new interferers
arrivals, the existence of multiple agents.

To tackle the non-stationarity, we make modifications to
the QL algorithm. First, we incorporate the technique of
repeated update Q-learning (RUQL) [25] to solve the policy
bias problem of the conventional QL algorithm. As pointed
in [25], the policy bias problem causes performance degra-
dation in noisy non-stationary environments. The policy bias
problem refers to the problem that, those optimal actions with
temporal lower values are executed less often during the learn-
ing process in the conventional QL algorithm. As a result,
the values of those actions are updated less often. This leads
to performance degradation since the environment may have
already changed before the agent learns the optimal action.

The basic idea of RUQL is to adjust the learning rate in the
conventional QL algorithm so that less-chosen actions have
a higher learning rate. Let Q(ω, a) denote the state-action
value corresponding to state ω and action a. Given the current
state ω[t ], the selected action a[t], the new state ω[t + 1], and
the associated reward R[t], the RUQL updates the state-action
value Q(ω, a) according to the following expression [25], i.e.,

Q(ω[t ], a[t ]) ← (1− zn)Q(ω[t ], a[t ])

+ zn

[
R[t ] + γ max

a′ Q
(
ω[t + 1], a ′

)]
, (4)

where γ is the discounted factor and zn is the learning rate at
episode n. The learning rate zn is given as follows [25]:

zn = 1− [1− αn ]
1

πn (ω[t],a[t]) , (5)

where αn denotes the learning rate in the conventional
QL algorithm and πn(ω[t ], a[t ]) denotes the probability of
choosing action a[t] at state ω[t ] at episode n.

In this paper, we consider the ε-greedy exploration
policy, i.e.,

πn(ω, a) =
{

1− ε, a = arg maxa′∈A(ω) Q
(
ω, a ′

)
;

ε, a �= arg maxa′∈A(ω) Q
(
ω, a ′

)
,

(6)
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where ε is a small constant that denotes the exploration rate.
Note that, ε controls the trade-off between exploration and
exploitation. Given a higher ε, the agent explores the action
space more aggressively. On the other hand, it cannot guaran-
tee acceptable run-time performance since non-greedy actions
will be taken frequently [23]. In this paper, we consider
ε = 0.1.

Moreover, in non-stationary environment, it is also impor-
tant that the agent can respond quickly to environment
changes. The learning rate 0 < α < 1 plays an important
role in determining the learning speed of the agent. In fact,
there is a trade-off between the stability and the speed of the
learning algorithm [25], [26]. If α is small, the agent cannot
respond quickly to the environment changes. If α is large,
the algorithm may not be robust and stable under stationary
environment.

In this paper, we consider that the learning rate α satisfies
the following two conditions:

∑∞
0 αn =∞ and

∑∞
0 α2

n = 0.
Specifically, we consider αn = 1000/(1000+n) in simulation
evaluations, where n is the learning episode. It is worth men-
tioning that, if this condition is satisfied, the RUQL guarantees
stability, i.e., convergence, in stationary MDP environment
[25]. On the other hand, we also let the agent reset the learning
episode n = 1, if n is large and the agent detects any arrivals
of new interferers or significant changes in the topology. This
can be detected by periodically measuring the received signal
strength indicator (RSSI) of neighbors [27].

B. Transmit Power Restriction

We consider that the transmit power of the agent is restricted
when the agent starts a concurrent transmission. The reason
of restricting transmit power is to protect the on-going trans-
mission in OBSS from being corrupted by the newly issued
concurrent transmission of the agent. Note that, the transmit
power restriction is also considered in the OBSS_PD-based
spatial reuse operation as shown in Fig. 1 [1]–[3].

When the agent decides to transmit concurrently with an
on-going transmission, we consider the transmit power of the
concurrent transmission is given as follows:

p = min
(

Pref ,
PrefΘmin

I

)
, (7)

where Pref denotes the maximum possible transmit power
of the agent, Θmin = −82 dBm [21] denotes the default
CCA threshold of legacy devices, and I denotes the mea-
sured interference strength. The intuition of this rule is to
adjust the transmit power inversely proportional to the detected
interference strength. Note that if the agent does not detect any
on-going transmissions, it transmits with its maximum possible
transmit power.

VI. ANALYSIS OF GAINS DUE TO IDENTIFYING

INTERFERERS

As shown in Fig. 2, it is desirable if the agent can identify
which interferer is transmitting before deciding whether or not
to transmit concurrently with that interferer. In this section, we
introduce the concept of state aggregation and use this concept
to analyze the gains due to identifying interferers.

Fig. 4. The concept of state partition (or called state aggregation).

A. Preliminary: State Partition

We first introduce the concept of state partition (or called
state aggregation). The state partition is originated as an
approximate method to solve the MDP whose state space is
large [28], [29]. The intuition of the state partition is to aggre-
gate multiple similar states into meta-states to create smaller
state space. An illustration of the state partition is given in
Fig. 4, where 16 states are aggregated into 4 states. Thereby,
the optimal policy derived on the partitioned MDP can be con-
sidered as an approximate solution of the initial MDP. Since
the state space is smaller, the derivation is generally easier.

The definition of state partition is given as follows:
Definition 1 [29]: An MDP Ψ̃ = (Ω̃, A , q̃ , R̃) is an

δ-homogenous partition of MDP Ψ = (Ω, A , q ,R) if there
exists a mapping φ : Ω→ Ω̃, such that φ is surjective and for
all ω ∈ Ω and a ∈ A the following conditions hold:
∣∣∣∣∣∣

∑

ω′′∈Ω̃

∣∣∣∣∣∣

∑

ω′:φ(ω′)=ω′′
q
(
ω, ω′, a

)− q̃(φ(ω), ω′′, a)

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ δ, (8)

max
ω′:φ(ω′)=ω

∣∣∣R(ω′, a)− R̃(ω, a)
∣∣∣

|R|max
≤ δ, (9)

where |R|max denotes the maximum achievable absolute value
of reward.

The metric δ ∈ [0, 1] describes how much the partitioned
MDP Ψ̃ deviates from the original Ψ. In this paper, we refer
to δ as the deviation between two MDPs. The constant |R|max

is a normalization factor such that |R|
|R|max

∈ [0, 1].
Let π̃∗ denote the optimal policy derived on the partitioned

MDP Ψ̃. It induces a policy on the original MDP Ψ as follows:

π̂∗(ω) := π̃∗(φ(ω)). (10)

The induced policy π̂∗ is an approximate solution of the real
optimal policy π∗ on the original MDP Ψ. It has been shown
in [29] that the value functions of π̂∗ and π∗ satisfies the
following property.

Theorem 1 [29]: Let Ψ̃ be a δ-homogeneous partition
of MDP Ψ, then the optimal policy in Ψ̃ induces an
2δ|V |max

1−γ -optimal policy in Ψ, i.e., ∀ω ∈ Ω

∣∣∣V π̂∗
(ω)−V π∗

(ω)
∣∣∣ ≤ 2δ|V |max

1− γ
, (11)
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Fig. 5. The MDP Ψ that represents the spatial reuse operation where agent
identifies interferers and treats different OBSS interferers differently. The
channel state space is ΩCH = {0, 1, . . . ,N}. In this illustration, there are
4 OBSS interferers, i.e., N = 4. For notational simplicity, we use a vector
(ωMAC, ωBS, ωCH, ωDR) to represent the state. We omit some states for
illustrative simplicity.

where |V |max is the maximal achievable absolute value of the
value function.

B. Analysis of Gains Due to Identifying Interferers

The main idea of our analysis is that we use an MDP
Ψ = (Ω, A , q ,R) to represent the decision process where the
agent identifies interferers and treats different OBSS inter-
ferers differently. On the other hand, we use its partition
Ψ̃ = (Ω̃, A , q̃ , R̃) to represent the decision process where
the agent does not identify interferers and only distinguishes
whether the interference power of the detected OBSS interferer
is above or below the OBSS_PD. Note that, we assume the
environment is stationary MDP only in this section. We do not
assume the environment to be stationary MDP in the learning
algorithm and in the simulation evaluations. The illustrations
of Ψ and Ψ̃ are shown in Figs. 5 and 6. For notational sim-
plicity, we use a vector (ωMAC, ωBS, ωCH, ωDR) to represent
the state. We omit some states for illustrative simplicity.

As shown in Figs. 5 and 6, the original channel state
ΩCH = {0, 1, . . . ,N } is partitioned into Ω̃CH = {0,L,H},
where ω̃ = 0 denotes that the channel is idle or the preamble
of the detected frame is unable to be decoded, ω̃ = H denotes
that the agent has detected the transmission of an OBSS inter-
ferer whose interference power is above the OBSS_PD, and
ω̃ = L denotes that the interference is below the OBSS_PD.
Hence, the partitioned state space Ω̃ is defined as follows:

Ω̃ := ({S0} × ΩBS)

∪
(
{S1,S2} × ΩBS × Ω̃CH × ΩDR

)
∪ {S3}. (12)

Let NL and NH denote the set of interferers whose aver-
age interference power to the agent is below or above the
OBSS_PD, respectively. Note that, NL and NH are two dis-
joint subsets of N , where N = NL∪NH and NL∩NH = ∅.
Hence, the mapping φθ,CH : ΩCH → Ω̃CH that maps the orig-
inal channel state space to the partitioned channel state space

Fig. 6. This partitioned MDP Ψ̃ represents the spatial reuse operation
where agent does not identify interferers and only distinguishes whether the
interference power of the detected OBSS interferer is above or below the
OBSS_PD. The original channel state ΩCH = {0, 1, . . . ,N} is partitioned
into Ω̃CH = {0, L, H}. The states inside the same dashed boxes in Fig. 5
are partitioned together.

is given as follows:

φθ,CH(ωCH) =

⎧
⎨

⎩

0, ωCH = 0;
L, ωCH ∈ NL;
H, ωCH ∈ NH ,

(13)

where θ denotes the OBSS_PD. Therefore, the mapping
φθ:Ω→ Ω̃ that maps the original state space to the partitioned
state space is given as follows:

φθ(ω)

=
{

(ωMAC, ωBS, φθ,CH(ωCH), ωDR), ωMAC ∈ {S1,S2};
ω, ωMAC ∈ {S0,S3}.

(14)

Next, we introduce a series of parameters and analyze how
much the partitioned MDP Ψ̃ deviates from the original MDP
Ψ, i.e., the deviation δ.

Let τ0j ∈ [0, 1] denote the probability that the backoff
counter has been reduced to zero and the agent starts trans-
mission in an idle slot time in backoff stage j. Given the
current contention windows size CWj , this probability can
be approximately calculated as follows [30]:

τ0j =
2

1 + CWj
. (15)

Let pik ∈ [0, 1] denote the expected packet error probability
when the agent transmits concurrently with interferer i ∈ N
using data rate k ∈ K . Specifically, let p0k ∈ [0, 1] denote
the expected packet error probability when the agent transmits
with data rate k ∈ K when channel is idle or the preamble
of the detected frame is unable to be decoded. Hence, the
probability that the agent fails a transmission at backoff stage
j is given as follows:

q((S1, j , i , k), (S0,min(j + 1, Jmax)), 0) = τ0j pik , (16)

where i ∈ {0, 1, . . . ,N }, j ∈ J , and k ∈ K . On the con-
trary, the probability that the agent succeeds in transmitting
the packet and reaches the absorbing state is given as follows:

q((S1, j , i , k),S3, 0) = τ0j (1− pik ), (17)
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where i ∈ {0, 1, . . . ,N }, j ∈ J , and k ∈ K . Let li denote
the expected duration of the transmission of interferer i ∈ N .
Hence, the reward that the agent receives when it chooses
to wait until the transmission of interferer i ends is given as
follows:

R((S2, j , i , k), (S1, j , 0, k), 0) = −li , (18)

where i ∈ N , j ∈ J , and k ∈ K .
On the other hand, in the partitioned MDP, the probability

that the agent fails or succeeds in a transmission are given as
follows:

q̃θ((S1, j , i , k), (S0,min(j + 1, Jmax)), 0) = τ0j p̃ik , (19)

q̃θ((S1, j , i , k),S3, 0) = τ0j (1− p̃ik ), (20)

respectively, where i ∈ {0,L,H}, j ∈ J , and k ∈ K . Here,
p̃0k = p0k while p̃Lk and p̃Hk denote the expected packet
error probability when the agent transmits concurrently with
an interferer whose interference power is below or above the
OBSS_PD, respectively. The reward that the agent receives
when it chooses to wait until the detected transmission ends
is given as follows:

R̃θ((S2, j , i , k), (S1, j , 0, k), 0) = −l̃i , (21)

where i ∈ {L,H}. Here, l̃L and l̃H denote the expected dura-
tions of the transmission of an interferer whose interference
power is below or above the OBSS_PD, respectively.

The following theorem derives the deviation of the consid-
ered two MDPs.

Theorem 2: Ψ̃ is a δθ-homogenous partition of Ψ, where
δθ is given as follows:

δθ = max

⎛

⎝max
(i ,k)

(2τ00|pik − p̃i ′k |),max
i

⎛

⎝

∣∣∣ll − l̃i ′
∣∣∣

|R|max

⎞

⎠

⎞

⎠,

(22)

where i ∈ N , i ′ = φθ,CH(i), k ∈ K , and |R|max denotes the
maximum achievable absolute value of reward.

Proof: Let us calculate δθ based on (8) and (9) for every
ω ∈ Ω.

First of all, when ωMAC = S0, the agent selects a
data rate and ωMAC transits from S0 to S1. This state
transition is deterministic and does not depend on the chan-
nel state. The reward associated with this state transition
is zero. Hence, there is no deviation between Ψ and Ψ̃
when ωMAC = S0.

Secondly, when ωMAC = S1 and the agent fails a transmis-
sion, ωMAC transits from S1 to S0. The reward associated with
the state transition does not depends on the channel state. The
state transition probability, however, has a deviation between
Ψ and Ψ̃ as follows:

|q((S1, j , i , k), (S0,min(j + 1, Jmax)), 0)
− q̃θ

((
S1, j , i ′, k

)
, (S0,min(j + 1, Jmax)), 0

)∣∣

= τ0j |pik − p̄i ′k |,
where i ∈ {0, 1, . . . ,N }, i ′ = φθ,CH(i), j ∈ J , and k ∈ K .
Similarly, when the agent succeeds in a transmission, the

deviation between Ψ and Ψ̃ is given as follows:
∣∣q((S1, j , i , k),S3, 0)− q̃θ

((
S1, j , i ′, k

)
,S3, 0

)∣∣

= τ0j |(1− pik )− (1− p̃i ′k )| = τ0j |pik − p̃i ′k |,
where i ∈ {0, 1, . . . ,N }, i ′ = φθ,CH(i), j ∈ J , and k ∈ K .
When ωMAC = S1 and the agent detects a transmission of
interferer i, ωMAC transits from S1 to S2. The reward asso-
ciated with this state transition is zero. The deviation of the
state transition probability between Ψ and Ψ̃ is calculated as
follows: ∣∣∣∣∣∣

∑

i :φCH(i)=i ′
q((S1, j , 0, k), (S2, j , i , k), 0)

− q̃θ

(
(S1, j , 0, k),

(
S2, j , i ′, k

)
, 0

)
∣∣∣∣∣∣
,

where i ∈ N , i ′ = φθ,CH(i), j ∈ J , and k ∈ K . Since the
events of detecting the transmission of interferers are mutually
exclusive, the first term is equal to the second term. Hence, for
ωMAC = S1, the deviation between Ψ and Ψ̃ is 2τ0j |pik −
p̃i ′k |, where i ∈ {0, 1, . . . ,N }, i ′ = φθ,CH(i), j ∈ J and
k ∈ K .

Thirdly, when ωMAC = S2 and the agent chooses to wait,
ωMAC transits from S2 to S1. The state transition probability
is deterministic and does not depends on the channel state.
The associated reward, however, has a deviation as follows:
∣∣R((S2, j , i , k), (S1, j , 0, k), 0)−R̃θ

((
S2, j , i ′, k

)
, (S1, j , 0, k), 0

)∣∣

=
∣∣∣li−l̃i′

∣∣∣,

where i ∈ N , i ′ = φθ,CH(i), j ∈ J and k ∈ K .
Finally, note that τ00 = maxj∈J τ0j and p0k = p̃0k , the

deviation between Ψ and Ψ̃ for every state ω ∈ Ω and action
a ∈ A is calculated as (22).

Plugging (22) into Theorem 2 and noticing the fact that
|V |max is bounded by |R|max

1−γ , the following lemma is derived.

Lemma 1: Let V π∗
denote the optimal value function

where the agent identifies the interferer and treats different
OBSS interferers differently. Let V π̂∗

denote the optimal value
function where the agent does not identify the interferer and
only distinguishes whether the interference power is above or
below θ. Then, ∀ω ∈ Ω,

∣∣∣V π̂∗
(ω)−V π∗

(ω)
∣∣∣ ≤ 2δθ|R|max

(1− γ)2
, (23)

where |R|max denotes the maximum achievable absolute value
of reward.

It can be seen from this theorem that, identifying interferes
is more attractable if δθ is large. This is more likely to happen
if the agent and its associated STA are apart from each other
as shown in Fig. 2, where pik may deviate largely from p̃i ′k .

VII. NUMERICAL EVALUATION

A. Evaluation Settings

We evaluate the proposed learning-based spatial reuse
scheme through MATLAB based simulations. The simula-
tion evaluations are dividend into three scenarios: single
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Fig. 7. Evaluation topology.

Fig. 8. Throughput of the agent with the communication distance. The
number of OBSS transmitters: 4. The agent adopts the schemes in the legend.

Fig. 9. Throughput of the agent with the number of OBSS transmitters.
Communication distance: 5 m. The agent adopts the schemes in the legend.

agent static topology, single agent time-varying topology, and
multiple agents static topology scenarios.

Firstly, the simulation to be shown in Figs. 8 to 11 and
Fig. 13 evaluate the proposed scheme in a single agent and
static topology scenario. In these simulations, the agent and
other OBSS transmitters are randomly placed in a square
region with side length 100 m as shown in Fig. 7. The agent
and each OBSS transmitter have one associated receiver. The
distance between them is called communication distance. The
agent and each OBSS transmitter are assumed to have satu-
rated downlink traffic, i.e., they are always backlogged with

Fig. 10. MAC service time composition. Communication distance: 5 m.
Number of OBSS transmitters: 4. The agent adopts the schemes in the
horizontal axis.

Fig. 11. Performance gains due to identifying interferers. The number of
OBSS transmitters: 4. The agent adopts the proposed scheme.

Fig. 12. Number of successfully transmitted packets. Communication dis-
tance: 5 m. Number of OBSS transmitters: 4. The locations each OBSS
transmitter change once a second.

packets to send. The number of OBSS transmitters and the
communication distance of the agent are stated in each evalu-
ation. Unless otherwise stated, each OBSS transmitter adopts a
fixed OBSS_PD of −82 dBm and the communication distance
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Fig. 13. Percentage of on-going transmissions corrupted by the agent.
Number of OBSS transmitters: 4. The communication distance of each AP
is randomly distributed from 1 m to 10 m. The agent adopts the schemes in
horizontal axis.

Fig. 14. System throughput in the multiple agents case. The communication
distance of each agent is randomly distributed from 1 m to 10 m. All agents
adopt the same scheme in the legend.

of each OBSS transmitter is 1 m. In these simulations, we gen-
erate 100 different random patterns of locations. We evaluate
each pattern of locations for 10 s and take the average of the
evaluation results.

Secondly, the simulation to be shown in Fig. 12 evaluate the
proposed scheme in a single agent and time-varying topology
scenario. The evaluation conditions are basically the same as
the first scenario, whereas the locations of each OBSS trans-
mitter changes once a second randomly. This simulation runs
for 30 s.

Finally, the simulation to be shown in Figs. 14 and 15 eval-
uate the proposed scheme in a multiple agents scenario. The
evaluation conditions are basically the same as the first sce-
nario, whereas all the transmitters are non-cooperative and
independent agents. Same as the first scenario, we gener-
ate 100 different random patterns of locations. We evaluate
each pattern of locations for 10 s and take the average of the
evaluation results.

The simulation program that we used to evaluate the
proposed scheme is an event-driven simulator written in
MATLAB. The program mainly attempts to simulate the MAC

Fig. 15. Packet service time composition in the multiple agents case. The
communication distance of each agent is randomly distributed from 1 m to
10 m. Number of agents: 5. All agents adopt the same scheme in horizontal
axis.

TABLE II
EVALUATION PARAMETERS [4], [33], [34]

TABLE III
REQUIRED SINR AND TRANSMISSION TIME

FOR IEEE 802.11AX [4], [33], [34]

layer operation of APs and STAs, including random back-off
procedure. Note that this kind of simulation model is widely
used in related studies such as [30]. Evaluations parameters are
as shown in Table II and III. We consider a distance-based path
loss model in [31], where the center frequency fc is 5200 MHz
and the path loss coefficient NPL is 30 for indoor residential
scenario, i.e.,

PLdB(d) = 20 log10(fc)− 28 + NPL log10(min(d , 1)). (24)

We assume that a packet will be successfully decoded if the
required SINR is met, where the payload is 4096 B [4].
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We consider that the contention window size updates
according to the binary exponential backoff (BEB) algorithm
in the IEEE 802.11 [21]. The contention window size of after
j times of consecutive packet loss is given as follows:

CWj =
{

2j (CWmin + 1)− 1, j = 0, 1, . . . , 6;
26(CWmin + 1)− 1, j > 6,

(25)

where CWmin = 15 is the minimum contention window size.
We consider several performance comparison benchmarks in

the following evaluations. The benchmark optimal OBSS_PD
represents the highest performance under an exhaustive search
of all the integer values of OBSS_PD within [−82 dBm,
−62 dBm]. In other words, the optimal OBSS_PD can be seen
as the performance upper bound of threshold-based CCA poli-
cies. In the comparison benchmarks, the rate selection scheme
auto-rate feedback (ARF) [32] is used, which tunes up the data
rate after two consecutive successful transmissions and tunes
it down after one unsuccessful transmission.

B. Evaluations Results

1) Throughput: In Figs. 8 and 9, we evaluate the through-
put of the proposed scheme under different conditions of
communication distance and the number of OBSS transmitters.

From Fig. 8, we first notice that the comparison benchmark
optimal OBSS_PD outperforms other comparison benchmarks
of fixed OBSS_PD under different conditions of communica-
tion distance. The throughput gain of the optimal OBSS_PD
compared to fixed OBSS_PD schemes comes from the ability
to adjust the OBSS_PD according to communication dis-
tance. When the communication distance is short, a high value
of OBSS_PD achieves good performance. This is because
the received signal strength is high and conservative concur-
rent transmission policy decreases transmission opportunities.
When the communication distance increases, the OBSS_PD
value that achieves the highest throughput decreases. This
is because the received signal strength is low and aggres-
sive concurrent transmission policy increases the possibility
of transmission failures.

In Fig. 8, the proposed scheme outperforms the com-
parison benchmark optimal OBSS_PD. This demonstrates
the performance gains of identifying interferers in learning
concurrent transmissions under different conditions of com-
munication distance. Although the optimal OBSS_PD allows
to adjust the OBSS_PD to communication distance, it treats
different OBSS interferers indifferently.

We have also conducted one-tail paired t-test to evaluate the
statistical accuracy of this result. The t-test is a statistic method
that is commonly used to determine if the means of two sets
of data are significantly different from each other [35]. We
consider the null hypothesis that the proposed scheme does
not achieve higher throughput than the benchmark optimal
OBSS_PD. Given the simulation data generated from 100
different random patterns of locations, the null hypothesis is
rejected at a p-value of 0.05. In other words, the result that the
proposed scheme achieves higher throughput than the optimal
OBSS PD is at least 95% confident.

It can also be confirmed in Fig. 9 that the optimal OBSS_PD
outperforms other comparison benchmarks of fixed OBSS_PD

and the proposed scheme outperforms the optimal OBSS_PD.
We have also conducted one-tail paired t-test where the null
hypothesis is that the proposed scheme does not achieve higher
throughput than the benchmark optimal OBSS_PD. The t-test
shows that the null hypothesis is rejected at a p-value of 0.05.
This demonstrates the performance gains of interferer identifi-
cation in facilitating concurrent transmissions under different
number of OBSS transmitters.

2) MAC Service Time Composition: The composition of
MAC service time is evaluated in Fig. 10. Remember that
the MAC service time is the duration from the instant when
the packet arrives at the head of the transmission queue
to the instant when the agent has received the ACK from
the receiver. As shown in (2), the MAC service time com-
prises four components: the duration of counting down backoff
counter, freezing backoff counter, failed transmissions, and
successful transmission.

The evaluation results in Fig. 10 reveal that the proposed
scheme reduces the time of freezing backoff counter compared
to the fixed OBSS_PD of −82 dBm while keeping the percent-
age of failed transmission low. The proposed scheme achieves
the shortest packet service time of less than 0.85 ms. In the
comparison benchmark with −82 dBm OBSS_PD, the average
packet service time is larger than 1.9 ms where about 57% of
the MAC service time is freezing backoff timer. This indicates
that the wireless channel is under high contention.

From Fig. 10, we also confirm the negative effects of
increasing the OBSS_PD for facilitating concurrent transmis-
sions. Note that increasing the OBSS_PD indeed reduces the
time of freezing backoff counter; however, the other three
components also increase. This is because, as the OBSS_PD
increases, infeasible concurrent transmissions are more likely
to occur. Transmission failures increase the contention win-
dow size and hence increase the backoff countdown duration.
Transmission failures result in the agent choosing a slower data
rate. Hence, the time of successful transmission also increases.

3) Performance Gains Due to Identifying Interferers: In
Fig. 11, we evaluate the performance gains due to identify-
ing interferers from both the simulation and the theoretical
perspective.

From the simulation perspective, we evaluate the difference
between the packet service time of the proposed scheme and
the optimal OBSS_PD. Note that, this difference corresponds
to the gaps in Figs. 8 and 9.

From the theoretical perspective, we calculate the deviation
between the partitioned MDP and the original MDP. Here, we
show how δ is calculated based on (22). Note that, there is no
difference in the expected transmission durations of each inter-
ferer according to our considered simulation setting. Hence,
we calculate δθ as δθ = maxik 2τ00|pik − p̃i ′k |. Furthermore,
in the optimal OBSS_PD scheme, the agent searches for the
optimal value of OBSS_PD that maximizes throughput. Hence,
we calculate δ as follows:

δ = min
θ

δθ = min
θ

max
ik

2τ00|pik − p̃i ′k |. (26)

Remember that pik denotes the packet error probability when
the agent transmits concurrently with i by using data rate k.
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The value of pik can be calculated from the locations and
parameters in Tables II and III.

We first notice from Fig. 11 that the deviation δ increases
as the distance increases. This is because when the communi-
cation distance increases, the interference power measured by
the agent is more likely to deviate largely from that measured
by its receiver. As a consequence, comparing the interference
power with the OBSS_PD has limited predictive value in deter-
mining the success or failure of transmissions. We also notice
that the theoretical deviation δ and the packet service time
difference evaluated through simulations have similar shapes.
This shows that, given node locations and necessary parame-
ters, calculating δ provides a quantitative method of analyzing
the gains due to identifying interferers.

4) Time-Varying Topology: All above mentioned evalua-
tions evaluate the proposed scheme in the static topology
environment. In Fig. 12, we present the evaluation result of the
proposed scheme under time-varying topology. In this evalu-
ation, the locations of each OBSS transmitter change once
a second. The agent does not reset the learning algorithm
within the evaluation period. Simulation result reveals that the
proposed scheme achieves less throughput in the time-varying
topology than that in the static topology in Figs. 8 and 9.
The reason is that the relative distance between the inter-
ferer and the agent may have already changed significantly
before the agent learns the optimal action. Note that, the
performance degradation due to the time-varying environment
is in a sense inevitable as long as the learning-based scheme is
utilized.

On the other hand, simulation results also confirm that the
proposed scheme with RUQL algorithm outperforms the con-
ventional QL algorithm in the time-varying topology. In the
RUQL, the value functions of those optimal actions with tem-
poral lower values are updated more frequently than that in
the conventional QL algorithm. Hence, it can be inferred that
the agent learns the optimal action faster by using RUQL. As
a result, the RUQL outperforms the conventional QL in the
time-varying topology.

5) Impact to Legacy Transmitters: All abovementioned
simulations focus on the evaluations of the performance gains
of the proposed scheme. Notice that, there is a concern if
the concurrent transmission of the agent can corrupt on-going
transmissions in OBSSs. In this evaluation, we evaluate the
percentage of packets transmitted by the OBSS transmitters
that are corrupted by the transmission of the agent. These
packets are defined as failed transmissions which would be
received successfully if the agent is not transmitting. Note
that we assume that all the OBSS transmitters are legacy
devices with a fixed OBSS_PD of −82 dBm. The commu-
nication distance of each AP is randomly distributed from 1 m
to 10 m.

The simulation result in Fig. 13 shows that the proposed
scheme corrupts approximately 4% of the packets transmit-
ted by legacy devices. This indicates that, by applying the
transmit power restriction rule (7), the agent does not cause
serious corruptions to legacy devices. Although the compar-
ison benchmark of a fixed OBSS_PD of −62 dBm causes
fewer corruptions to legacy devices, it restricts concurrent

transmission power by 20 dB and causes low throughput
performance.

6) Multiple Agents: All abovementioned evaluations eval-
uate the proposed scheme from a single agent perspective. In
Figs. 14 and 15, we evaluate the multiple agents case where
there are multiple agents using the proposed scheme and each
agent wishes to maximize its own value function. We consider
that the communication distance of each agent is randomly
distributed from 1 m to 10 m.

We confirm that the proposed scheme achieves better
performance than comparison benchmarks in the multiple
agents case. Fig. 14 evaluates the system throughput in
multiple agents case, where all the transmitters adopt the
same scheme as shown in the legend. The case where all
the APs use the proposed scheme achieves the highest area
throughput. Fig. 15 evaluates the packet service time compo-
sition in multiple agents case. The case where all the APs
use the proposed scheme achieves the shortest packet ser-
vice time. The gain of identifying interfering transmitters
is also confirmed in the multiple agents case. In Fig. 14,
we have conducted one-tail paired t-tests. The null hypoth-
esis is that the proposed scheme does not achieve higher
throughput than the benchmark optimal OBSS_PD. The t-
tests show that the null hypothesis is rejected at a p-value
of 0.05.

We observe that there is no obvious performance degra-
dation in the multiple-agent scenario compared to that in the
single-agent case. One reason is that the transmit power restric-
tion rule (7) has alleviated the interactions among agents.
When one agent decides to transmit concurrently with another
on-going transmission, it does not generate strong interference
to that on-going transmissions.

C. Practical Implications

From the simulation evaluations presented above, we may
find some insights into designing spatial reuse operation of
WLANs. First of all, OBSSs should be avoided as much
as possible, especially when the communication between AP
and STA is large. Since if the communication distance is
large, AP does not have an accurate understanding of the
interference at a remote STA by performing carrier sens-
ing. Second, if the existence of OBSSs is inevitable and the
communication distance between AP and STA is large, it is
unreasonable to set a common CCA threshold to all the OBSS
interferers. It is desirable that the AP can treat different inter-
ferers differently for deciding whether or not to exploit spatial
reuse.

VIII. CONCLUSION

In this work, we proposed a reinforcement learning-based
spatial reuse scheme. When the agent overhears an on-going
transmission, it utilizes the information in the detected frame
header to identify the interferer and decides whether or not to
freeze the backoff counter accordingly. We have evaluated the
proposed scheme under various scenarios through simulations.
Specifically, we analyzed the composition of MAC layer ser-
vice time. We found that the proposed scheme reduces the time
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of freezing the backoff counter while keeping the number of
failed transmissions low. This confirms that, on the one hand,
the agent learns to transmit concurrently with those OBSS
interferers whose interference is tolerable at the receiver. On
the other hand, the agent learns to refrain from transmit-
ting concurrently with those interferers whose interference is
not tolerable at the receiver. Moreover, we also utilized the
concept of state partition in MDP to study the performance
gains due to making non-binary identifications of interferers
on exploiting spatial reuse in WLANs. A theoretical bound
on the gains in value function due to identifying interferers is
obtained.
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