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Message Passing Neural Network Versus Message
Passing Algorithm for Cooperative Positioning
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Abstract—Cooperative Positioning (CP) relies on a network
of connected agents equipped with sensing and communica-
tion technologies to improve the positioning performance of
standalone solutions. In this paper, we develop a completely
data-driven model combining Long Short-Term Memory (LSTM)
and Message Passing Neural Network (MPNN) for CP, where
agents estimate their states from inter-agent and ego-agent
measurements. The proposed LSTM-MPNN model is derived
by exploiting the analogy with the probability-based Message
Passing Algorithm (MPA), from which the graph-based struc-
ture of the problem and message passing scheme are inherited.
In our solution, the LSTM block predicts the motion of the
agents, while the MPNN elaborates the node and edge embed-
dings for an effective inference of the agents’ state. We present
numerical evidence that our approach can enhance position esti-
mation, while being at the same time an order of magnitude less
complex than typical particle-based implementations of MPA for
non-linear problems. In particular, the presented LSTM-MPNN
model can reduce the error on agents’ positioning to one third
compared to MPA-based CP, it holds a higher convergence speed
and better exploits cooperation among agents.

Index Terms—Message passing neural network, message pass-
ing algorithm, belief propagation, cooperative positioning, LSTM,
message passing.

I. INTRODUCTION

A. Contextualization and Background

S IGNAL processing techniques operating over centralized
or distributed network architectures have been largely

studied in the past, especially for Situation Awareness (SA)
applications [1], [2], [3], [4]. The main application domains
include Internet of Things (IoT) [5], Connected Autonomous
Vehicles (CAVs) [6], [7] and Maritime Situational Awareness
(MSA) [8], [9]. These applications are critical as they require
sensors (hereafter generally referred as agents) monitoring
and perceiving their surroundings and making informed deci-
sions based on the perceived information. The key aspect
is the cooperation among agents which enables Cooperative
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Positioning (CP) techniques and enhances the perception of
the environment.

The Message Passing Algorithm (MPA), also known
as Belief Propagation (BP) or Sum-Product Algorithm
(SPA) [10], [11], is a probabilistic iterative technique which
has gained a lot of interest in the field of CP [12] given its
ability of linearly scaling with the number of agents [13].
MPA has been largely employed in a different number of SA
frameworks, mainly addressing the Multiple Object Tracking
(MOT) problem with static or mobile sensing agents [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
embedding or not the measurement to target association
problem [25], [26], [27], [28].

B. Related Works

MPA attains optimal performances in case of linear mod-
els and Gaussian processes, where the iteratively computed
marginal posterior belief converges to the exact marginal
posterior distribution. When the conditions of linearity and
Gaussianity are not met, particle-based MPA can be employed,
although this typically results in a notable increase of com-
putational and communication expenses (i.e., due to particles’
sharing and aggregation). Some works tried to improve perfor-
mances of particle-based MPA implementations by reducing
the particle degeneracy in dense and large networks [29], [30]
or by auto-tuning the parameters of time-varying system mod-
els [31]. However, they did not resolve the main issue of MPA,
which is related to the convergence of the beliefs.

Since MPA involves a repeated exchange of information
(i.e., an iterative message passing) over a graph that is rep-
resentative of the considered problem, the intrinsic cyclic
structure of graphs leads the MPA‘s outcome to be only
an approximation of the true marginal posterior distribution
as the algorithm converges to a local optimum [32], [33],
[34], [35]. Specifically, the approximation of beliefs can be
considered satisfactory if the optimization problem is locally
convex. To improve the performances, Neural Enhanced Belief
Propagation (NEBP) have been recently proposed [36], [37],
[38], [39], wherein MPA and Message Passing Neural Network
(MPNN) are combined to rectify errors caused by cycles and
model mismatch.

The MPNN [40], [41] is an extension of Neural Network
(NN) customized to work on graph structures. Indeed, in con-
ventional MPNN, a NN is present in each node and edge of
the graph, elaborating the input features through an iterative
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message passing scheme. The elaborated features, i.e., node
and edge embeddings, are usually taken as input to perform a
specific task, like node/edge regression or classification. Given
their similarity with the message passing in MPA, they have
been used within the NEBP framework to address the problems
of Data Association (DA) [39], CP [37] and also MOT [38],
as well as with the implicit cooperative positioning frame-
work [42]. However, NEBP approaches require performing
both iterations of MPNN and MPA, increasing the already high
computational time of particle-based methods. Furthermore, it
has been demonstrated that in cases where sufficient train-
ing data are available, MPNN exhibit superior performance
to MPA on cyclic graphs [43], while at the same time being
scalable and able to learn non-linear dependencies.

C. Contribution

In this paper, we propose an MPNN solution that can be
used as an efficient alternative of MPA in high-complexity
problems. We made a first attempt in this direction in [44]
where we employed MPNN for solving DA in sensor
networks. Here we generalize the analysis by investigating the
parallelism between MPA and MPNN, and comparing their
performances in the challenging context of dynamic CP.

Mobile CP systems rely on a dynamic model for describ-
ing the temporal evolution of the agent locations and a graph
model for modeling the inter-agent measurements. Here we
propose an NN architecture that combines a Long Short-
Term Memory (LSTM) for dynamics modeling and an MPNN
for the computation of the marginal likelihoods. The LSTM
learns the motion model of agents in time, while the iterative
update of estimates based on measurements is obtained with
the MPNN.

The main contributions of this paper are as follows:
• definition of a theoretical framework based on the anal-

ogy between MPA and MPNN, with focus on the defi-
nition of exchanged messages, iterative processing steps
and inference prediction;

• proposal of an LSTM-MPNN model which completely
replaces MPA for the task of CP. The model is trained
using a centralized approach, while it is able to perform
a completely distributed inference after deployment;

• comparison with the conventional particle-based MPA,
with particular focus on positioning performances and
generalization properties.

D. Paper Organization

This paper is organized as follows. Section II is devoted
to the description of the adopted system model. Section III
first describes the MPA for CP, giving the main steps of
the algorithm, and then defines the proposed LSTM-MPNN
model with a one-to-one parallelism with MPA. Lastly, it pro-
vides insights on distributed inference and centralized training
procedures. Section IV presents the simulation scenario and
implementation details, followed by simulation results, while
Section V draws the conclusions.

II. SYSTEM MODEL

We denote with In = {1, . . . , In} a set of connected
agents at timestep n . The connectivity graph between agents

is denoted with Gn = (Vn , En ), where each node i ∈ Vn
corresponds to an agent, while the edge (i, j), with i �= j ,
indicates the presence of a communication link from agent i
to agent j. Note that the graph is directed, i.e., edges (i, j)
and (j, i) differ, and might not necessarily be contemporary
present. Each agent i ∈ In communicates with the set Ni ,n

of its neighbors and it is described by the state xi ,n , which
includes kinematic parameters such as posiDon and velocity..
The motion model of agent i from time n − 1 to time n is
described by:

xi ,n = f (x)
(
xi ,n−1,w

(x)
i ,n−1

)
, (1)

where w
(x)
i ,n−1 is the driving noise process that accounts for

motion uncertainty. The derived state-transition probability
density function (pdf) is indicated with p(xi ,n |xi ,n−1), which,
at time n = 0, coincides with the prior pdf p(xi ,0).

Each agent has access to two types of measurements:
a partial and noisy observation z

(A)
i ,n = f (A)(xi ,n ,w

(A)
i ,n )

of its own state vector, and an inter-agent measure-
ment z

(A2A)
j→i ,n = f (A2A)(xj ,n , xi ,n ,w

(A2A)
i ,n ), ∀j ∈ Ni ,n ,

where w
(A)
i ,n and w

(A2A)
i ,n are the state and inter-agent

measurement noises, respectively. The functions f (A)(·)
and f (A2A)(·), jointly with the statistics of noises
w
(A)
i ,n and w

(A2A)
i ,n , define the likelihood functions p(z(A)

i ,n |xi ,n )
and p(z

(A2A)
j→i ,n |xj ,n , xi ,n ), respectively. The driving processes

and measurement noises are assumed to be independent
across agent pairs (i , j ) and over time n . We indicate with
xn = {xi ,n}Ini=1 the set of state vectors of all agents at time
n , while the two set of measurements are indicated with
z
(A)
n = {z(A)

i ,n }i∈In and z
(A2A)
n = {z(A2A)

j→i ,n}i∈In ,j∈Ni,n
.

The overall set of measurements at time n is
zn = {z(A)

i ,n , z
(A2A)
i ,n }.

CP aims at estimating the states of agents from all
the aggregated measurements up to time n , i.e., z

(A)
1:n

and z
(A2A)
1:n . The estimated state is indicated with x̂n .

Probabilistic Bayesian methods, such as MPA, use the
marginal posterior pdf p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) to estimate x̂n ,

e.g., through the Minimum Mean Square Error (MMSE)
estimator x̂

(MMSE)
i ,n =

∫
xi ,n p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) dxi ,n [18].

On the other hand, discriminative probabilis-
tic approaches, like Deep Learning (DL), directly
define the posterior pdf with parametric model, i.e.,
p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) = p(xi ,n |z(A)

1:n , z
(A2A)
1:n , θ), and

try to find the parameter vector θ that maximizes
x̂i ,n = Exi,n [p(xi ,n |z(A)

1:n , z
(A2A)
1:n , θ)] [45]. This is done using

as input a training dataset Strain = {(xn , z(A)
n , z

(A2A)
n )}Ntrain

n=1
and minimizing the negative log-likelihood, i.e.,
θ = argminθ [− log(p(xi ,n |z(A)

1:n , z
(A2A)
1:n , θ))].

A compact representation of the temporal evolution
of the system model is reported in Fig. 1, where two
different network topologies (i.e., different measurement
availability) at time n and n + 1 are illustrated.
The purpose of the figure is to highlight the temporal
sequence of CP and visualize different combinations of the
graph Gn .
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Fig. 1. Illustration of the working principle of CP, with highlighted state vectors and measurement sets for two consecutive time instants. The figure highlights
the variation of the graph Gn due to varied network topology and sets of measurements.

III. COOPERATIVE POSITIONING METHODS

In this section, we first review the MPA Bayesian solution
for CP and then we perform a one-to-one comparison with our
newly proposed LSTM-MPNN model. Lastly, a description of
the inference and training procedure is given.

A. MPA-Based CP

The agent’s marginal posterior probability
p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) can be obtained by marginaliz-

ing the joint posterior pdf p(x0:n |z(A)
1:n , z

(A2A)
1:n ), where

x0:n = {xn ′}nn ′=0. Assuming statistical independence across
agents at timestep n = 0 and adopting Bayes’ rule, the joint
posterior pdf is:

p
(
x0:n |z(A)

1:n , z
(A2A)
1:n

)
∝

In∏
i=1

p
(
xi ,0

) n∏
n ′=1

p
(
xi ,n ′ |xi ,n ′−1

)

p
(
z
(A)
i ,n ′ |xi ,n ′

) ∏
j∈Ni,n′

p
(
z
(A2A)
j→i ,n ′ |xj ,n ′ , xi ,n ′

)
. (2)

Since computing the marginalization of (2) can be unfeasi-
ble or extremely complex, the MPA addresses this issue by
approximating the marginal posterior with an iterative mes-
sage passing scheme over a factor graph which factorizes the
joint posterior pdf in (2). Denoting the beliefs of agent i at
timestep n and message passing iteration t ∈ {1, . . . ,T} with

b
(t)
i ,n � b

(t)
i (xi ,n ) ≈ p(xi ,n |z(A)

1:n , z
(A2A)
1:n ), the MPA-based CP

performs the following operations in parallel for each agent.
1) Prediction message: The predicted state of agent i is

represented by the message:

μi ,−→n
(
xi ,n

) ∝
∫

p
(
xi ,n |xi ,n−1

)
b
(T )
i ,n−1dxi ,n−1, (3)

where b
(T )
i ,n−1 is the agent’s belief computed at previous

time n − 1 after T message passing steps. Note that the
beliefs are initialized at time n = 0 as b

(T )
i ,0 � p(xi ,0).

2) Beliefs exchange: During message passing iteration
t ∈ {1, . . . ,T}, each agent i broadcasts b

(t−1)
i ,n and

receives b
(t−1)
j ,n from its neighbors j ∈ Ni ,n . At t = 1,

the exchanged beliefs are b
(0)
i ,n = μi ,−→n (xi ,n ).

3) Measurement messages computation: During message
passing iteration t ∈ {1, . . . ,T}, each agent i com-
putes two measurements messages (one for each type
of measurement) as:

μ
(t)(A)
i ,n

(
xi ,n

)
� p

(
z
(A)
i ,n |xi ,n

)
, (4)

μ
(t)(A2A)
j→i ,n

(
xi ,n

)∝
∫

p
(
z
(A2A)
j→i ,n |xj ,n , xi ,n

)
b
(t−1)
j ,n dxj ,n

∀j ∈ Ni ,n . (5)
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4) Beliefs update: At message passing iteration
t ∈ {1, . . . ,T}, the beliefs are updated as:

b
(t)
i,n ∝ µi,−→n (xi,n )µ

(t)(A)
i,n (xi,n )

∏

j∈Ni,n

µ
(t)(A2A)
j→i,n (xi,n ). (6)

5) State inference: Lastly, after T message passing steps,
the state of agent i is estimated with the MMSE
estimator as:

x̂i ,n = E

[
b
(t)
i ,n

]
. (7)

Step 1) is indicated as prediction step and it is computed once
per timestep n . On the contrary, steps 2), 3) and 4) are called
update steps as they involve the measurements available at
current timestep n and they are performed for all T message
passing iterations per each timestep n .

For graphs with a tree structure, the MPA provides exact
approximation of the beliefs, which coincide with the true
marginal posterior pdf [10]. However, for cyclic graphs, MPA
only provides a reasonably accurate approximation of the
marginal posterior with a computational complexity that lin-
early scales with the number of agents In and message passing
iterations T. Moreover, in case of non-linear motion or mea-
surement models, particle-based methods are recommended,
despite incurring in a significant increase of communication
and computational costs.

In comparison, MPNN holds the same time scalability [46],
it has fewer parameters and it is able to catch any linear or non-
linear relationship between input-output data, outperforming
BP on loopy graphs if there is a sufficient amount of train-
ing data [43]. However, MPNN does not have the knowledge
of features relation between time instants, i.e., each message
passing iteration t at timestep n is completely independent
with respect to the previous timestep n − 1. To solve this
issue, we propose an LSTM-MPNN model which combines
the time-dependent capabilities of the recurrent network as
well as the flexibility and scalability of the message passing
over NNs.

B. LSTM-MPNN-Based CP

The idea behind the proposed solution is to build an equiv-
alent DL-based model of the MPA-based CP described in
Section III-A. We start describing the overall model structure,
shown in Fig. 2, and then we analyze each single model block.
The proposed architecture is composed of two main compo-
nents, an LSTM block and an MPNN block. Adopting the
same logic of the MPA at prediction step, the LSTM at time
n receives in input the output of the MPNN x̂i ,n−1 and pre-
dicts the most likely change of feature state according to the
learned motion model of the agent. This is done by forward-
ing the hidden states of the LSTM throughout the timesteps.
Therefore, the LSTM represents the equivalent block of (3) in
the MPA. On the other hand, the MPNN block is performed
over T message passing steps, exactly as the message passing
in the MPA, and, at last iteration T, it returns the update of fea-
ture states, i.e., x̂i ,n . We remark that, by analogy with MPA,
we adopt the MPNN in place of a Graph Neural Network
(GNN) since the final prediction in the inference step (7) is a
direct function of only the beliefs.

Fig. 2. Block representation of the proposed LSTM-MPNN model.

The MPNN runs on the same physical graph of the agent
network, i.e., Gn . It does not create a different graph abstrac-
tion, thus it can be computed among the physically connected
agents. An MPNN considers two types of features: node
embeddings, i.e., v(t)i ,n , and edge embeddings, i.e., e(t)j→i ,n . The
embeddings, also called attributes, contain elaborated latent
information that propagates throughout Gn at each message
passing step t . We can see an analogy between MPA update
step and MPNN if we consider the node embeddings v

(t)
i ,n as

elaborated versions of the beliefs b
(t)
i ,n , and the edge embed-

dings e
(t)
j→i ,n as the corresponding measurement messages

between agents μ
(t)(A2A)
j→i ,n .

The proposed MPNN model is composed of NNs for three
different functions, encoding of input features (g

(A)
v (·) and

g
(A2A)
e (·)), update of node and edge embeddings (gv (·) and
ge(·)) and inference regression (g

(regres)
v ). The encoding of

input features is used to extract the most effective repre-
sentation of measurements z

(A)
i ,n and z

(A2A)
j→i ,n to accomplish

the regression task, i.e., agent state estimation. The update
of the node and edge embeddings takes the role of (4), (5)
and (6), preparing the node embeddings v

(t)
i ,n for the inference

prediction computed by the regressor g(regres)v .
The complete proposed LSTM-MPNN algorithm is shown

in Fig. 3 and it is computed by each agent i in parallel.
1) Prediction LSTM: The LSTM model in agent i predicts

the node embeddings v
(t)
i ,n at time n as:

v
(0)
i ,n = g

(LSTM)
v

(
x̂i ,n−1

)
, (8)

where g
(LSTM)
v is the LSTM model. At n = 0, the

inference is initialized as x̂i ,n−1 � E[p(xi ,0)]. Note that
the output of the LSTM coincides with the initialization
of the node embeddings at message passing iteration
t = 0. Observing the parallelism with MPA, the belief
estimate b

(T )
i ,n−1 is replaced by the state estimate x̂i ,n−1,

while the state-transition probability pdf p(xi ,n |xi ,n−1)
is learned by the LSTM.

2) Measurements encoding: At each time n , before start-
ing the message passing, the agent and inter-agent
measurements are encoded as:

zh
(A)
i ,n = g

(A)
v

(
z
(A)
i ,n

)
, (9)
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Fig. 3. LSTM-MPNN algorithm for CP. (a) Graph representation of the agent network with agent states and measurements. (b) LSTM prediction at time
n and initialization of node and edge embeddings at message passing iteration t = 0. (c) Exchange of node embeddings among agents. (d) Update of edge
embeddings according to (11). (e) Update of node embeddings according to (12). (f) State inference at time n after T message passing iteration according
to (13).

zh
(A2A)
j→i ,n = g

(A2A)
e

(
z
(A2A)
j→i ,n

)
, ∀j ∈ Ni ,n . (10)

The encoding is necessary to elaborate the input fea-
tures, it transforms the input measurements into a
hidden representation. This is important since all fea-
tures within the message passing should not belong
to the original feature space, but to the hidden
space for data privacy reasons. At message passing
iteration t = 1, the edge embeddings are initialized as:
e
(0)
j→i ,n = zh

(A2A)
j→i ,n .

3) Node embeddings exchange: At message passing
iteration t ∈ {1, . . . ,T}, each agent i broadcasts v(t−1)

i ,n

and receives v
(t−1)
j ,n from its neighbors j ∈ Ni ,n . Here,

the analogy with MPA is straightforward if we com-
pare the beliefs exchange with the node embeddings
exchange.

4) Edge and node embeddings update: At message pass-
ing iteration t ∈ {1, . . . ,T}, the edge embeddings are
updated as:

e
(t)
j→i,n = ge

(
e
(t−1)
j→i,n , zh

(A2A)
j→i,n , v

(t−1)
j ,n , v

(t−1)
i,n

)
,

∀j ∈ Ni,n . (11)

Note that (11) is the analogous of (5). Subsequently, the
node embeddings are updated as:

v
(t)
i,n = gv

(
v
(t−1)
i,n , v

(0)
i,n , zh

(A)
i,n ,Φ

({
e
(t)
j→i,n

}
j ∈ Ni,n

))
, (12)

where Φ(·) is called aggregation function, i.e., a function
invariant to permutations of its inputs (e.g., element-wise
summation, mean, maximum). In the node embeddings
update, exactly as in the beliefs update in (6), the initial
node embeddings v

(0)
i ,n are used as a short-connection

from the output of the LSTM, i.e., prediction step.
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Fig. 4. Performance evaluation of the proposed LSTM-MPNN for CP. (a) Scenario with 16 moving agents. (b) RMSE of position and velocity over time
for the non-cooperative Kalman and particle filters, the cooperative MPA and the proposed LSTM-MPNN.

5) State inference: Lastly, after T message passing steps,
the regressor NN predicts the state of agent i as:

x̂i ,n = x̂
(T )
i ,n = g

(regres)
v

(
v
(T )
i ,n

)
. (13)

The MMSE estimator in (7) is substituted here by the
node regressor g

(regres)
v (·) which has the objective of

extracting the state prediction from the compact node
embeddings.

An interesting fact to point out is that the dimension of
the node and edge embeddings, as well as the dimension
of the encoded measurements, can be changed according to
the problem. As an example, for the case of a state vector
described in terms of 2D position and 2D velocity, we need a
dimension of eight for the encoding of the node vector, i.e.,
corresponding to a propagation of a Gaussian belief distribu-
tion which holds only two parameters (mean and variance).
Increasing the latent feature size leads to a higher complexity
of the model which becomes able to learn more complex non-
linear dependencies. On the contrary, in particle-based BP,
each agent has to exchange a number of parameters equal to
the number of adopted particles, each of them with a dimen-
sion of the state space, which overall is order of magnitudes
higher than the dimension of the latent features in MPNN.

C. Inference and Training Procedure

The proposed LSTM-MPNN model for CP, as the MPA-
based CP, is suited for distributed inference as each agent i
can rely on a local NNs, i.e., g(LSTM)

v (·), g(A)
v (·), g(A2A)

e (·),
gv (·), ge(·) and g

(regres)
v (·). The physical exchange of embed-

dings only happens at step 3) of the message passing algo-
rithm (iteration t) and each agent predicts its own state
update according to (13). However, for convergence, each
NN at each agent should retain the same parameters, as
in classical MPNN. This permits a scalable solution to a

non-predetermined number of edges, i.e., measurements, and
nodes, i.e., agents.

To this aim, we propose a centralized training procedure in
which the NNs are firstly trained to learn the CP task and then
deployed in an agent network. To compute the training loss
and perform back-propagation, we employ the Residual Sum
of Squares (RSS) that is estimated at each timestep n and at
the end of each message passing iteration t after the regressor
prediction x̂

(t)
i ,n as:

L =
1

N

N∑
n=1

1

|Vn |
T∑
t=1

∑
i ∈ Vn

∥∥∥x̂(t)i ,n − xi ,n

∥∥∥2
2
, (14)

where N is the time sequence length on which the LSTM
is trained for tracking. For performance evaluation, we ana-
lyze the Root Mean Square Error (RMSE) on the position and
velocity of agents.

IV. SIMULATION EXPERIMENTS

A. Dataset

We consider a 2D scenario in which In = 16 con-
nected agents move in an area of 200 × 200 m for 100
timesteps of 1 s. The agent trajectories form a star shape
moving from the origin outwards the area (see Fig. 4a),
and the graph Gn is fully connected. The state of the
agents is xi ,n = [pTi ,n ṗ

T
i ,n ]

T, where pi ,n ∈ R
2 and

ṗi ,n ∈ R
2 are the 2D position and velocity, respec-

tively. The measurements are defined as z
(A)
i ,n = xi ,n + w

(A)
i ,n

and z
(A2A)
j→i ,n = ‖pj ,n − pi ,n‖2 + w

(A2A)
i ,n . Unless otherwise

specified, a constant velocity model is used, while the
state measurements and inter-agent measurements are zero-
mean Gaussian distributed, i.e., w

(A)
i ,n ∼ N (04,Cw(A)),

with Cw(A) = diag(σ2
p,w(A) , σ

2
p,w(A) , σ

2
ṗ,w(A) , σ

2
ṗ,w(A)), and
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TABLE I
DETAILS ABOUT THE LAYER STRUCTURE OF LSTM AND MLP MODELS

w
(A2A)
i ,n ∼ N (0, σ2

w(A2A)), with standard deviations σp,w(A) =
5 m, σ

ṗ,w(A) = 1 m/s and σw(A2A) = 2 m.
For both MPA and MPNN, we consider T = 10 mes-

sage passing iterations. The proposed LSTM-MPNN model
has been trained on 10000 instances of constant velocity tra-
jectories, varying ṗi ,n ∈ [−10, 10] m/s. In order to enhance
model convergence and prevent biases, we standardized all the
samples by performing a min-max scaler so that each feature
lies in [0, 1]. This is done by having a prior knowledge on
the agent position, i.e., pi ,n ∈ [−100, 100] m, and velocity,
i.e., ṗi ,n ∈ [−10, 10] m/s. We highlight that this is not a
strong assumption, since to cover higher areas we just need to
enlarge the maximum range of the state features. We trained
the LSTM-MPNN model for a total of 300 epochs, using a
batch size of 32 samples and randomizing the order of the
dataset at the beginning of each epoch. Here a sample refers
to an instance of trajectories composed of N = 10 timesteps,
i.e., the training sequence length of the LSTM model.

For the training and testing phases of the model, we used
PyTorch version 1.12 and Python version 3.7.11. These opera-
tions were conducted on a workstation equipped with an Intel
Xeon Silver 4210R CPU, which operates at a frequency of
2.40 GHz. The workstation was also supported by 96 GB
of RAM and a Quadro RTX 6000 GPU with 24 GB of
memory. For what concerns the optimizer, we used the Adam
optimization algorithm [47] with an initial learning rate of
0.0001, and momentum values of 0.9 and 0.999 for β1 and
β2, respectively.

B. Model and Implementation Details

The LSTM architecture has been inspired by [48], but
here we reduced its complexity such that it is constituted by
two LSTM layers and a hidden output dimension, i.e., node
embeddings, of 16. The complexity reduction is motivated by
considering that the state estimation in CP comprises two steps
(i.e., prediction and update). For the measurement encoding,
update of node and edge embeddings, and state inference,
we use Multi-Layer Perceptrons (MLPs) with linear layers
and Gaussian Error Linear Unitss (GELUs) activation func-
tions [49]. The complete LSTM and Multi-Layer Perceptrons
(MLPs) model structures are reported in Table I.

The selected final architecture of our model was derived
upon experimentation, including varying the number of layers
and neurons. However, the main rationale behind the general
structures is the following. First, the NN encoders g(A)

v (·) and
g
(A2A)
e (·), despite their small input sizes of 1 × 1 and 4 × 1,

are characterized by a higher computational complexity when
normalized by input size in comparison to the node and edge
embedding updates. Second, between gv (·) and ge(·), the latter
is more complex given its primary role at the initial step of
each iteration and the need of processing non-linear inter-agent
measurements z

(A2A)
j→i ,n . Finally, the state inference regressor

g
(regres)
v (·) is the most challenging task and thus it requires

an additional linear layer (4 in total) to effectively predict the
state.

C. Simulation Results

1) Tracking Performances: The first test aims at assess-
ing the performances of the proposed LSTM-MPNN model
and highlighting the advantages of adopting a data-driven
solution. The comparison includes two non cooperative algo-
rithms, i.e., a Kalman Filter (KF) and a Particle Filter (PF),
which only use the agent state measurements z

(A)
i ,n , and the

cooperative MPA described in Section III-A, which uses
the agent state measurements z

(A)
i ,n and the inter-agent ones

z
(A2A)
j→i ,n , and it is implemented following a particle based

approach.
For the particle-based methods, the number of particles

is set to NPF = 1000. We would like to point out that
the KF represents the optimal non-cooperative case since all
noises are Gaussian and all models, i.e., motion and agent
state measurements, are linear. On the contrary, the MPA
results to be sub-optimal given the non-linearity of inter-agent
measurements and the full connectivity of the agent graph.

The results of the comparison are reported in Fig. 4, where
we show a realization of the scenario (Fig. 4a) and the
RMSE of the position and velocity for each timestep (Fig. 4b)
(averaged over 30 simulations). Starting from non-cooperative
methods, we notice that the KF is well approximated by the
particle-based MPA and reaches a positioning error of 1.62 m
while tracking. The cooperative MPA permits to increase the
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Fig. 5. Analysis of the impact of driving noise standard deviation on the
position accuracy for MPA and LSTM-MPNN.

performances by reaching an RMSE on position of 89 cm at
convergence. Lastly, the proposed LSTM-MPNN method out-
performs all the other methods, achieving an RMSE of 21 cm
on the position. Concerning the velocities, all the methods
converge at about 0.05 m/s of RMSE. Apart from regime per-
formances, an additional important aspect to consider is the
model convergence. Indeed, the LSTM-MPNN method is able
to converge after few timesteps, while BP-based algorithms
require more time. This feature allows the LSTM-MPNN
model to fast react in case of track initialization and recov-
ery after a sudden trajectory variation as it rapidly forgets
the previous estimates, updating the state knowledge through
LSTM hidden states.

2) Generalization Capabilities: This experiment compares
the performances of MPA and LSTM-MPNN under different
validation conditions. In particular, we test different inten-
sities of driving process and state-measurement noises. The
MPA retains inside the true value of the motion and mea-
surement noises, while the LSTM-MPNN has been trained
with noise-free driving processes and measurement models.
This is done in order to prove the efficacy of the method
with a full-calibrated MPA and a completely miscalibrated
LSTM-MPNN.

In a first test, we consider a zero-mean Gaussian-distributed
driving noise, i.e., w

(x)
i ,n ∼ N (04,Cw(x)), with Cw(x) =

diag(σ2
p,w(x) , σ

2
p,w(x) , σ

2
ṗ,w(x) , σ

2
ṗ,w(x)). In Fig. 5, we compare

the MPA and LSTM-MPNN in terms of RMSE on position,
with σp,w(x) = 0 m and varying σ

ṗ,w(x) ∈ [0, 10] m/s. From
the results, we notice that when σ

ṗ,w(x) < 0.5 m/s, the
proposed LSTM-MPNN outperforms the particle-based MPA.
On the contrary, increasing the noise intensity leads to a faster
degradation of performances with respect to the MPA. This
is justified by two main factors. Firstly, the model has been

Fig. 6. Comparison of the impact of state-measurement noise error in terms
of RMSE of the position between MPA and LSTM-MPNN.

trained using error-free trajectories, leading it to anticipate
motion models that adhere to the distribution of the training
trajectories. Secondly, the increased noise raises the likelihood
of encountering an agent with a speed beyond the train-
ing range of [−10, 10] m/s, potentially leading to inaccurate
predictions.

In a second test, we consider a constant motion model and
a varying state-measurement noise, i.e., σp,w(A) ∈ [0, 10] m.
This time, analyzing the results in Fig. 6, we observe that the
LSTM-MPNN achieves a lower RMSE across all considered
values of state measurement noise. This confirms the trend
that on peak performances, i.e., with same noises and within
the same area of cooperation, the proposed LSTM-MPNN
model outperforms the cooperative MPA method by reducing
the error to one third. Moreover, even with unfavorable con-
ditions, i.e., training on absence of noise, the LSTM-MPNN
model better generalizes against noisy state-measurements.

3) Impact on Different Number of Agents: For this last
assessment, we evaluate how the different number of cooper-
ative agents affects the performances of the two methods. To
this aim, in Fig. 7, we plot the RMSE on the position varying
the number of connected agents In ∈ [2, 22]. As expected, we
observe that, for a low number of agents, the two methods tend
to converge to the RMSE achieved for the non-cooperative
case, i.e., about 1.5 m. This confirms that with a decreasing
number of agents, the LSTM-MPNN model converges to the
optimal case of single-agent KF. Increasing In , the coopera-
tion plays a crucial role in improving CP, especially for the
proposed LSTM-MPNN model. As a matter of fact, in LSTM-
MPNN with only 6 cooperative agents the same RMSE of 20
agents for the MPA method is achieved.

4) Computational Complexity: Given the same graph struc-
ture and same number of message passing iterations between
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Fig. 7. Comparison of the impact of varying number of cooperative agents
in terms of RMSE of the position between MPA and LSTM-MPNN.

MPA and LSTM-MPNN models, the major difference in
computational complexity lies in the computation of the
prediction and update steps. In order to compare one-to-one
the two methods, we define with NPF and Nh the num-
ber of particles in MPA and the dimension of the node and
edge embeddings, respectively. These variables drive the com-
putational complexity since they tune the trade-off between
performances and efficiency. Indeed, NPF and Nh are the
dimension of the messages exchanged during each message
passing step. Moreover, in MPA, NPF regulates the capabil-
ity of the model of approximating the distributions according
to the importance sampling principle. In LSTM-MPNN, Nh
has the same function of NPF in MPA, but with the funda-
mental difference that here the exchanged vector, i.e., node
embedding, does not represent an approximation of the dis-
tributions using a sampling mechanism. On the contrary, it
represents an effective combination of distribution parameters,
e.g., moments, in order to accomplish the CP task.

To this aim, in Fig. 8 we show the whole prediction time
of an instance of agent trajectories, i.e., 16 agents moving
as shown in Fig. 4a, varying NPF or Nh according to the
model. Note that here the time required to exchange the par-
ticles and the node embeddings are not considered. Moreover,
for a fair comparison, all agent predictions are computed on
CPU and in a sequential manner. Observing the results, we
notice that the LSTM-MPNN is very efficient for a number
of latent dimension Nh < 100, performing the whole infer-
ence in less than 1 s. On the contrary, the MPA is slower
even with NPF = 100 particles. Comparing the two meth-
ods for NPF = Nh , we note that, from a pure inference time
point of view, it is more convenient to adopt the LSTM-MPNN
if NPF = Nh < 1000. However, we would like to point out
that, comparing the two methods with the previously adopted
NPF = 1000 and Nh = 16, we obtain an inference time of

Fig. 8. Comparison of the impact of varying number of particles NPF and
node embedding dimension Nh in terms of inference time between MPA and
LSTM-MPNN.

600 ms and 11 s for the LSTM-MPNN and MPA, respectively.
Thus, with the proposed method, we reach one third of the
error at 1/18 of the time.

V. CONCLUSION

This paper addressed the problem of CP by proposing an
innovative LSTM-MPNN model that can be considered as
a promising alternative to conventional probabilistic MPA.
Besides providing for the first time a one-to-one paral-
lelism with respect to MPA, we demonstrated the improved
performance of a fully DL-based model. We detailed each part
of the proposed model, starting from the need of temporal-
dependence solved using an LSTM block, up to the message
passing structure. The MPNN runs on the same physical graph
created by the network of connected agents and it is able to
perform inference in a completely distributed way. Mirroring
the MPA, the messages, i.e., node embeddings, are exchanged
between agents until convergence. Finally, as opposed to the
MMSE estimator in MPA, the state inference is carried out
through a NN at the node.

We validated the proposed approach in a synthetic network
of cooperative agents moving in a scenario over straight trajec-
tories. Numerical results showed that the proposed approach
is able to address the problem of CP in an efficient and effec-
tive way by outperforming particle-based MPA in a different
number of aspects. First, under peak performances point of
view, the LSTM-MPNN model reaches a lower RMSE on the
position by a factor of 3. Second, the LSTM-MPNN model
holds a much higher speed of convergence, an order of mag-
nitude lower computational complexity. As an example, in our
experiments, the dimension of the messages exchanged by the
MPNN is 16, while the number of particles exchanged by
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the BP is 1000. Moreover, the proposed model better handles
different state-measurement noises, as well as driving noises
if trained on all ranges of state feature values. Finally, the
LSTM-MPNN model better exploits the power of coopera-
tion, giving a huge improvement even with small number of
cooperating agents.

The value of cooperative positioning is foreseen to dramati-
cally grow over the next several years, especially in the context
of automated and connected mobility, where dense networks of
agents have to handle complex and dynamic environments. It
results that an effective data-driven approach is of paramount
importance to enhance positioning capabilities. Our method
makes a step toward this direction, by enabling distributed and
efficient cooperative inference. Future developments could be
implementing not only a distributed inference but also a dis-
tributed training, maintaining at the same time the agent’s local
data privacy. Moreover, applications of fully DL-based meth-
ods are foreseen for the major fields of target detection and
tracking.

CODE AVAILABILITY STATEMENT

The GitHub repository with the dataset and the Python code
for the model, training and inference is available upon request
to the corresponding author.
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