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Abstract—Wireless Interference Identification (WII) is an im-
portant function in the context of non-cooperative spectrum
coexistence management problems because interference may
cause loss or degradation of service. Deep Learning (DL) has
been recently introduced in spectrum coexistence problems and
more specifically in WII where it has demonstrated a superior
performance to shallow machine learning algorithms. This paper
proposes an advancement in literature by exploiting the existing
function in modern cellular networks systems for channel es-
timation to implement WII. In particular, a channel estimator
function based on the LTE Cell Specific Reference Signal (CRS)
was implemented in Field Programmable Gate Array (FPGA) by
the authors and it was used to generate channel estimates, which
are given as an input to a DL algorithm. This study applies
Convolutional Neural Networks (CNN) on three different data
sets for WII, where the victim is a LTE-plus communication
system with 40 MHz bandwidth and the interferences are 1)
LTE with 20 MHz bandwidth and FDD modulation, 2) LTE
with 20 MHz bandwidth and TDD modulation and 3) WiFi
(802.11g). This paper describes the FPGA channel estimator
implementation and it performs an extensive analysis of the
impact of the parameters of the proposed approach and the
CNN architecture. The results show that the proposed approach
outperforms other approaches based on DL and constellation
diagrams or shallow machine learning algorithms.

Index Terms—Deep Learning, wireless interference, channel
estimates, cellular networks.

I. INTRODUCTION

The acquisition of the radio frequency channel state
information is a fundamental task that a wireless
communication receiver has to perform prior to information
symbols extraction from the received radio frequency signal.
Channel identification can facilitate channel equalization
as well as maximum likelihood sequence detection. In the
context of cognitive radio, the knowledge of the channel
state information contributes to the radio frequency spectrum
awareness, which is an important function for cognitive radios
[1]. In this paper, the channel state information is used to

detect and identify the presence of wireless interferences.
The detection of wireless interferences in the radio frequency
spectrum is another essential function needed in cognitive
radio and dynamic spectrum management to support the
coexistence of different wireless services. Historically,
wireless interference detection and mitigation has been
implemented using interference models, but an alternative
approach is to evaluate the impact of the interference
as described in [2], where interference detection can be
classified into two large groups: (1) models that describe the
characteristics of the interference signal itself, and (2) models
that describe the effects of interference. This paper proposes
an approach, which belongs to the second category. In recent
times, authors have proposed the application of Machine
Learning (ML) techniques to the problem of detection of
wireless interference. This is part of a more general trend on
the application of ML to wireless communication for a variety
of functions. In particular DL, based on neural networks,
has been applied with significant success to many wireless
communication problems as described in the recent survey
[3]. More specifically on the problem of wireless interference,
DL and CNN have been applied to the detection of WiFi
interference for the first time in [4], where it has demonstrated
to attain a higher identification performance in comparison to
’shallow machine learning’ algorithms (e.g., Support Vector
Machine). Additional details on the recent application of ML
and DL to the problem of wireless interference detection and
mitigation are provided in Section II.

Our contribution: This paper provides an approach based
on DL and more specifically on CNN to the problem of
adjacent-channel wireless interference identification where
the LTE wireless communication service is the victim and
signals based on WiFi 802.11g, LTE TDD and LTE FDD
standards and modulations are the interferers. The approach
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is based on the novel exploitation (for this context) of the
channel estimates from the LTE Cell Specific Reference
Signal (CRS) channel estimator (which is generally available
in LTE equipment), which is fed in input to the CNN. For this
study, a custom LTE-plus channel estimator was designed and
implemented in a Field-Programmable Gate Array (FPGA)
where the LTE-plus refers to the FPGA implementation of
a 40 MHz bandwidth communication transmission channel
and related front-end components (e.g., modulators and
demodulators) in addition to the channel estimator itself. The
approach was evaluated in a radio frequency test laboratory
where signals were generated for three different types of
interferer at different values of power and spectral distance
from the LTE-plus victim service. The proposed approach
based on CNN is compared to approaches proposed in
literature based on the application of ML algorithms and
False Negative (IQ) constellation diagrams.

From a potential practical implementation of the proposed
approach, the idea is to exploit the channel estimators
to mitigate the risk of wireless interference (especially
adjacent wireless interference) in radio frequency spectrum
management scenarios for cellular networks. The need for fair
coexistence among LTE and WiFi systems is an important
area both from the research and deployment points of view
[5], [6]. The detection and more importantly the classification
of the interference as proposed in this paper can improve
the spectrum awareness of wireless communication systems
and improve the overall quality of service. From the practical
point of view, the advantage of this approach is that it uses
already existing functions in wireless receivers even if they
are designed for a different purpose (i.e., channel estimation).

Note: To support a comprehensive analysis of three
potential interference services (i.e., based on WiFi 802.11g,
LTE TDD and LTE FDD standards) to the LTE-plus victim
service for adjacent band interference, the study incorporates
a deviation from the current RF spectrum regulation (in
particular for the spectrum allocation of the systems based
on 802.11g standard). This study was done in the context
of pre-normative research to address future RF spectrum
allocations where this risk of adjacent band interference may
materialize. Additional details on this aspect are provided in
Section III. We would also like to highlight that the approach
for interference detection is implemented in baseband rather
than in the operating carrier frequency of the wireless services
and thus the choice of the operating frequency has a limited
or negligible impact.

The structure of this paper is following. Section II provides a
literature review on WII and on the recent application of DL to
the wireless communication domain with a focus on spectrum
coexistence. Section III provides an extensive description
of the data sets generated by the authors to evaluate the
approach and the test bed used to generate the data. It also
includes the description of the FPGA implementation of
the LTE-plus CRS channel estimator (also called channel
estimation function in the rest of this paper). Section IV
describes the methodology of the proposed approach with

the related work-flow, the CNN architecture used in our
study and the related CNN hyper-parameters to be tuned. In
addition, section IV also explains the evaluation metrics and
the computing platform used in this study. Section V provides
the results with an analysis of the impact of the parameters
of the approach of the CNN and a comparison with other
approaches commonly used in the research literature. Finally,
Section VI states the conclusions and indicates potential
future developments. A list of the most significant acronyms
used in this paper is shown in Table I.

TABLE I: Acronyms used in this paper.

Acronym Definition
AUC Area Under Curve
BER Bit Error Rate
CP Cyclic Prefix
CNN Convolutional Neural Network
CRS Cell Specific Reference Signal
DL Deep Learning
FDD Frequency Division Duplexing
FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field Programmable Gate Array
KNN K Nearest Neighbor
LQI Link Quality Indicators
LTE Long Term Evolution
ML Machine Learning
OAI Open Air Interface
OFDM Orthogonal Frequency-Division Multiplexing
PSS Primary Synchronization Signal
RB Resource Block
ROC Receiver Operative Characteristics
RSSI Received Signal Strength Indication
SISO Single-Input Single-Output
SSS Secondary Synchronization Signal
TDD Time Division Duplexing
UERS UE Specific Reference Signal
USRP Universal Software Radio Peripheral
WII Wireless Interference Identification

II. RELATED WORK

This section reports briefly on the application of DL to
wireless communication and on the detection/identification of
wireless interference in particular. The section is structured in
the sub-section II-A, which describes the application of ML for
the identification of wireless interferences, in the sub-section
II-B, which provides an overview on the application of DL and
particularly CNN to wireless communication problems and to
wireless interference identification and sub-section II-C, which
summarizes the specific aspects of this study in comparison
to the identified research literature.

A. Application of ML to wireless interference identification

Some initial studies used ’shallow’ machine learning al-
gorithms to identify wireless interferences. For example, the
authors in [7] have applied Support Vector Machine (SVM) to
the detection of wireless interference in an industrial setting
where signals based on the IEEE 802.11 family of standards
are present (802.11 signals are also considered in this study).
A SVM classifier is used to process signal features extracted
from Received Signal Strength Indication (RSSI) traces to
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identify the source of external interference. In a similar way,
[8] proposes an approach for wireless interference detection
using spectral features and supervised machine learning with
Decision Tree, Random Forest and SVM. Random Forest
achieved the best performance in most of the scenarios. In [9],
the authors have used already available indicators of channel
estimation like Link Quality Indicators (LQI) and RSSI to
detect the presence of IEEE 802.11 interference. Another
study, which uses LQI for wireless interference detection,
is [10], where the authors have investigated the use of the
Random Forest algorithm to detect jamming signals to a
IEEE 802.11 communication links in an industry settings. This
study proposes an approach similar to these previous studies
using observables derived from existing functions in wireless
communication equipment (e.g., RSSI and LQI), but it is based
on LTE-plus communication systems and it is based on a DL
implementation with CNN.

B. Application of DL to wireless interference identification
We focuses now on the application of DL to this type of

problem.
A comprehensive survey on the application of DL to wire-

less communication is reported [3] and the physical layer is
one of the main categories where various algorithms of DL like
CNN or autoencoders have been used. In particular, the authors
have used DL for channel coding in [11] managing to improve
the Bit Error Rate (BER) in comparison to conventional
means. In [12], the authors have applied CNN to implement
modulation classification, which is another important function
for spectrum management, signal identification and electronic
warfare. Wireless device classification (also called RF finger-
printing) using CNN has also been achieved with considerable
improvement to ML in [13] and [14].

In relation to the specific application of DL to wireless inter-
ference detection and identification, the few reported studies
are relatively recent (from 2017 onwards). One of the first
studies to apply DL to the detection of wireless interference
is [4], where the authors have applied CNN to a problem of
coexistence among IEEE 802.11 b/g, IEEE 802.15.4 and IEEE
802.15.1 signals with different modulation schemes. Then, a
total of 15 classes are used for the identification problem.
The data set was created using laboratory equipment as in
this study. The CNN was applied both to the original time
representation of the signal (expressed in IQ format) and the
frequency representation (i.e., through Fast Fourier Transform
(FFT)) with the frequency representation achieving a better
performance. This paper uses a similar CNN architecture to the
one used in [4]. Another study for WiFi interference detection
using CNN was performed in [15], where for cross-technology
interference the approach manages to achieve an accuracy
above 90 %. In a similar way, the authors of [16] have applied
CNN to a problem of WII where both WiFi and LTE standards
were used with 5 classes of identification. As in [4] and in this
paper, the data set is created by the authors using a laboratory
settings with Universal Software Radio Peripheral (USRP) and
WiFi devices using a conducted setting.

The application of CNN to WII has also been successfully
attempted in [17], where the authors investigate the impact of

low-precision weights as well as activations in CNN and they
proposed a number of mitigation techniques to address this
issue, which can become important for the practical implemen-
tation of WII using CNN in commercial hardware platforms.
The authors manage to demonstrate that the proposed approach
using 3-bit and 4-bit precision networks is not only more time
efficient but it also leads to performance improvements as
compared to their full precision counterparts with standard
network architecture.

Another improvement in the application of CNN to WII
was performed in [18] where a combination of transformers
and CNN was used to enhance the performance of the WII.
The new approach (called BGCNN) combines the advantages
of CNNs in extracting low-level features and the merits of
transformers in establishing long-range dependencies and it
managed to provide a higher performance than the basis
application of CNN. An additional enhancement on the ap-
plication of CNN to WII is proposed in [19] where time
frequency representations are combined with CNN to enhance
the performance of WII. The authors demonstrate that the
proposed approach has a higher identification accuracy in
comparison to the application of CNN to the original time
representation of the signal. In a similar way, the authors of
[20] have used CNN to the analysis of spectrograms expressed
as red green blue (RGB) images where the interference is
present together with the victim signal. Another application
of CNN to WII is presented in [21], where the identification
problem is related to Bluetooth, ZigBee and WiFi all operating
in the 2.4 GHz band for a total of 7 classes. The LSTM and
ResNet DL algorithms have been also used for comparison,
with the CNN achieving a competitive performance. Moreover,
the authors have attempted to optimize the application of CNN
by selecting specific spectral bands and obtaining a higher
identification accuracy with smaller computational time.

The authors proposed in [22] a semi-supervised WII ap-
proach, which combines temporal ensemble technique with
a CNN network to exploit unlabeled data to improve the
identification performance. The approach is applied to the
same data set created by the authors of [4] achieving a better
identification performance and mitigating the problem of the
unlabeled data.

C. Summary of the contributions of this study in comparison
to the research literature

As shown in the literature above, CNN has been applied
with considerable success to the problem of WII with various
improvements related to the selection of the frequency bands
and the optimization for a practical deployment in computing
platform. The approach proposed in this study is based on a
similar application of CNN to WII where the data set is mostly
related to the interference between LTE and WiFi signals. The
most significant difference of this study and the ones proposed
in literature is that the CNN is applied not directly to the IQ
data collected directly at the receiver side, but by exploiting the
channel estimator, which is always implemented in wireless
communication systems. In particular a customized LTE-plus
channel estimator is implemented with a FPGA to generate
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the estimates on channel conditions, which are then fed to a
CNN. To the knowledge of the authors, this is a novel approach
in comparison to the literature and it is much more efficient
than processing the original signal representation. It follows a
similar reasoning to the use of LQI and RSSI shown in [9],
[10] but the channel estimator output is more sophisticated.

III. TEST BED FOR DATA SET GENERATION

This section is structured in four sub-sections. Sub-section
III-A describe the overall radio frequency laboratory config-
uration including the LTE-plus victim system implemented
with the FPGA and the signal generators used to generate the
interference. Sub-section III-B describes the main concepts of
the LTE channel estimator, while sub-section III-C describes
the actual FPGA implementation. Finally, sub-section III-D
describes the specific data sets created with this radio fre-
quency laboratory configuration and introduces the data sets
notations used in the rest of this paper.

A. Architecture of the radio frequency laboratory set-up

NI USRP RIO 2944r NI USRP RIO 2944r

Device Acting as eNodeB Device Acting as UE

Transmitter FPGA 
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Fig. 1: Schema of the test bed.

The schema of the RF testbed used to generate the adjacent
wireless interference data sets used in our study is presented in
Figure 1. This is a conducted (i.e., the RF signal is transmitted
through cables) testbed where the two USRPs (i.e., NI USRP
RIO 2944r devices with 160 MHz of bandwidth) are connected
to two different host computers, called Host 1 and Host 2 to
implement the LTE-plus victim service with a center frequency
at 2 GHz and 40 MHz bandwidth. The interference signals are
generated by the signal generator SMBV100A on the basis of
three different standards (i.e., 802.11g, LTE TDD and LTE
FDD). Each interference signal has a 20 MHz bandwidth
and it is transmitted with a center frequency slightly greater
(the spectral distance parameter is called Df in the rest of
this paper) than the center frequency of the LTE-plus victim
service to generate adjacent channel interference as some of
the RF power transmitted by the interference signal is present
in the operating RF spectrum of the victim service. The power
of the generated interference signal is controlled by another
parameter, which is called Pwr in the rest of this paper. In
the receiver USRP (i.e., device acting as UE), the RF signal
is down-converted to baseband from the operational carrier
frequency (e.g., 2 GHz) used in this study. Figures 2a gives

(a) Interference with 802.11g at Df = 26 MHz and
Pwr = −30 dB.

(b) Interference with 802.11g at Df = 28 MHz and
Pwr = −30 dB.

Fig. 2: Spectrum analyzer captures of the different interference
conditions.

a visual representation of the 802.11g interferer positioned
at a spectral distance Df respectively of 26 MHz and 28
MHz from center frequency of the victim service as it is
captured by the spectrum analyzer present in the test bed.
Note: The use of the center frequency of the LTE-plus victim
service at 2 GHz was adopted because LTE operates in this
frequency band in most of the regions of the world. On the
other side, we also wanted to explore and analyze the impact
and detection of wireless interference among different wireless
communication standards (notably 802.11g and LTE FDD and
TDD) as it is often investigated in literature [16], even if the
spectrum allocation of 802.11g (e.g., operating in the 2.4 GHz)
is different from the considered spectrum allocation in this
study. Then, to take in consideration all the three wireless
interference scenarios at the same time, we have considered a
context, which is not fully supported by the current spectrum
regulation, even if it may not be excluded that such spectrum
allocation could be defined in the future creating risks of
adjacent cell interference like the ones investigated in this
paper. In-fact, this study was carried out in the context of pre-
normative research, which investigates RF spectrum problems
not directly associated to existing RF spectrum regulations,
but which serves the purpose of anticipating and proposing
mitigation techniques for such potential future problems. We
would also like to highlight that the FPGA implementation of
the proposed approach using the channel estimator is in base-
band and the information on the operating carrier frequency
is not used by the channel estimator.

The impact of the adjacent channel interference is to lower
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(a) Interference with 802.11g
at Df = 26 MHz and Pwr =
−30 dB.

(b) Interference with LTE FDD
at Df = 26 MHz and Pwr =
−30 dB.

Fig. 3: Constellation diagrams for different interference con-
ditions.

the quality of the processed signal by the receiver. Apart from
the channel estimator, which is exploited in this study, the
impact of the interference can be visually seen by the con-
stellation diagrams, which are the result of the demodulation
process by the LTE receiver. Figures 3a and 3b below show
respectively the impact of the 802.11g interferer and the LTE
FDD interferer for Df = 26 MHz and Pwr = −30 dB. It can
be noted that the different types of interferer have a different
impact on the quality of the processed signal even if the Df

and Pwr have the same values. This justifies the analysis using
different types of interferer. Then, we have three different
dimensions to characterize the interferer: wireless standard,
spectral distance Df and power Pwr in dB. The whole data
set is described in detail in section III-D.

In the test bed, it was used the modified version of the
LTE downlink configuration with a bandwidth of 40 MHz and
a subcarrier spacing of 30 kHz (µ = 1). In comparison to
the LTE numerology (subcarrier spacing and symbol length),
the most outstanding difference is that LTE New Radio (NR)
supports multiple different types of subcarrier spacing while in
LTE there is only one type of subcarrier spacing with 15 kHz.
The original LTE Application Framework implements parts of
the 3GPP-LTE release 10 downlink and uplink physical layer
transmitter and receiver components. To reduce the complexity
of this application framework, the following settings are fixed
and can only be changed by modifying the FPGA and the host
code design:

1) 20 MHz bandwidth. The authors modified the subcarrier
spacing from 15 to 30 kHz to increase the bandwidth
up to 40 MHz. For this reason, this modified release of
the basic LTE is called LTE-plus in this paper.

2) For Time Division Duplex (TDD) operation: up-
link/downlink configuration 5, special subframe config-
uration 5.

3) Normal cyclic prefix.
4) Resource mapping for two transmitting antennas (only

the first antenna is used).
5) For the downlink configuration, the Primary Synchro-

nization Signals (PSS) is transmitted only once per radio
frame (10 ms periodicity instead of 5 ms periodicity).

6) The SSS (Secondary Synchronization Signals) is not

implemented in our framework. Thus the PSS only is
utilized for synchronization purpose.

B. Channel estimator model

In wireless communication systems, the receiver needs to
remove or at least mitigate the effects of the distortions in the
wireless propagation channel. This task can benefit by the pro-
cess of channel estimation to characterize the channel features.
This is implemented using the reference signals, since they are
made up of data known to both the transmitter and the receiver.
Then the receiver can figure out how the communication
channel distorts the data by comparing the decoded received
reference signals and the predefined reference signals, and it
can use the result of this comparison to equalize (in real-time)
the received user data and perform the channel estimation.
There are many different ways for implementing a channel
estimator, but the fundamental concepts and steps are similar:
a) Set a mathematical model to correlate the “transmitted
signal” and the “received signal” using a “channel matrix”. b)
Transmit a known signal (we normally called this as “reference
signal” or “pilot signal”) and detect the received signal. c) By
comparing the transmitted signal and the received signal, the
elements of the related channel matrix can be calculated. In
this study a Single Input Single Output (SISO) model is used.

X(f1)

X(f2)

X(f3)

X(f4)

Y(f1)

Y(f2)

Y(f3)

Y(f4)

h

Transmitter side Receiver side

1

0

Color code of the 

resource block

Fig. 4: Resource maps used for the channel estimator.

In this study, the authors have implemented in a FPGA a
customized version of the CRS present in LTE receiver equip-
ment as described in sub-section III-C. The customization does
not modify the basic functionality of the CRS in LTE but it
allows to collect the output of the CRS so that it can be given
as input to the CNN. The CRSs were defined in LTE from
the first releases as to provide a stable, dense, and always
present downlink resource, which the UE uses for multiple and
widely different purposes. These purposes are fine time and
frequency synchronization, estimation of large-scale channel
parameters, measurements for CSI feedback, as well as serving
as demodulation reference for receiving the downlink physical
channels PBCH, PDSCH, PDCCH, PCFICH, and PHICH [23].
Then, they could also be used to detect and recognize the
presence of wireless interference as it was done in this study.
Because the CRS is present in all downlink subframes and
covers the entire served cell of a LTE base station, the UE can
continuously track the channel, leading to excellent channel
estimation performance and robustness for the CRS-based
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transmission schemes. On the other side, the presence of this
“always on” CRS transmission is not energy efficient because
energy is consumed even there is no provision of services to
UEs in the cell. In addition, the CRS from neighboring cells
may generate interference to PDSCH and PDCCH if the CRS
has a subcarrier offset compared to the CRS of the serving
cell, even if the interfering cell is not transmitting any data
(this was also one of the motivation for this study, because
it provides an useful tool to detect mutual LTE interference).
Due to these energy consumption problems 3GPP LTE release
10 introduced the concept of CSI-RS with the addition of
up to 8-layer spatial multiplexing where the CRS are not
transmitted continuously. Then, in 5G NR for similar reasons,
there are no CRS-like signals, but the same concept of CSI-
RS is reused and extended in NR to provide support for beam
management and mobility in the connected mode. Then, the
concepts presented in this study can be readily applied to 5G
NR as well to detect and identify wireless interferences.

This study uses the CRS instead of another popular refer-
ence signal UE-specific Reference Signal (UERS) for various
reasons. The first reason (as described above) is that CRS
is always configured in the LTE network while UERS may
not be activated in the network as UERS are transmitted
only on the resource blocks upon which the corresponding
PDSCH is mapped [24]. The second reason is that UERS
were introduced for more flexible and advanced multi-antenna
transmission techniques [25] and they are suited for MIMO
while this study is focused on SISO. The third reason (related
to the first) is that UERS could be configured in the different
antenna points (e.g., AP7 and AP9) where is the number of
layers used for transmission of the PDSCH, while the CRS
are transmitted over the entire bandwidth in all downlink
subframes [26]. This can make the implementation of the
approach more complex in the FPGA because of the variability
in the UERS configuration and location. In addition, in a
full configuration, there could a large number of UERS to
be processed with a significant greater computing effort. On
the other side, future developments of this study related to
MIMO configurations could take in consideration the UERS
if the challenges mentioned above are addressed (see Section
VI).

Figure 4 shows the resource maps of the SISO reference
signals for the LTE system implemented in the radio frequency
laboratory used in this study. The vertical axis in the resource
map represents the frequency domain. So each reference signal
is indexed with f1, f2, f3...fn. Each reference symbol is a
complex number (IQ data). Each reference symbol on the
left (transmission side) is modified (distorted) by the wireless
propagation channel to each corresponding symbol on the right
(receiver side). Channel estimation is the process of finding
the correlation between the array of complex numbers on the
left and the array of complex numbers on the right. Since
there is only one antenna (i.e., SISO), the system model for
each transmitted reference signal and the received reference
signal can be formalized as follows: Y() represents the array
of received reference signals, X() represents the array of the
transmitted reference signals and h() represents the array of
the channel coefficients (i=1..n) (n= 200 in this study).

Y (fi) = H(fi) ·X(fi), i = 1..4. (1)

X() is known because it is configured in the transmitter
side and Y() is measured/detected from the receiver. With this
information, we can easily calculate the coefficient’s array as
shown in the equations below:

H(fi) = Y (fi) ·XH(fi), i = 1..4. (2)

Where XH(fn) is the Hermitian of X(fn). In mathematics,
a Hermitian matrix (or self-adjoint matrix) is a complex square
matrix that is equal to its own conjugate transpose, that is,
the element in the i-th row and j-th column is equal to the
complex conjugate of the element in the j-th row and i-th
column, for all indices i and j. In this SISO case, because
the X(fn) matrix is actually a 1x1 matrix (single complex
number) the Hermitian is simply the conjugate of that complex
number. Then, all the channel coefficients for the locations
where the reference signals are located, are known. But we
need the channel coefficients of all the locations including
those points where there are no reference signals. This means
that we need to figure out the channel coefficients for those
locations with no reference signals. The most common way
to do this is to interpolate the measured coefficient’s array. At
this point, knowing the channel estimates, it is also possible to
evaluate the statistical noise properties of the channel, which in
this study are used to extract the information on the presence
of wireless interferences.

In the following paragraphs, we describe the LTE implemen-
tation of the equations identified above, while sub-section III-C
describes the FPGA implementation of the channel estimator
performed by the authors.

LTE supports multiple numerologies and consequently there
are multiple possible implementations of the resource maps
(also called resource grids). There is one resource grid for
each numerology and carrier. There is a set of resource
grids per transmission direction (uplink or downlink). There
is one resource grid for a given antenna port p, subcarrier
spacing configuration µ, and transmission direction (downlink
or uplink).

LTE defines a frame to be 10 milliseconds (ms) in duration.
In LTE, each frame is divided into 10 subframes of 1 ms each
and every 1 ms subframe is divided into two slots of 0.5 ms
(each slot containing 7 symbols at normal CP). In 5G NR,
the slot definition is slightly different and this may generate
confusion. In our study, the number of symbols for each slot is
fixed at 14 (normal CP) and the frame duration is held constant
at 10 ms for any µ value and the slot duration changes. In the
modified LTE framework used (i.e., LTE-plus) in this study, we
set µ = 1 and the nominal bandwidth is set to 40 MHz because
we have 100 Resource Block (RB)s and a carrier spacing of 30
KHz. The numerology table extracted from 3GPP TS 38.211
[27] with the values of µ and the corresponding numbers of
slots is shown in Table II:

Each RB is composed by 12 sub-carriers, thus we have
in total 1200 sub-carriers in the resource map (30 KHz *
1200 = 36 MHz). The frame duration is always 10 ms and
we have 20 slots composed by 14 symbols (Normal CP)
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Fig. 5: Supported LTE DL Resource Grid for Frame Structure Type 1 (LTE with 20 MHz bandwidth and FDD).

TABLE II: Numerology extracted from 3GPP TS 38.211.
Table 4.3.2-1

µ Nslot
symb Nframe,µ

slot Nsubframe,µ
slot

0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16

and every sub-frame contains two slots. Figure 5 shows the
resulting LTE downlink resource grid for frame structure type
1 (for the Frequency Division Duplexing (FDD) case) with
the supported physical downlink channels and signals for our
LTE customized framework used in our study. In Figure 5,
we note the main LTE channels: Primary Synchronization
Signal (PSS) for synchronization, the reference signal Cell
Specific Reference Signal (CRS), the data channel Physical
Data Shared Channel (PDSCH), the control channel Physical
Control Channel (PDCCH). The SSS (Secondary Synchroniza-
tion Signal) is not implemented in our framework. Instead the
UERS (User Specific Reference Signals) are implemented but
not utilized in this study for the reasons described above.

C. Design and implementation of the FPGA channel estimator

This study uses a specific FPGA implementation of the
LTE channel estimator developed by some of the authors.
This subsection has the purpose to describe the FPGA imple-
mentation. The customized FPGA exchanges the base-band
data with the RF interface using target-scoped FIFOs. The
processing on the FPGA has advantages in comparison to a
full software implementation as the Open Air Interface (OAI)
streaming project where the digital baseband data is sent to or
received from the host which is then responsible for all channel
encoding and decoding. In fact, the FPGA implementation
provides lower latency than OAI and therefore enables real-
time physical layer processing.

With reference to the Figure 6, the transmitter loop in the
FPGA implementation receives the payload data from the
Host 1 via a Direct Memory Access (DMA) First Input First
Output (FIFO), performs channel encoding and generates the
transmitted (TX) baseband signal, which is passed to the RF
output loop for the up-conversion on the first USRP. The RF
input loop is instantiated on the second USRP. It performs the
down-conversion of the received (RX) baseband signal that is
passed to the receiver loop for channel decoding. The decoded
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Fig. 6: High level view of the FPGA implementation of the
channel estimator.

transport blocks are sent to the Host 2 using a DMA FIFO.
The study presented in this paper is mostly focused on the
identification of wireless interferences using the DL RX IQ
processing. Then, the specific focus is the “DL RX PHY”
block which implements, among other things, the channel
estimation. This module reads the radio-frame aligned signal in
time domain and outputs the channel-equalized subcarriers that
are associated to the physical channels. As shown in Figure
7, it includes the functional blocks described in the following
paragraphs.

An internal FIFO memory is used to decouple the incoming
samples from the rest of the processing chain. The throttle
control module waits until enough samples for one complete
Orthogonal Frequency-Division Multiplexing (OFDM) symbol
(FFT size + CP) are available before it passes them as
a consecutive stream to the next modules. The subsequent
module is the Cyclic Prefix (CP) removal, which removes the
valid flag from the samples belonging to the CP. The 2048
remaining samples are sent to a Xilinx FFT module. The
output of the FFT are the 2048 subcarriers in the frequency
domain. The resource mapper first selects the 1200 allocated
subcarriers by removing the surrounding whitespaces and the
DC carrier in the center. After-wards, it generates the timing
information for each sample and the resource grid by marking
each sample for its corresponding channel by using a Boolean
cluster. The resource mapping is based on a fixed frame
structure configuration described in the LTE specifications. All
subsequent modules use this boolean cluster, with elements for
each LTE channel, to determine if this sample is relevant. The
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FFT output data is fed into two separate channel estimation
blocks running in parallel. The first channel estimation block is
based on the CRS. The channel estimate values are calculated
by conjugate complex multiplications. A linear interpolation
is applied in the frequency domain between adjacent reference
symbols. The second channel estimation block is based on the
UERS, but they are not used in this paper.

On the edges of the symbol, the nearest estimated value is
replicated (zero order hold). OFDM symbols not containing
CRS sequences rely on the last channel estimation (zero
order hold in time). We implemented in addition a linear
interpolation in the time domain of the channel estimate for
OFDM symbols not containing CRS sequences. This option
can be activated from the host instead of the zero order
hold in time. The channel estimates are delivered sample by
sample to the channel equalization modules parallel to the
data. The channel equalization determines the result from
the data sample d and the channel estimate e by using the
following equation:

d · e∗

|e|2
=

d√
e · e∗

· e∗√
e · e∗

(3)

In conclusion, going back to Figure 5, it can be seen that
the CRS, represented by square red dots in the resource grid
are 200 (over 1200 carriers) for each symbol in which they
are present.

As mentioned before, the channel estimate values are calcu-
lated in real-time by the FPGA and are not normally available
at the host level in the format needed for this study. The
solution is to insert in the FPGA a so-called probe to retrieve
the desired data and pass them to the host. On the other side,
implementing a probe in the FPGA is not so easy because it
is mandatory to satisfy the following conditions:

• As this is actually a modification of the FPGA source
code, the probe must not perturb the original behavior
of the FPGA. A probe is normally based on a so-called
Target-to-Host FIFO. If it is not placed in the proper way
in the source code, especially in a time-critical part as the
channel estimation function, it may conduct to timing
violation errors at complication level and/or incorrect
behaviour of the FPGA at run-time.

• The throughput of the data must be limited in some
way, because the amount of information produced by the
FPGA per unit of time is enormously greater than the
host consuming speed and this can create FIFO overflow

Fig. 8: Front panel of downlink receiver (DL RX) with an
interference signal – UE (User Equipment) RX Advanced Tab.

errors. In this study, it was decided to send to the host
only the CRS values for the symbol 0 of each slot.
Remembering that the frame duration is always 10 ms
and we have 20 slots composed by 14 symbols (Normal
CP, µ = 1) and for each symbol we have 200 CRSs,
the throughput is: (200 CRS * 20 Slots) / 0.01 sec =
400000 Samples/Second. The total acquisition duration
is 2 seconds for each step.

The visual representation of the front panel of the downlink
receiver (DL RX) with the presence of an interference signal
is shown in Figure 8, where it can be seen an example of the
CRS channel estimate.

We summarize again in this paragraph the configuration of
the downlink transmitter and receiver: the victim system is
implemented with the NI USRP RIO 2944r set to transmit
a LTE plus signal with a carrier frequency of 2 GHz, 40
MHz bandwidth with Frequency Division Duplex (FDD). The
Modulation and Coding Scheme (MCS) was set to a value of
17 (i.e., 64 QAM) with a rate of 0.43 and all the resource
blocks activated: Resource Block Allocation (RBA) set to 100
PRBs. The receiver side where the channel estimation function
is executed is also implemented with a NI USRP RIO 2944r.

An example of the final output of the CRSs provided by
the channel estimator is shown in Figure 9 for the normalized
amplitude and the phase component (in radians). Basically,
the output consists in two time series (amplitude and phase)
of length 200. The analysis conducted by the authors have
shown that the amplitude component provides much better
classification results than the phase component or the com-
bination of the amplitude and the phase. For this reason, only
the amplitude component will be used in the rest of this paper.
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Fig. 9: Amplitude and phase output from the channel estimator.

D. Data set structure and composition

Three different data sets were used in this study with
different types of wireless adjacent band interference. As
described before, each data set is composed of 4000 CRS
channel estimates of length 200 (one for each CRS) for a
total acquisition time of 2 seconds for each type of wireless
interference for a total of 48000 samples in each data set,
because there are 12 different types of wireless interference
in each data set. As mentioned in the previous sub-section
III-A, we selected a frequency band for the LTE-plus victim
service (i.e., 2 GHz), which is not currently allocated (in
the current spectrum allocation) for the operation of 802.11g.
This deviation from the current spectrum regulations was done
to investigate potential future scenarios where all the three
interference services (e.g., 802.11g, LTE-FDD, LTE-TDD)
may be present in the same frequency bands in a spectrum
allocation where adjacent band interference to the LTE-plus
victim service may be generated. This study was done in the
context of pre-normative research as it may not be excluded
that such spectrum allocation could be defined in the future
and such pre-normative analysis could be useful to propose
detection and mitigation techniques for this future case.

Then, Table III identifies the different types of wireless
interferences for the first data set where WiFi 802.11g is the
interferer. In Table III, BW is the BandWidth of interferer, Df
is the distance in the spectral domain of the interferer signal
to the main LTE victim signal operating at a center frequency
of 2GHz (i.e., to generate adjacent band interference), Pwr is
the power level of the interferer. In a similar way, Table IV
describes the list of LTE TDD interferers of the second data
set and Table V describes the list of LTE TDD interferers of
the third data set. Then, each data set is used for a supervised
classification problem with 12 classes and 4000 samples for
each class.

IV. METHODOLOGY

This section presents the overall workflow, the CNN archi-
tecture, the metrics of evaluation and the computing platform
used to execute the CNN algorithms.

A. Workflow

The overall workflow is presented in Figure 10, where the
main steps are identified. The workflow is relatively simple: af-
ter that the connection is set-up and a videostreaming (a video
of 30 minutes duration) is activated to generate traffic, different

TABLE III: Data Set 1: LTE with 802.11g interferer

Id Description of the type of wireless interference
DS1RFI1 802.11g with 20 MHz BW, Df=26 MHz, Pwr=-30 dB
DS1RFI2 802.11g with 20 MHz BW, Df=26 MHz, Pwr=-35 dB
DS1RFI3 802.11g with 20 MHz BW, Df=26 MHz, Pwr=-40 dB
DS1RFI4 802.11g with 20 MHz BW, Df=26 MHz, Pwr=-45 dB
DS1RFI5 802.11g with 20 MHz BW, Df=28 MHz, Pwr=-30 dB
DS1RFI6 802.11g with 20 MHz BW, Df=28 MHz, Pwr=-35 dB
DS1RFI7 802.11g with 20 MHz BW, Df=28 MHz, Pwr=-40 dB
DS1RFI8 802.11g with 20 MHz BW, Df=28 MHz, Pwr=-45 dB
DS1RFI9 802.11g with 20 MHz BW, Df=30 MHz, Pwr=-30 dB
DS1RFI10 802.11g with 20 MHz BW, Df=30 MHz, Pwr=-35 dB
DS1RFI11 802.11g with 20 MHz BW, Df=30 MHz, Pwr=-40 dB
DS1RFI12 802.11g with 20 MHz BW, Df=30 MHz, Pwr=-45 dB

TABLE IV: Data Set 2: LTE with LTE TDD interferer

Id Description of the type of wireless interference
DS2RFI1 LTE TDD with 20 MHz BW, Df=26 MHz, Pwr=-30 dB
DS2RFI2 LTE TDD with 20 MHz BW, Df=26 MHz, Pwr=-35 dB
DS2RFI3 LTE TDD with 20 MHz BW, Df=26 MHz, Pwr=-40 dB
DS2RFI4 LTE TDD with 20 MHz BW, Df=26 MHz, Pwr=-45 dB
DS2RFI5 LTE TDD with 20 MHz BW, Df=28 MHz, Pwr=-30 dB
DS2RFI6 LTE TDD with 20 MHz BW, Df=28 MHz, Pwr=-35 dB
DS2RFI7 LTE TDD with 20 MHz BW, Df=28 MHz, Pwr=-40 dB
DS2RFI8 LTE TDD with 20 MHz BW, Df=28 MHz, Pwr=-45 dB
DS2RFI9 LTE TDD with 20 MHz BW, Df=30 MHz, Pwr=-30 dB
DS2RFI10 LTE TDD with 20 MHz BW, Df=30 MHz, Pwr=-35 dB
DS2RFI11 LTE TDD with 20 MHz BW, Df=30 MHz, Pwr=-40 dB
DS2RFI12 LTE TDD with 20 MHz BW, Df=30 MHz, Pwr=-45 dB

TABLE V: Data Set 3: LTE with LTE FDD interferer

Id Description of the type of wireless interference
DS3RFI1 LTE FDD with 20 MHz BW, Df=26 MHz, Pwr=-30 dB
DS3RFI2 LTE FDD with 20 MHz BW, Df=26 MHz, Pwr=-35 dB
DS3RFI3 LTE FDD with 20 MHz BW, Df=26 MHz, Pwr=-40 dB
DS3RFI4 LTE FDD with 20 MHz BW, Df=26 MHz, Pwr=-45 dB
DS3RFI5 LTE FDD with 20 MHz BW, Df=28 MHz, Pwr=-30 dB
DS3RFI6 LTE FDD with 20 MHz BW, Df=28 MHz, Pwr=-35 dB
DS3RFI7 LTE FDD with 20 MHz BW, Df=28 MHz, Pwr=-40 dB
DS3RFI8 LTE FDD with 20 MHz BW, Df=28 MHz, Pwr=-45 dB
DS3RFI9 LTE FDD with 20 MHz BW, Df=30 MHz, Pwr=-30 dB
DS3RFI10 LTE FDD with 20 MHz BW, Df=30 MHz, Pwr=-35 dB
DS3RFI11 LTE FDD with 20 MHz BW, Df=30 MHz, Pwr=-40 dB
DS3RFI12 LTE FDD with 20 MHz BW, Df=30 MHz, Pwr=-45 dB

wireless interference conditions are generated as described in
sub section III-D. Then, the channel estimator implemented in
the receiver FPGA (as described in subsection III-C) provides
the channel estimates for each wireless interference condition.
The channel estimates are represented by time series of length
200. Then, the entire data set is used for supervised learning
with a CNN described in subsection IV-B (and the other
machine learning algorithms for comparison). Section IV-B
also describes how the data set is partitioned in one part for
testing (a quarter of the entire data set) and one part for training
(three quarters of the entire data set including the portion used
for validation, which is one tenth of the training data set).
The results obtained for accuracy and F-score are averaged to
obtain the final results presented in Section V.

An alternative approach is also considered for comparison
of the main proposed approach. In this alternative approach,
the channel estimation is based on the constellation diagrams
created with the IQ values which are provided as an output
of the FPGA demodulator. This approach has been proposed
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recently in various papers like [28] where the objective is
actually the modulation classification using CNN in presence
of wireless interference and where constellation diagrams
are used as in input to the CNN in a similar way to this
paper. Then, the objective of [28] is complementary to the
objective in this paper. In this alternative approach based on
the constellation diagrams the challenge is to reduce the size
of the IQ constellation diagrams to make more efficient the
application of CNN (the larger the size of the image and
the longer is the processing time of the CNN classification).
Different sub-approaches have been used in literature for
such dimensionality reduction. In this paper, the alternative
approach is based on the method used in [29] and [30], where
the constellation diagrams are transformed to 2D histograms,
which greatly reduce the size of the images to the number of
bins used in the 2D histogram definition. In this method, the
number of bins is obviously a parameter to be investigated and
the comparison results are presented in Section V. A simple
visual representation of the overall schema is provided in
Figure 11, where it is shown that the IQ constellation diagrams
are transformed with the application of the 2D histograms and
a defined number of bins (in the example this value was set
to 64) and then given as an input to the CNN. This alternative
approach is called CNN-CONST in the rest of this paper.

CNN architecture for 

2D constellation diagrams

Fig. 11: Alternative approach based on the constellation dia-
grams output by the FPGA demodulator.

B. Convolutional Neural Network architecture

A three layers CNN was used in the study, whose architec-
ture is shown in Figure 12. Because the input data is a structure
of size 1×200, a 1-D CNN was used. The optimization of the
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Fig. 12: Architecture of the Convolutional Neural Network
used in this approach proposed in this study.

CNN architecture is based on a set of hyper-parameters, which
are defined in detail in Table VI. For each hyper-parameter
identified in the first column, the range of values on which the
optimization was performed is provided in the second column,
while in the third column the optimal value is selected. A grid
approach was used to perform the optimization. Even if this
may seem cumbersome, the grid approach is exhaustive and
the number of hyper-parameters and ranges used in this study
is anyway limited. Other parameters of the CNN architecture
were set on the basis of the values of the hyper-parameters
already defined. For example, the height of the filter was set
to 16 in the first convolutional layer, was set to 10 in the
second convolutional layer and 4 in the last convolutional
layer. The width of the filter was set to 1 in all the three layers
because it is a 1-D CNN. For nonlinearity, ReLU is chosen
as an activation function in each layer. Two max pooling
layers were used instead of the average pooling layer for
better performance. The pool size was set to [4,1] and the
stride to [4,1] in both layers. The number of filters in the
second convolutional layer was set to half of the number of
the first convolutional layer and the number of filters in the
third convolutional layer was set to half of the number of
filters in the second layer. The entire data set was divided in
4 portions using a 4-fold approach where the testing portion
was 1/4 of the entire data set. As written before, the training
data set was further divided in ten portions with one portion
(i.e., 10% of the training data set) allocated for the validation
task. The classification process was then repeated 10 times
with different set of folds (then 4 folds per 10 is equal to
40 classification trials) and the results (Accuracy and F-score)
were averaged.

A note on the potential practical implementation of the
approach proposed in this paper. In this study, the channel
estimator is fully implemented in the FPGA while the CNN
is implemented offline in a MATLAB environment (see Sub-
secction IV-D). An implementation of the CNN directly in
the FPGA would be quite complex, even if there have been
recent proposals for in this context in research literature [31].
In any case, this aspect is out of the scope of the present
study. On the other side, in a possible future deployment of
the proposed approach, the CNN can be hosted on the same
computer, which is hosting the FPGA hardware and which is
collecting the output from the FPGA, so that the approach can
be fully implemented on the same computing platform. This
is to say that there are no specific constraints in the present
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TABLE VI: Hyper-parameters of CNN.

Hyper-
parameter

Range of hyper-
parameter values

Optimal
Value
DS1

Optimal
Value
DS2

Optimal
Value
DS3

Solver (RmsProp,
SGD,Adam)

Adam RmsProp Adam

Maximum
Number of
epochs

[40,80,120,160] 80 60 80

Window size
WS in the first
layer

[16,20,24,28,
32,36,40,44,
48,52,56,60,
64,68,72,76]

52 60 56

Number of fil-
ters in the first
layer

[8,16,32,64] 32 32 64

Type of pooling [Average Pooling,
Max Pooling]

Max
Pool-
ing

Max
Pool-
ing

Max
Pool-
ing

Number of con-
volutional lay-
ers

[1,2,3,4,5] 3 3 3

Initial Learning
Rate (IRL)

[0.0005,0.001,
0.005,0.01,
0.05,0.1]

0.001 0.005 0.005

study for future deployments on the same computer or receiver
system.

C. Evaluation Metrics

The metrics used to evaluate the performance of the pro-
posed approach are the classification accuracy, the F-score, the
confusion matrices and the ROCs. The accuracy is defined as:

Accuracy =
TP + TN

(TP + FP + FN + TN)
(4)

Where TP is the number of True Positives, TN is the number
of True Negatives, FP is the number of False Positives and FN
is the number of False Negatives. The F-score is defined as:

F − score = 2× (TP )

(2TP + FP + FN)
(5)

Since this is multi-class problems with 12 classes (the
12 interferers), we have implemented the F-score by macro-
averaging (taking all classes as equally important).

To complete the accuracy metric, confusion matrices are
also provided to assess the predicted values against the true
values. In the confusion matrices presented in this paper, each
row of the matrix represents the instances in a true class while
each column represents the instances in an predicted class.

Finally, the Receiver Operative Characteristics (ROC)s were
used for binary classification to compare how well the pro-
posed approach is able to distinguish between pair of wireless
interference cases. The ROC curve is created by plotting the
True Positive Rate (TPR) against the False Positive Rate
(FPR) at various threshold settings. In the ROC, the Area
Under Curve (AUC) used to evaluate the performance of the
binary classifier. The AUC is the area under the ROC curve.
The higher is the value of the AUC and the better is the
performance of the binary classifier.

D. Computing platform

The computing platform used in this study is Windows
workstation with MATLAB scientific computing environment
where the Deep Learning toolbox was used for the implemen-
tation of the CNN. The workstation is based on a Intel Xeon
Silver 4214Y with a clock speed of 2.2 Ghz and 40 Gigabytes
of RAM.

V. RESULTS

A. Parameters optimization

In an initial phase of the study, we performed an opti-
mization of the hyper-parameters of the CNN, which are
described in Table VI. As mentioned before, a grid approach
was performed with the resulting optimal values presented in
Table VI. The aim of this subsection is provide an overview
of the impact of the different hyper-parameters. The analysis
presented here is not meant to be exhaustive, because of
reasons of space, but just to show how important is the
tuning of some hyper-parameters. In the following figures,
only one hyper-parameter is changed while all the other hyper-
parameters are set to the optimal values shown in Table VI.

The optimization of the window size parameter for the input
to the CNN is shown in Figure 13 for all the three data sets
(DS1,DS2 and DS3). The bar graphs show the accuracy for
different values of Ws for each data set, while the line plots
show the accuracy for the optimal value of Ws. It can be seen
from Figure 13 that this parameter has a substantial impact
on the overall accuracy, because not appropriate values of the
parameter Ws decrease substantially the accuracy. It can also
be seen that the optimal values of Ws are well within the range
of values investigated in this study.
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Fig. 13: Optimization of input window size Ws in CNN.

Another important hyper-parameter is the Initial Learning
Rate (IRL), which controls how much the model should be
changed in response to the estimated error each time the
model weights are updated. There is a trade-off in choosing
the learning, because a value too small may result in a long
training process, whereas a value too large may result in
learning a sub-optimal set of weights or in an unstable training
process. The results for all the three data sets are shown in
Figure 14, where the optimal values are chosen. The bar graphs
show the accuracy for different values of IRL for each data set,
while the line plots show the accuracy for the optimal values
of IRL. It can be seen that larger values of the learning rates
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indeed provide a sub-optimal set of weights in a consistent
way across all the three data sets. As in the previous hyper-
parameter, the optimal values are identified well within the
range of adopted values for this hyper-parameter.
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Fig. 14: Optimization of the initial learning rate (IRL) in CNN.

An evaluation of the impact of the pooling layer type (i.e.,
average or max pooling layer) is shown in the following Table
VII. The results justify the choice of the max pooling layer
type as optimal layer.

TABLE VII: Accuracy comparison of pooling layer type.

Type of layer DS1 DS2 DS3
Max Pooling Layer 0.675 0.764 0.761
Average Pooling Layer 0.668 0.755 0.752

Even if it is not an hyper-parameter, it is interesting to
evaluate how the accuracy is impacted for different sizes of the
data set. A subset of the data was chosen from the initial size of
4000 samples for class (e.g., type of interference). Smaller data
sets for the range of values [1000,1500,2000,2500,3000,3500]
where generated and the accuracy was calculated using the
CNN with the optimal values for the enture data set. To support
generalization of the results, the samples were chosen ran-
domly from the full data set and the classification process was
repeated 10 times. Then, the accuracy results were averaged.
Figure 15 shows the trends of the accuracy metrics using CNN
with the optimal values of the hyper-parameters (with the full
data set) for different sizes of the data set. It can be seen that
the general trend is that the accuracy decreases with smaller
data sets because the CNN needs a larger data set to generate a
more accurate model, even if it would require a longer training
time.

B. Approach evaluation and comparison

This subsection presents the final results of the study using
the optimal values identified in the previous sub-section and
shows a comparison with the application of ’shallow’ ML algo-
rithms and the alternative approach based on the constellation
diagrams CNN-CONST, which is described in Section IV-A

For the ML algorithms, a grid optimization process was
performed for the other ML algorithms as well on the basis of
the following parameters: for the Random Forest and Decision
Tree (DT) the maximal number of decision splits, for SVM the
kernel and the penalty factor C and for K Nearest Neighbor
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Fig. 15: Accuracy trends with CNN for different values of the
number of samples for class.
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Fig. 16: Comparison with the alternative approach based on
constellation diagrams CNN-CONST acquired from the FPGA
demodulator. The dotted line represents the accuracy obtained
with our approach for the related data set.

(KNN) the parameter K. For the CNN-CONST approach, the
hyper-parameter is the number of bins in the 2D-histogram.
The results for the optimization of CNN-CONST for the data
set DS1 and DS2 (the results for DS3 are similar and they
are not shown for reasons of space) are shown respectively
in Figures 16a and 16b, where it is shown the impact of
the number of bins, but overall the classification accuracy is
significantly less than with this proposed approach.

The numeric results are provided in Table VIII where it can
be seen that CNN provides the highest performance accuracy
and F-score in relation to the other adopted algorithms and
CNN-CONST. Among the ML algorithms, the SVM (with
Poylnomial kernel of third degree) obtains the best results for
the data sets DS1 and DS2 (reaching almost the accuracy of
the CNN) and Random Forest obtains the best results for the
DS3 data set (where the performance is close to the CNN).
This result is consistent with the findings from literature and
in particular [10] where Random Forest and SVM managed to
achieve remarkable results.
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These findings confirm the superior performance of CNN
algorithm and the justification of its use for this classification
problem.

TABLE VIII: Comparison of this approach with ML algo-
rithms and CNN-CONST.

Approach Accuracy F-score
DS1 802.11g data set
CNN (this approach) 0.675 0.682
CNN (CNN-CONST) [29], [30] 0.619 0.623
Random Forest [8], [10] 0.537 0.545
Decision Tree [8] 0.440 0.447
Support Vector Machine [7], [8] 0.667 0.669
KNN 0.568 0.571
DS2 LTE TDD data set
CNN (this approach) 0.764 0.760
CNN (CNN-CONST) [29], [30] 0.652 0.654
Random Forest [8], [10] 0.616 0.613
Decision Tree [8] 0.535 0.534
Support Vector Machine [7], [8] 0.756 0.756
KNN 0.647 0.645
DS3 LTE FDD data set
CNN (this approach) 0.761 0.763
CNN (CNN-CONST) [29], [30] 0.724 0.728
Random Forest [8], [10] 0.737 0.736
Decision Tree [8] 0.678 0.680
Support Vector Machine [7], [8] 0.727 0.702
KNN 0.660 0.651

C. Confusion matrices

Beyond the accuracy and F-score for all the three data sets
presented in Table VIII, we present in the following paragraphs
and figures more detailed results using confusion matrices and
ROCs.

Figures 17a, 17b and 17c provide the results of the con-
fusion matrices respectively for the data sets DS1, DS2 and
DS3. It can be seen that some interference scenarios are more
difficult to distinguish than others. In particular, the algorithm
has more difficulties in identifying similar scenarios (different
only for the power levels and with the same spectral distance).
This is to be expected because interference scenarios, which
differ only for one parameters (e.g., the spectral distance or
power levels) are more difficult to distinguish than interference
scenarios, which are different for both parameters and where
the correspondent values are the extremes of the ranges.

D. Binary classification among pairs of interfence conditions

Then, it is interesting to evaluate the performance of the
proposed approach based on CNN for specific pairs of wireless
interference cases rather than taking in consideration the entire
data set with 12 classes. The metric used to evaluate this aspect
is the ROC and the related parameter AUC which is the area
under the curve.

The results from the ROCs show that the binary classifica-
tion among two specific types of wireless interferer is able to
obtain a very accuracy as shown by the relatively high values
of the AUC (almost getting to the unit value for interferer
which are more distinct on the base of their transmission
power). These results are confirmed by the calculation of
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Fig. 17: Confusion matrices using the optimal hyper-
parameters values of the CNN.

the accuracy and F-score on the same binary classification
problems as shown in the Table IX below, where it can be
seen that an accuracy greater of 90% is obtained in all the
cases.

E. Performance evaluation in presence of mixed type of inter-
ference

In a practical deployment of the approach proposed in
this paper, there could be also scenarios where the three
types of wireless interferences signals (i.e., 802.11g, LTE
TDD and LTE FDD) may be present in the radio frequency
spectrum. Then, we investigated the capability of this approach
to distinguish the type of wireless interference by mixing
together the three data sets DS1, DS2 and DS3. For reasons
of space, we show only specific values of Df and Pwr because
the number of combinations can be quite large (i.e., 123).
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Fig. 18: ROCs between DS(X)RFI1 and DS(X)RFI(Y) with X=1,2,3 and Y=2,3,4 (e.g., DS1RFI1 and DS1RFI2). For clarity
the values of X-axis (False Positive Rate) are within the range 0...0.1 (instead of the usual range 0...1).
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Fig. 19: Confusion matrices between three different classes of interferers (DS1RFX,DS2RFX,DS3RFX) for specific values of
Df and Pwr (X=2,6,10).

TABLE IX: Accuracy for specific combination of wireless
interferences scenarios.

Combination Accuracy F-score
DS1 802.11g data set
DS1RFI1 vs DS1RFI2 0.9030 0.9020
DS1RFI1 vs DS1RFI3 0.9635 0.9633
DS1RFI1 vs DS1RFI4 0.9575 0.9569
DS2 LTE TDD data set
DS2RFI1 vs DS2RFI2 0.9790 0.9788
DS2RFI1 vs DS2RFI3 0.9950 0.9950
DS2RFI1 vs DS2RFI4 0.9985 0.9985
DS3 LTE FDD data set
DS3RFI1 vs DS3RFI2 0.9520 0.9523
DS3RFI1 vs DS3RFI3 0.9925 0.9924
DS3RFI1 vs DS3RFI4 0.9985 0.9985

We use the confusion matrices and the ROCs to evaluate the
performance in this classification problem. Figures 19a, 19b
and 19c show respectively the confusion matrix for Df= 28
MHz, Pwr= −35 dB. We note that the approach is able to
distinguish with great accuracy the 802.11g interferer from
the LTE TDD and LTE FDD. This is expected due to the
significant difference in the signal structure. Instead, it is more
challenging to distinguish the LTE TDD interfer from the
LTE FDD interferer. In addition, the accuracy obtained by
the proposed approach is inversely proportional to the value
of Df: the more is the spectral distance of the interfer from
the victim system and the less is the classification accuracy.
This is also expected because for larger values of Df, the
interference impact on the channel emulator is less significant,
which reduces the discriminating information that the CNN
can exploit to distinguish the different classes. Similar results
were obtained for other values of Pwr but they are not shown
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Fig. 20: ROCs between the LTE TDD and LTE FDD interfer-
ers for different values of Df and Pwr=-35 dB.

for reasons of space.
On the basis of the previous considerations based on the

confusion matrices that the proposed approach has difficulties
in distinguishing the LTE TDD and LTE FDD interfers, we
perform a binary classification only among samples from DS2
and DS3 and we use the ROCs to evaluate the performance.
The results are shown in Figure 20 for Pwr=-35 dB and
different values of Df, where it can be seen that the AUC
decreases significantly for higher values of Df, which confirms
the previous statements derived from the analysis of the
confusion matrices. Similar results were obtained for other
values of Pwr but they are not shown for reasons of space.

F. Time complexity and computational complexity aspects

We address in this final subsection a description of the
time complexity and computational complexity aspects related
to the implementation of the proposed approach for the two
main components: the FPGA component used to implement
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the LTE-plus UE receiver and the embedded channel estimator
and the CNN component. Regarding the FPGA component of
the proposed approach implementing the channel estimator,
we have used a Xilinx Kintex-7 XC7K410T FPGA embedded
in the NI-2944R USRPs used both for the transmission and
receiving part of the LTE-plus victim system. The typical pa-
rameters used to describe the Xilinx FPGA resource usage are
[32]: Look-Up Tables (LUT)s, which are used to implement
combinational logic in an FPGA, Registers, which are used
to store values in a FPGA, Digital Signal Processing (DSP)
slices used to perform high-speed digital signal processing
operations such as multiplication and addition and Block
RAM, which is used to store data in the FPGA. We have used
the Xilinx Vivado tool to generate resource utilization reports
and we report that the percentage of usage of the different
components was respectively: LUTs (28%), DSP (31%), Block
RAM (31%), Registers (18%). Regarding the CNN imple-
mentation, we report the training time and the testing time
for the execution of 1 fold for the DS1 data set (averaged
on 40 repetitions) on the basis of the computing platform
specifications described in Sub-section IV-D: Training time:
160 seconds, Testing time (prediction): 0.57 seconds.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has described a novel approach to identify wire-
less adjacent interferences conditions in a custom FPGA LTE
communication system (a custom LTE-plus FPGA front end
was implemented for this study with a 40 MHz communication
bandwidth) using the channel estimator function, where the
CRS channel estimates are given in input to a CNN. This
approach has the main advantage to exploit an already existing
function in the LTE receiver systems, which is used for a
different purpose (i.e., fading channel estimation), without the
need to implement a specific module to process the raw IQ data
as commonly done in research literature. The approach was
evaluated using three data sets (based on 802.11g, LTE TDD
and LTE FDD standards) created in the JRC Radio Frequency
laboratory where 12 different wireless interferences conditions
were generated for different spectral distance and power of
the interferer from the LTE victim service. These data sets
are particularly challenging for classification because some
of the wireless interference conditions are quite similar. The
results show that the approach is able to effectively distinguish
the different wireless interference with a maximum accuracy
of 0.764 when all the 12 wireless interferences in the data
set are considered. The identification accuracy between pairs
of wireless interference cases can be even higher, reaching
a maximum value of 0.998 for specific pairs of wireless
interferences. A comparison with approaches from literature
based on machine learning and with constellation diagrams
was also performed, showing the superior performance of the
approach proposed in this paper.

Future developments may investigate different types of
wireless interferences from the ones evaluated in this study. In
addition, unsupervised learning will be attempted to evaluate
how well the proposed approach is able to identify unknown
cases of interference. We would also like to highlight that

the same approach proposed in this paper and based on the
available LTE-plus (with 40 MHz bandwidth) FPGA imple-
mentation of the CRS can be extended in the future on 5G
NR systems with CSI-RS in the future. Another important
future development is related to the extension of the approach
proposed in this paper to Multiple Input Multiple Output
(MIMO). This study was focused specifically on SISO for
three different kinds of interferers as the analysis was already
quite complex for the SISO case. On the other side, it is
also interesting to take in consideration more complex MIMO
scenarios. This is out of scope of the present study as it would
require a new FPGA implementation and a completely new
sets of results, but the authors aims to explore the extension
to MIMO in future developments.
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