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Abstract—Beamspace multiple-input-multiple-output (MIMO)
as a green technology can efficiently substitute for the conven-
tional massive MIMO, provided that the beamspace channel is
acquired precisely. The prior efforts in this area of study, espe-
cially the learning-driven ones, however, indicate remarkable
performance losses owing to a lack of generalization. In this
paper, we propose a modified non-linear auto-regressive exoge-
nous (NARX) model for tracking and predicting the beamspace
channel over the sequences of time. Benefiting from bounded gen-
eralization error, fast convergence, limited prediction variance,
and negligible performance loss, the proposed scheme achieves
up to 15% spectral efficiency (SE) gain over its counterparts.
We further improve this performance by means of an ensemble
learning technique for simultaneously training multiple NARX
modules in parallel, thus leading to a 23% SE gain. Relying
on the predicted beamspace channel, we propose a beamspace
analog beam selection technique through fine-tuning the archi-
tecture of a pre-trained off-the-shelf GoogleNet, which brings
up to 21% SE gain over similar baselines. With the aid of an
ensemble learning technique, it is further indicated numerically
that up to 34% SE improvement can be achieved, as compared
to the counterparts.
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I. INTRODUCTION

H IGH-FREQUENCY spectrum with large free bandwidth
is promising to compensate for the spectrum scarcity

in future wireless communication systems. However, the
environmental attenuation severely influences high-frequency
communications such as those in the terahertz (THz) band
in contrast to sub-6 GHz bands. As a consequence, only
short-range links are feasible in the THz band. To facil-
itate high-frequency transmissions, massive multiple-input-
multiple-output (MIMO) technology with large-scale antenna
arrays is proposed [2].

Generally, a conventional massive MIMO system is to
be equipped with a large-scale antenna array to com-
pensate for the significant attenuation in high-frequency
bands. This system under a conventional implementation is,
however, architecturally ill-suited for high-frequency bands.
Conventionally, each antenna element in massive MIMO
systems is associated with a unique radio-frequency (RF)
chain, which is known as the dominant module for hard-
ware cost, energy consumption, and system complexity [3].
Accordingly, the system needs an equivalent massive number
of RF chains, which makes it inefficient and infeasible.

For a more efficient architecture, hybrid analog-digital
beamspace MIMO [4] relies on a lens antenna array, where
the focal surface of an energy-focusing electromagnetic lens
is covered by a large-scale antenna array. This architecture
is shown to work beneficially with a far fewer number of
required RF chains. By employing the lens antenna array in a
beamspace architecture, the system cost, energy, and complex-
ity are reduced remarkably, as compared to the conventional
massive MIMO architecture. At the cost of a negligible
performance loss, the overall performance can be maintained
at a satisfactory level. The lens antenna array in essence
performs a discrete Fourier transformation (DFT) operation
and concentrates the scattered signals of the divergent paths
(beams) upon a limited number of antennas. Therefore, the
angular space is thoroughly covered by the lens antenna array
and the spatial domain is transformed into the beamspace
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domain via the lens antenna array1 [5]. In the high-frequency
spectrum, including the THz band, the transmission power
should be highly concentrated on a limited number of dom-
inant beams. Further, the number of effective line-of-sight
(LoS) beams is far fewer and the THz beamspace channel
is consequently quite sparse. Benefitting from this, one can
conclude that the number of required RF chains is limited,
hence making the lens-aided hybrid architecture a reason-
able system design choice in terms of energy, cost, and
complexity [6].

This architecture, despite its main advantage (i.e., sparse
beamspace channel), still encounters important issues in
system design. Primarily, the performance is highly affected
in cases where the channel state information (CSI) is only
partially available. Additionally, the optimal design of analog
beam selection is computationally challenging [7]. Regarding
these concerns, a category of solutions has been proposed
in the literature aiming at performance optimization. Due to
significant computational burden, earlier optimization-based
schemes for beamspace channel estimation and analog beam
selection cannot practically satisfy the real-time processing
requirements of current applications.2

In recent years, low-complexity real-time deep learning
approaches are substituting in wireless network research the
more complex optimization-based methods. For instance, the
authors of [8] and [9] applied deep learning techniques to
reduce the computational burden and improve the accuracy
of the approximate message passing (AMP) [10] scheme
for channel estimation. Accordingly, for vehicular commu-
nications, the authors of [11] investigated a long short-term
memory (LSTM) scheme for efficient channel estimation.
In [12], the authors analyzed the performance of the proposed
deep learning techniques in predicting the beam angles on
transceivers. The results of [12] reported non-negligible root
mean square error (RMSE) values for the existing solutions.

On the other hand, learning-based approaches, such as sup-
port vector machine (SVM), k-nearest neighbors (k-NN), and
multi-layer perceptron (MLP), were recently attempted for
analog beam selection as a classification task [13]. Compared
to the fully-digital systems, however, the accuracy loss in ana-
log beam selection significantly degrades the performance of
the beamspace MIMO system as a hybrid analog-digital archi-
tecture. According to the statistics in [12] (trained on envi-
ronmental samples, e.g., LoS and non-LoS (NLoS) beams),
two well-known classifiers, i.e., linear SVM [13] and deci-
sion tree [14] are only 33% and 55% accurate, respectively.
This, in turn, leads to a considerable performance loss for
the beamspace architecture, as compared to the fully-digital
counterpart.

1Note that from the functionality point of view, the lens antenna array works
similar to the DFT concept on transforming the domains. The DFT transforms
the signal from the time domain to the frequency domain, whereas the lens
antenna array transforms the signal from the space domain to the beamspace
domain.

2Although previous optimization methods have high complexity to this
end, they are attractive from two perspectives. First, these methods provide a
benchmarking case for further comparison. Second, they offer training sam-
ples widely used for supervised learning methods (such as the model of this
paper).

The main contribution of this paper is in the investigation
of fine-tuned deep learning along with ensemble learning to
perform beamspace channel tracking and analog beam selec-
tion more accurately. In detail, the primary claims of this work
are outlined as follows.

• We propose a THz beamspace channel estima-
tion/tracking mechanism using time-series prediction. To
this end, a non-linear auto-regressive exogenous (NARX)
model is trained by a Levenberg-Marquardt policy, and
its learning rate hyperparameter is regularized via a
Bayesian optimizer for faster convergence, as compared
to the considered baseline in [15]. Further, we present
a theoretical analysis of the generalization error. The
proposed method exhibits remarkably lower RMSE and
variance against its counterparts [8] and [9], especially in
the validation and testing phases. Compared to the LSTM
baseline [11] in terms of spectral efficiency (SE), the
proposed strategy demonstrates up to 15% improvement
when the signal-to-noise ratio (SNR) is 15dB.

• Relying on the predicted beamspace channel, we present
an analog beam selection strategy by fine-tuning the
off-the-shelf pre-trained GoogleNet classifier based on
transfer learning technique to learn the analog beam
selection as a classification of the dominant beams into
the RF chains. Further, we replace the conventional rec-
tified linear unit (ReLU) activation function within the
GoogleNet layers with the Swish. It is shown numeri-
cally that the Swish-driven and ReLU-driven GoogleNet
schemes, respectively, on average achieve 86% and 83%
accuracy for analog beam selection. Moreover, compared
to MLP [13], leveraging ReLU-driven and Swish-driven
GoogleNet for analog beam selection leads to 17% and
21% improvement in the achievable SE, respectively,
when SNR = 30dB.

• We further improve the performance of the proposed
strategies for beamspace channel tracking and analog
beam selection by leveraging an ensemble learning tech-
nique that aggregates multiple predictions for higher
precision and lower variance in predictions. The strong
ensemble learner enhances the achievable SE of [11] by
up to 23% for SNR = 15dB, while decreasing the stan-
dard deviation and the mean absolute deviation of an
individual trained NARX module by up to 47% and 52%,
respectively. From the analog beam selection perspective,
a strong ensemble classifier is trained that accommodates
multiple fine-tuned Swish-driven GoogleNet classifiers,
which leads to 94% analog beam selection accuracy
yielding, in turn, 34% achievable SE improvement at
SNR = 30dB over the MLP scheme [13].

The remainder of this paper is organized as follows.
Section II describes our system setup. Section III includes the
beamspace channel tracking problem statement and the corre-
sponding proposed solution. In Section IV, the analog beam
selection problem and the proposed solution are elaborated.
The ensemble learning technique and the complexity analysis
are discussed in Sections V and VI, respectively. Finally, sim-
ulation results and conclusions are presented in Sections VII
and VIII, correspondingly.
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Fig. 1. Schematic of beamspace technology: (a) architectural components; (b) analog beam selection.

Notations: We use bold-face upper and lower case to indi-
cate matrices and vectors, respectively. (.)T , (.)H , and ||.||2
denote the transpose, conjugate transpose, and the second
norm of a matrix, respectively. |.| represents the absolute
operator, while IN denotes the identity matrix of size N × N.

II. SYSTEM SETUP

A. Hybrid Analog-Digital Architecture

A hybrid analog-digital THz beamspace MIMO system in
the downlink communication mode is assumed. A transmitter
employing Nt transmit antennas and NRF

t transmit RF chains
(NRF

t ≤ Nt) serves a receiver equipped with Nr receive
antennas as well as NRF

r receive RF chains (NRF
r ≤ Nr).

The number of simultaneously communicated data streams is
denoted by Ns. We leverage a hybrid analog-digital beamspace
architecture that preserves system flexibility as well as effi-
ciency in hardware cost and energy consumption [16]. Under
this architecture, transceivers employ a baseband module
responsible for digital precoding/combining, which controls
the amplitude/phase of the data streams, an analog beam selec-
tion network for effective mapping among the RF chains and
the predominant beams, as well as an electromagnetic lens
for focusing the transmit/receive energy. In Fig. 1, the trans-
mitter and receiver architectures are demonstrated, where the
transmitted data symbols are precoded to mitigate inter-symbol
interference. To precode the transmit symbols s ∈ C

Ns×1, the
transmitter uses a baseband digital matrix FBB ∈ C

NRF
t ×Ns .

The transmit symbols are assumed to be power-normalized,
i.e., E[ssH ] = INs

. At the transmitter, NRF
t transmit RF

chains are mapped onto a subset of Nt transmit anten-
nas/beams through an analog beam selection network denoted
by St ∈ R

Nt×NRF
t in the matrix form. Hence, the complex

discrete-time transmit baseband signal is given by

x =
√
ρ/NsStFBBs, (1)

with ρ denoting the transmit power. At the transmitter side, a
lens antenna array is deployed, which includes an electromag-
netic lens capable of energy-focusing, and its focal surface is
equipped with a large-scale antenna array.

At the receiver side, once the lens antenna array receives
the signals, a mapping is performed between the predomi-
nant receive antennas/beams and the receive RF chains through
the receive analog beam selection network SR ∈ R

Nr×NRF
r .

Similar to the transmitter case, a baseband digital combin-
ing matrix WBB ∈ C

NRF
r ×Ns is employed at the receiver to

obtain the transmit symbols. Hence, the discrete-time received
baseband complex signal is given by

y = WH
BBS

H
r Hbx+WH

BBS
H
r n, (2)

where n ∈ CN (0, σ2INr
) is the additive white Gaussian noise

(AWGN) with noise power σ2 and Hb denotes the beamspace
channel obtained through the DFT operations in the lens
antenna array as explained in what follows. Therefore, the
received signal can be rewritten as

y =
√
ρ/NsW

H
BBS

H
r HbStFBBs+WH

BBS
H
r n. (3)

According to the well-known Saleh-Valenzuela geomet-
ric model [17], a ray-based clustered THz channel is
assumed with Ncl cluster of scatterers. A limited angle-of-
departure/arrival (AoD/AoA) spread is further considered for
the typical cluster l denoted by ψl

t and ψl
r, respectively. We

further assume that there exist Nray propagation rays, and for
a typical cluster/ray l/u, a complex-valued gain is denoted by
αl ,u , while the physical AoD/AoA is given by θ

l ,u
t ∈ ψl

t

and θ
l ,u
r ∈ ψl

r, respectively. Let us denote the antenna ele-
ment spacing by d, the speed of light by c, the wavelength by
λ = c/fc , and the carrier frequency by fc . Subsequently, the
spatial AoD/AoA can be represented as

φ
l ,u
t = (d/λ) sin θ

l ,u
t , (4)
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and

φl ,ur = (d/λ) sin θl ,ur , (5)

respectively. Accordingly, the narrowband discrete-time spatial
domain THz channel H ∈ C

Nr×Nt is expressed as

H = γ

Ncl∑

l=1

Nray∑

u=1

αl ,uar

(
φl ,ur

)
aHt

(
φ
l ,u
t

)
, (6)

with the normalization factor of

γ =
√

NrNt/NclNray. (7)

For the uniform linear array (ULA), the antenna array
responses at the transmitter/receiver denoted by at(φ

l ,u
t ) ∈

C
Nt×1 and ar(φ

l ,u
r ) ∈ C

Nr×1, respectively, can be repre-
sented by

at

(
φl ,ut

)
=

1√
Nt

[
1, ej2πφ

l,u
t , . . . , ej2π(Nt−1)φl,u

t

]H
, (8)

and

ar

(
φl ,ur

)
=

1√
Nr

[
1, ej2πφ

l,u
r , . . . , ej2π(Nr−1)φl,u

r

]H
. (9)

With the lens antenna array, the spatial domain THz channel
H is effectively transformed into the equivalent beamspace
domain THz channel, which is denoted by Hb = UH

r HUt,
where

Ut =
[
at

(
φ̄1t

)
, at

(
φ̄2t

)
, . . . , at

(
φ̄Nt
r

)]
, (10)

denotes the transmitter domain transformation, whereas the
receiver domain transformation is similarly given by

Ur =
[
ar

(
φ̄1r

)
, ar

(
φ̄2r

)
, . . . , ar

(
φ̄Nr
r

)]
, (11)

where

φ̄nt =
1

Nt

(
n − Nt + 1

2

)
, ∀n ∈ {1, 2, . . . ,Nt}, (12)

and

φ̄nr =
1

Nr

(
n − Nr + 1

2

)
, ∀n ∈ {1, 2, . . . ,Nr}, (13)

respectively. Hence, the beamspace channel Hb can be rewrit-
ten as

Hb = γ

Ncl∑

l=1

Nray∑

u=1

αl ,u ār

(
φl ,ur

)
āHt

(
φ
l ,u
t

)
, (14)

with the transmitter/receiver antenna array responses
expressed as

āHt

(
φl,u
t

)
= UH

t at

(
φl,u
t

)

=
[
ΞNt

(
φl,u
t − φ̄1

t

)
,
(
φl,u
t − φ̄2

t

)
, . . . ,

(
φl,u
t − φ̄Nt

t

)]T
,

(15)

and

ār
(
φl,u
r

)
= UH

r ar
(
φl,u
r

)

=
[
ΞNr

(
φl,u
r − φ̄1

r

)
,
(
φl,u
r − φ̄2

r

)
, . . . ,

(
φl,u
r − φ̄Nr

r

)]
,

(16)

with

ΞNt/r
(x ) =

Nt/r−1∑
n=0

ej2πnx

Nt/r
=

sinNt/rπx

Nt/r sinπx
ejπx(Nt/r−1). (17)

It is worth noting that |ΞNt/r
(x )| ≈ 0, when |x | >> 1. Hence,

āHt and ār are assumed to be sparse vectors and the beamspace
channel Hb with a restricted number of clusters and small
AoD/AoA spreads is a sparse matrix with a large number of
zero values within it [16].

In a conventional THz massive MIMO system, the num-
ber of required RF chains at the transmitter is NRF

t = Nt,
which is usually large. From the energy consumption per-
spective, e.g., about 250mW is consumed by each RF chain,
while for a massive MIMO system with Nt = 256, about
64W is required for implementation [18]. By exploiting the
lens antenna array, a hybrid analog-digital beamspace MIMO
system can be developed based on baseband digital beam-
forming as well as on analog beam selection. In this paper,
we contribute to the beamspace MIMO system by address-
ing its two major drawbacks: beamspace channel estimation
and analog beam selection. We, therefore, propose efficient
solutions from the machine learning perspective. By apply-
ing analog beam selection to a similar THz massive MIMO
system equipped with the beamspace technology, the number
of required RF chains is limited to the number of dominant
beams, which is far fewer in the THz band, thus leading
to reasonable energy consumption levels without significant
performance loss.

In the considered THz beamspace system, analog beam
selection is crucial for practical implementation. However, it is
generally dependent on the communication channel structure,
which usually varies over time. Hence, for effective analog
beam selection, it is essential to track and predict the commu-
nication channel. Accordingly, in the following two sections,
we specifically investigate the beamspace channel tracking and
the analog beam selection problems.

III. THZ BEAMSPACE CHANNEL TRACKING

Regarding the sparse THz beamspace channel, and for
the given FBB,WBB, St, and Sr as the transceiver design
parameters,3 one can characterize the THz beamspace chan-
nel by addressing the following signal recovery optimization
problem [8]

min
Hb

||Hb ||0
s .t . ||y −

√
ψ/NsW

H
BBS

H
r HbStFBBs||2 ≤ ε, (18)

where ||.||0 denotes the non-zero element numbers and an error
tolerance is ε. In other words, we seek for ||Hb(t)− Ĥb(t)||2
to be minimized, with the predicted THz beamspace channel
in time step t denoted by Ĥb(t). Since the THz beamspace
channel is of high sparsity order, classical compressed sensing
schemes with random measurements, such as the ones in [10]

3We initialize the analog beam selection and the digital baseband
precoding/combining matrices based on the transceiver design scheme in [30]
before proceeding with the beamspace channel tracking.
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Fig. 2. NARX architectures for training and forecasting phases.

and [19], fail to provide an accurate beamspace channel esti-
mation. Contrarily, prior information of the beamspace channel
can be efficiently utilized for higher precision [20].

Motivated by this, we propose a modified version of the
NARX for more precise tracking of the physical AoD/AoA
directions in prior time steps and future prediction. Once the
physical AoD/AoA directions are predicted at the next time
step, one can outline the support set of the THz beamspace
channel and derive its non-zero elements through pilot trans-
mission [20] by using s and y in (18).

A. Training Sample Set Acquisition

Let us define χ =
η̄
[θr, θt] as a motion feature state vector for

the variation of AoDs/AoAs with θr = {θ1r , θ2r , . . . , θ|N
eff
r |

r }
and θ t = {θ1t , θ2t , . . . , θ|N

eff
t |

t }, where

|N eff
t | = |Nt| × |Ncl| × |Nray|, (19)

and

|N eff
r | = |Nr| × |Ncl| × |Nray|, (20)

respectively. Following [11], it is generally assumed that
the AoDs/AoAs have a time-varying nature and follow their
historical time steps χ(1),χ(2), . . . ,χ(t − 1). According
to the temporal variation law of physical directions [20],
AoD/AoA values can be tracked efficiently during the time
without beamspace channel estimation or pilot signaling being
required. In fact, the AoD/AoA values are time-varying fea-
tures of mobile transceivers.4 Based on this, we train a
modified version of the NARX model to accurately fore-
cast χ(t).

B. Time-Series Forecasting

Artificial neural networks (ANNs) with temporal dynamic
behavior and time-varying structure are capable of processing
time-series information (i.e., sequences of information across
time steps). The time-series ANN can track the historical
knowledge and forecast the desired sequences of data in the
forthcoming time steps. Owing to the dynamic characteristics
of the transceiver feature states [11], they can be modeled in a

4Due to highly dynamic features of the THz channel including blockage,
LoS and NLoS links may change abruptly. Therefore, it is necessary to take
all of the AoD/AoA values into consideration while tracking, not only those
corresponding to the dominant beams.

time-series form. Hence, the time-series ANNs can efficiently
track their historical time steps and forecast them in the future.

To this aim, we use NARX as a capable time-series ANN
benefiting from precise tracking capability that is due to
considering the variations of environmental variables [22].
Additionally, we employ the Levenberg-Marquardt policy to
intelligently train the NARX parameters (i.e., its weights and
biases). This policy interpolates between the Gauss-Newton
and the gradient descent methods, which leads to remarkably
lower prediction variance. For implementing the NARX, par-
allel and series-parallel models have been proposed thus far.
In the rest of this section, we elaborate on the training and
forecasting phases of NARX based on the beamspace chan-
nel features (i.e., AoDs/AoAs), and explain how to train the
NARX using the Levenberg-Marquardt policy. Further, we
properly initialize the NARX hyperparameters by means of
a Bayesian optimizer. An analysis of the approximation and
generalization errors is presented as well.

1) NARX Training Phase: Under the assump-
tion of known historical AoA ground truth values
{θ r(0), θ r(1), . . . , θ r(t − 1)} as well as the historical
AoDs {θ t(0), θ t(1), . . . , θ t(t − 1)}, we aim at training the
NARX to predict the AoAs in time step t as denoted by
θ̂r(t). The main input of NARX according to Fig. 2(a), is
the historical AoA ground truth values, while the historical
AoDs are also injected as the exogenous input. The output of
NARX can be given by [22]

θ̂ r(t) = f NARX
(

θr(t − 1), θ r(t − 2), . . . , θ r(t − nθr),

θ t(t − 1), θ t(t − 2), . . . , θ t(t − nθt)

)
,

(21)

where f NARX denotes the NARX mapping function. For
the hidden layers of NARX, we adopt ReLU as a simple
activation function. Further, nθt and nθr are the numbers
of input/output delays indicating the number of historical
AoD/AoA time steps. As demonstrated in Fig. 2(a), we use the
series-parallel architecture with an open-loop structure for the
training phase of NARX, which comprises an MLP network.
The training phase is, therefore, data-driven (i.e., supervised),
which is more precise than in unsupervised models due to
the availability of historical ground truth AoAs as the training
samples.

2) NARX Forecasting Phase: In this phase, it is assumed
that the ground truth AoAs are unavailable. More precisely, for
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the nθr latest time steps, we only have the NARX forecasted
AoAs denoted by θ̂ r(t−1), θ̂ r(t−2), . . . , θ̂ r(t−nθr). Similar
to the previous phase, we seek to forecast θr(t). In this case,
we use the parallel architecture of NARX with a closed-
loop structure as in Fig. 2(b), where the output can be
given as

θ̂ r(t) = f NARX
(

θ̂ r(t − 1), θ̂ r(t − 2), . . . , θ̂ r(t − nθr),

θ t(t − 1), θ t(t − 2), . . . , θ t(t − nθt)

)
.

(22)

The series-parallel NARX architecture with recursive feed-
back employed by this phase can realize multi-step ahead
forecasting5 [23].

3) Levenberg-Marquardt Policy: To train the NARX, we
employ the Levenberg-Marquardt policy based on the least
squares principle. As an interpolation between the Gauss-
Newton and the gradient descent method, this policy aims
at minimizing the square errors in problems with non-linear
structure as well as at approaching a generic curve-fitting.
Within a trust region, this policy can achieve the local minima
under appropriate initial values of its parameters. The objec-
tive here is to seek for the NARX training parameters, i.e.,
weight and bias vectors denoted by τ = {WNARX, bNARX},
to model any curve g(θ̂ r(t), τ ), such that the total deviation
from the ground truth θ r(t) is minimized. Hence, the optimal
training parameters can be acquired as:

τ∗ = argmin
τ

Dev(τ ) = argmin
τ

||Neff
t/r||∑

i=1

[
θ i
r(t)− g

(
θ̂ i
r(t), τ

)]2
.

(23)

For curve-fitting, an approximation of the curve is given by

g

(
θ̂ r(t), τ + ξ

)
= g

(
θ̂ r(t), τ

)
+ ξGr(τ ), (24)

where ξ is a shifting value and

Gr(τ ) =

∂g

(
θ̂ r(t), τ

)

∂τ
. (25)

Hence, with respect to the aforementioned approximation, the
square of deviations in τ∗ can be represented as

Dev(τ ) =

||N eff
t/r

||
∑

i=1

[
θ ir(t)− g

(
θ̂ ir(t), τ

)
− ξGr(τ )

]2
. (26)

Facilitated by the Gauss-Newton method, the best value of
shifting ξ can be achieved by ξ∗ =

∂Dev(τ)
(∂ξ)

= 0, which
leads to

GrT (τ )Gr(τ )ξ∗ = GrT (τ )

||N eff
t/r||∑

i=1

[
θ
i
r(t)− g

(
θ̂ ir(t), τ

)]2
.

(27)

5Owing to separated architectures for training and prediction as well as
to the exogenous input gate, the NARX model exhibits a higher degree of
precision in predictivity, as compared to its counterparts, e.g., LSTM model.

The Levenberg-Marquardt policy [24] introduces a damped
version as

(
GrT (τ )Gr(τ ) + βI

)
ξ∗ = GrT (τ )

||Neff
t/r||∑

i=1

[
θ i
r(t)− g

(
θ̂ i
r(t), τ

)]2
,

(28)

with the damping factor β updated in an iterative manner. In
each iteration toward minimizing the deviation, the Levenberg-
Marquardt policy tends to the Gauss-Newton method for
smaller β, whereas for larger β, the gradient descent method
is approached. The process terminates when the squared
deviation falls below a predetermined error threshold.

4) Bayesian Optimizer: To improve the convergence
behavior of NARX, the hyperparameters such as the learn-
ing rate or the number of hidden layers in its MLP need to
be initialized efficiently before training [25]. To this end, we
consider a degree of error εij for the jth neuron and the ith
training sample in the final layer of the MLP. Henceforth, we
seek to minimize the total degree of error for each training
sample i represented by

εi =
1

2

∑

j∈JNLay

[
θ ir(t)− θ̂ ir(t)

]

j

, (29)

where JNLay
indicates the set of neuron indices in the final

layer of the MLP. The training parameters τ corresponding to
the ith training sample and the jth neuron are updated as

Δτ i
j = −η ∂ε

i

∂ζij

[
θ ir(t)

]

j
, (30)

where ζij is the induced local field and η denotes the learning
rate.

For faster convergence under a limited number of train-
ing epochs, the hyperparameter η should be well-initialized.
To this aim, a promising method is the so-called Bayesian
optimizer, wherein the prior states of the hyperparameter are
determinant in updating its current state. Compared to the
grid search method, the number of iterations in the Bayesian
approach to acquire the optimal initial values is much lower
due to pruning the non-optimistic choices observed in prior
states. In more detail, a probability distribution is considered
here for the learning rate hyperparameter η in the MLP. An
evaluation function is then responsible for the assessment of
any candidate within the probability distribution. Since the
least square error minimization in the training MLP is a regres-
sion problem, we define f loss, which is a loss-based evaluation
function6 that returns η̄, for temporal benchmarking to evaluate
the next candidates of η, as follows η̄ = f loss(η). The optimal
initial value of the hyperparameter η can be approached when
the loss function is minimized as

η∗ = argmin
η

f loss(η). (31)

The Bayesian optimizer then tracks the candidates evaluated
thus far to select the best one in terms of the loss function

6It is worth noting that in regression problems, evaluations are performed to
minimize the regression loss, while in classification problems, they are aimed
at maximizing the classification accuracy.
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minimization. However, evaluating the loss function f loss for
a vast search domain of the hyperparameter η imposes a heavy
computational burden. To alleviate the computation load, a sur-
rogate function approximates f loss with respect to the posterior
observations of η. On the basis of Bayes theorem [25], the sur-
rogate function under given η as a probability distribution can
be expressed as

Pr(η̄|η) = Pr(η|η̄)Pr(η̄)
Pr(η)

, (32)

which can be implemented by the well-known tree Parzen esti-
mator (TPE) [26] that acts as a probabilistic model on the
loss function f loss for mapping the hyperparameter η onto a
loss distribution η̄. In the last step, the expected improvement
(EI) criterion is employed for estimating the TPE-implemented
surrogate function according to the so-called “exploration and
exploitation” trade-off principle [27].

Therefore, the hyperparameter optimization based on the
Bayesian theorem can be categorized into several steps. First,
the hyperparameter domain (of a grid or a probability dis-
tribution) is to be searched via an objective function (which
in our regression problem is stated as a loss function). A
loss value, i.e., η̄ is returned by the loss function indicating
the evaluation score. A surrogate function is also employed
for approximating the loss function and initiating a mapping
between the hyperparameter values η and the corresponding
loss value η̄ according to the Bayes theorem. The best choice
for the hyperparameter is adopted by the well-known criterion
EI according to the posterior observations. Building upon a
history of (hyperparameter, score) pairs, updating process is
performed on the surrogate function up until a stop condition
(such as the maximum number of iterations) is reached.

C. Generalization Error Analysis

The proposed ReLU-driven NARX estimator can be treated
as a minimum mean square error (MMSE) estimator when
two main requirements are met. First, the NARX structural ele-
ments, i.e., the set of weights, biases, and learning rate denoted
by Γ = {WNARX, bNARX, η} need to be properly configured.
Second, the size of the training and validation sample set is
large enough. The NARX mapping function in (21) and (22)
with the specified structural elements Γ can be represented by

f NARX
Γ (θr) = Γ̄l ◦ f ReLUΓ̄l−1 ◦ f ReLU ◦ · · · ◦ Γ̄0(θr), (33)

where Γ̄l indicates an affine transformation for Γ in the lth
layer, ◦ is the function composition, and f ReLU represents
the ReLU activation function. In more detail, for the sample
set χ = {(θr(t), θ̂r(t))}, we define the expected loss and the
empirical loss as

L
(
f NARX
Γ

)
= E

{∣∣
∣∣

∣∣
∣∣f

NARX
Γ

(
θr(t)− θ̂r(t)

)∣∣
∣∣

∣∣
∣∣
2

2

}
, (34)

and

Lχ

(
f NARX
Γ

)
=

1

||χ||
∑

(
θr(t),̂θr(t)

)
∣∣∣∣
∣∣∣∣f NARX
Γ

(
θr(t)− θ̂r(t)

)∣∣∣∣
∣∣∣∣
2

2

,

(35)

respectively. We further define

Γ∗ = argmin
Γ

L
(
f NARX
Γ

)
, (36)

and

L
(
f NARX
Γ∗

)
= min

Γ
L
(
f NARX
Γ

)
, (37)

as the optimal NARX configuration, as well as the minimum
mean square error (MSE) achieved among all the configura-
tions for the NARX, respectively. Accounting for the sampling
set χ, we can similarly define

Γ∗ = argmin
Γ

Lχ

(
f NARX
Γ

)
, (38)

and

Lχ

(
f NARX
Γχ

)
= min

Γ
Lχ

(
f NARX
Γ

)
, (39)

where

L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)
≥ 0. (40)

Hence, we have

L
(
f NARX
Γχ

)
= L

(
f NARX
Γ∗

)
+

[
L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)]
,

(41)

where [L(f NARX
Γχ

)− L(f NARX
Γ∗ )] indicates the generalization

error reliant on the sampling set for a fixed configuration of
NARX, while L(f NARX

Γ∗ ) is captured by the optimized con-
figuration of NARX irrespective of the training samples and
is given by [28]

L
(
f NARX
Γ∗

)
= E

{∣∣∣∣

∣∣∣∣f
NARX
Γ∗ − f ∗

∣∣∣∣

∣∣∣∣
2

2

}
+ L(f ∗), (42)

where E{||f NARX
Γ∗ − f ∗||22} represents the approximation error

in a finite-length ReLU-driven NARX. The performance of the
proposed deep learning structure can be assessed by investi-
gating the aforementioned approximation and generalization
errors. Here, the approximation error for any given precision
can be bounded as per the following lemma.

Lemma 1: For a given precision level ε > 0, there exists a
ReLU-driven NARX estimator f ∗ that employs an optimized
configuration and incorporates up to 	log2(LNARX

max + 1)

hidden layers with LNARX

max = Nr × Nt, provided that

E

{
||f NARX

Γ∗ − f ∗||22
}
< ε. (43)

Proof: See Appendix A for the proof.
To complement, the generalization error becomes negligible

when the number of training samples is large enough as set
in the following lemma.

Lemma 2: For finite-length ||Γ∗||2 and ||Γχ||2, as well as

for the probability convergence
Pr−→, we can see that

L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)
Pr−→ 0. (44)

Proof: See Appendix B for the proof.
Relying on Lemma 2, the following corollary reflects the

efficiency of the proposed ReLU-driven NARX structure.
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Corollary 1: For finite-length ||Γ∗||2 and ||Γχ||2, there
exists a ReLU-driven NARX estimator that incorporates up to
	log2(LNARX

max + 1)
 hidden layers with LNARX
max = Nr × Nt,

provided that for a given precision ε > 0

lim
||χ||−→+∞

Pr
([

L
(
f NARX
Γχ

)
− L(f ∗)

]
> ε
)
= 0. (45)

Proof: See Appendix C for the proof.

IV. ANALOG BEAM SELECTION

In the considered hybrid analog-digital beamspace mas-
sive MIMO system, we focus on the digital baseband
precoding/combining and analog beam selection problems for
the transmitter and the receiver under the assumption of
a given beamspace channel. This problem can be formally
stated7 as in [29]

min
WBB,FBB,St,Sr

||Hb − SrWBBF
H
BBS

H
t ||2

s.t . Sr ∈ Sr, St ∈ St,WBB ∈ WBB and FBB ∈ FBB,

(46)

where St (FBB) and Sr (WBB) are the analog beam
selection (digital baseband) candidate sets at the transmit-
ter and the receiver, respectively. The optimal baseband
precoding/combining problem for a given beamspace channel

Hb can be considered as F∗
BB = (

V̄

St
H Sr

) and W∗
BB = Ū,

where V̄ and Ū correspondingly denote the right and the left
singular vector matrices of Hb [30]. The optimal solution for
the analog beam selection problem is via an exhaustive search
method that is computationally expensive. For a typical THz
massive MIMO system with Nt = 256 and NRF

t = 32, the
total number of searches in St is as large as 6× 1040, which
is impractical from the computational perspective. In what
follows, we detail our solution approach to this problem.

A. Training Sample Set Acquisition

We consider a multi-snapshot scenario to obtain the train-
ing sample set, where the network parameters such as path
gain, transmit power, AoD, and AoA change depending on
the location of the transceivers in each snapshot [31]. For
each training sample, we consider 4Ncl × Nray + 2 random
real-valued features including one feature for the transmit
power of the transmitter, one feature for the normalization
factor, 2Ncl ×Nray features for the AoDs/AoAs of the trans-
mitter/receiver, and hence 2Ncl × Nray features for the real
and imaginary parts of the complex-valued gain to form a
sample. In what follows, we conduct a normalization pro-
cess, a Gaussian mixture model (GMM) fitting, and a labeling
operation over the training samples for analog beam selection.

7Note that since beamspace channel estimation errors are inevitable, the
baseband precoding/combining matrices, in turn, cannot be calculated exactly
at the transceivers. Hence, the subject optimization problem is aimed at min-
imizing the difference between the estimated beamspace channel and the
corresponding beamspace channel, as calculated by relying on the transceiver
design parameters Sr ∈ Sr, St ∈ St,WBB ∈ WBB, and FBB ∈ FBB.

1) Normalization: Due to diversity in the training sample
ranges (e.g., transmit power is based on dB, while AoDs are
within (0, 2π]), a normalization pre-processing needs to be
conducted for every feature in each training sample as

āmf =
amf −Mean

(
amf

)

amax
f − amin

f

, (47)

where amf indicates the value of the f th feature in the mth
training sample and Mean(amf ) is the mean of all amf . Further,

amax
f and amin

f denote the maximum and minimum values of
the f th feature among all the training samples, respectively.
Hence, the mth training sample as a feature row vector can be
characterized as zm ∈ C

1×(4Ncl×Nray+2) with 4Ncl×Nray+2
normalized features.

2) GMM Fitting: Since the beamspace channel features φt ,
φr , and α follow a Gaussian distribution [8], we adopt a GMM
for the aim of fitting the beamspace channel. Therefore, we
have:

H̃b = A

×

⎛

⎜

⎝

K
∑

k=1

wk exp

⎛

⎜

⎝
−

(

φr − μφrk

)2

2σ2
φrk

−

(

φt − μφtk

)2

2σ2
φtk

−
(

φr − μαk

)2

2σ2
αk

⎞

⎟

⎠

⎞

⎟

⎠
,

(48)

with the GMM-fitted beamspace channel H̃b , GMM ampli-
tude A, and K Gaussian components, where wk ∈ [0, 1] is
the weight of the Gaussian component k and

∑K
k=1 wk = 1.

Note that in (48), the central coordinates are (μφrk
, μφtk

, μαk ),
whereas σφrk

, σφtk
, and σαk indicate their corresponding

standard deviations. In a vector representation, the Gaussian
component k can be expressed as

qk =
[
wk , μφrk

, μφtk
, μαk , σφrk

, σφtk
, σαk

]
. (49)

Equivalently, the spatial features of the training samples based
on all of the Gaussian components can be given by

q = [A; q1; q2; · · · ; qK ]T

=
[
A, μφr1

, μφt1
, μα1 , σφr1

, σφt1
, σα1 , μφr2

,

μφt2
, μα2 , σφr2

, σφt2
, σα2 , . . . , μφrK

, μφtK
,

μαK , σφrK
, σφtK

, σαK

]T
. (50)

The optimal vector q, which is used to model the beamspace
channel distribution, can be determined according to [32].

3) Labeling: Each training sample derived from the
beamspace channel domain is thus unlabeled and needs an RF
chain to be assigned. Due to the importance of accurate label-
ing, we adopt the near-optimal Gram-Schmidt [33] method for
evaluating the analog beam selection decisions. Accordingly,
the pairs (beam, RF) comprising a training sample obtained
from the beamspace channel (i.e., a typical energy-focused
analog beam), as well as a typical RF chain, are the candidates
that are evaluated in terms of the cost function. From the clas-
sification viewpoint, each RF chain is a class label, to which
analog beams are assigned. Therefore, transmit (receive) ana-
log beam selection is a multi-class mapping problem, wherein
the number of classes is NRF

t at the transmitter (or NRF
r at

the receiver).
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Fig. 3. Architecture of GoogleNet, modifications performed on training samples to fit into the input layer, replacing ReLU with Swish, and setting the
number of linear layer classes from 1000 to NRF

t +1 (or NRF
r + 1).

4) Loss Function: The loss function is
∑||NRF

t/r
||

i=1 [RF i −
R̂F

i
]2, with RF i and R̂F i indicating the ground truth label

and predicted label for the ith sample, respectively.

B. GoogleNet Architecture

GoogleNet has been developed by researchers at Google
corporation [34] based on the convolutional neural network
(ConvNet) and scored the best classification results in
ImageNet large-scale visual recognition challenge 2014
(ILSVRC14). As an off-the-shelf pre-trained network,
GoogleNet has been trained by well-known datasets (e.g.,
ImageNet) beforehand, while its weights, biases, and other
training parameters have been already preset. According to
Fig. 3, the network has 22 layers with an input layer of size
224× 224× 3 for receiving a two-dimensional (2D) image of
width and length 224 and 3 channels of RGB (i.e., red, green,
and blue).

The main parts of the GoogleNet architecture are its incep-
tion modules that incorporate multiple convolutions, kernels,
and max-pooling layers simultaneously within a single layer.
The inception modules can also effectively reduce the dimen-
sionality of the input and ensure that the network trains with
optimal weights. The main activation function in GoogleNet
is ReLU, which is computationally inexpensive and embedded
upon a filter concatenation layer within the inception module
(see Fig. 3) for improved training performance. Going deeper
into the GoogleNet architecture as observed in Fig. 3, the lin-
ear layer of size 1000 is followed by a dropout layer with 40%
ratio of dropped outputs and connected to a Softmax activation
function with 1000 classes.

C. Swish-Driven GoogleNet

Despite its notable classification capability, the performance
of GoogleNet can still be improved by further architectural
modifications. For instance, the authors in [35] proposed to
substitute the ReLU activation function of GoogleNet with
Leaky-ReLU (an extension of the conventional ReLU) for
faster convergence. In [36], large convolutional filters in

GoogleNet were factorized into smaller ones, and this mod-
ification benefited the middle layers of GoogleNet. In this
paper, we replace the ReLU activation function in the fil-
ter concatenation layer of the inception modules (see Fig. 3)
within the GoogleNet architecture by Swish [37]. The latter is
a self-gated, smooth, and non-monotonic activation function
recently proposed by the Google Brain Team. By definition,
the Swish activation function for any input x can be given by
f Swish(x ) = x .f Sigmoid(x ) = x

1+e−x . The numerical results
in [37] indicate that Swish is more precise than ReLU (and
its possible extensions, such as Leaky-ReLU) while having a
similar level of computational complexity, especially in deeper
architectures.

D. Transfer Learning

To fit the size of the training samples into the input layer of
the fine-tuned Swish-driven GoogleNet, certain modifications
are required in accordance with Fig. 3. First, a 2D image of
size (4Ncl × Nray + 2) × (4Ncl × Nray + 2) is derived from
the samples by using the nearest neighbor (NN) interpolation,
while its outcome is resized via a bicubic interpolation into
the size of 224 × 224. These transformations preserve the
quality of primary samples [38] by extracting the most deter-
minant features, which correspondingly relate to the LoS links
with power concentration (see [8] and [16] for more details).
The 224 × 224 resized 2D image is then extended into a
three-dimensional (3D) image, where the RGB color triplet
for each element is set separately [39], thus producing a 3D
RGB image of size 224 × 224 × 3 to be fed into the input
layer of the Swish-driven GoogleNet.

We further adjust the final linear layer of the fine-tuned
GoogleNet by setting NRF

t + 1 classes for the transmitter (or
NRF
r +1 for the receiver), which trains the GoogleNet to map

any sample (beam) onto the correct class (RF chain). During
the training process, the beamspace channel feature space is
processed through the layers of GoogleNet, while its main
features (energy-focused features of the beam) are extracted.
The Softmax classifier eventually learns a multi-class mapping
based on the labeled training samples obtained from [33]. The
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Fig. 4. Ensemble learning schematic.

probability of the ith RF chain being selected by the Softmax
function is

δ
(
NRF
t

)

i
=

[
e

(
NRF

t

)
i

]
×
⎡

⎣
|NRF

t |∑

i=1

e

(
NRF

t

)
i

⎤

⎦

−1

. (51)

Therefore, as observed in Fig. 3, our modified GoogleNet
version is trained by fine-tuning its linear layer and activa-
tion functions. This approach is known as transfer learning,
whereby the main layers of a pre-trained network are directly
imported into a new application, while other layers remain
unchanged. Accordingly, the fine-tuned GoogleNet learns ana-
log beam selection at the transceivers based on the beamspace
channel feature space, while its internal weights, biases, and
other parameters remain largely unchanged. Hence, off-the-
shelf pre-trained networks that are fine-tuned based on the
transfer learning principles (e.g., GoogleNet) are less vulnera-
ble to accuracy loss and do not need to be trained from scratch.
For this reason, the classification accuracy related to fine-
tuning the GoogleNet architecture (i.e., retraining its certain
layers) is higher than when training a conventional ConvNet
from scratch [40].

It is also important to note that deep networks are highly
susceptible to overfitting8 due to incorporating a massive num-
ber of weights and biases. The fine-tuned GoogleNet is, how-
ever, largely immune to this effect due to its architectural and
practical advantages. First, dropout regularization and batch
normalization are envisioned and efficiently embedded before-
hand into the GoogleNet architecture [34]. Second, owing
to the transfer learning technique, weights and biases mostly
remain unchanged during the training process. Therefore, once
limited weights and biases of the GoogleNet are retrained and
adequately adapted to the training samples, no further modi-
fications are required for mapping the new observations onto
the appropriate output classes.

V. IMPROVING ACCURACY VIA ENSEMBLE LEARNING

Ensemble learning is an efficient technique, by which
a strong ensemble learner combines the predictions for a

8Commonly occurs in an unstable trained network when small variations
in inputs of the network lead to a significant unpredicted output.

number of weak learners to acquire a more accurate prediction.
Bootstrap aggregation, as one of the simplest algorithms for
ensemble learning, is known to be capable of enhancing the
prediction accuracy versus any of its weak learners9 [41]. This
method, as displayed in Fig. 4, relies on a diversity of weak
learners trained over the bootstrapped replicas (i.e., subsets)
of the training sample data.

By drawing random subsets, the weak learners can be
trained simultaneously in an independent fashion, wherein
each learner is trained on a different subset. A combination
phase is eventually performed to aggregate the predictions of
the weak learners, so as to train the strong ensemble learner.
For a classification problem, the strong ensemble learner
prediction class is the one adopted by most of the weak learn-
ers (classifiers). Similarly, for a regression problem, the final
prediction of the strong ensemble learner is an average over
the predictions made by its weak learners (i.e., regressors).
The bootstrap aggregation algorithm (also known as bagging)
for analog beam selection and beamspace channel tracking, as
a classification/regression problem, can be detailed as follows.

• Classification: We adopt M random subsets Zm (m ∈ M )
of the entire training sample set Z . We also consider M
Swish-driven GoogleNet classifiers as weak learners for
ensembling. The learners are trained over the different
training subsets independently in a parallel fashion. For
any unseen sample zm ∈ Zm of size C

1×(4Ncl×Nray+2),
the classifiers perform a classification task and assign
it a specific class from ωm ∈ Ω = {0, . . . ,NRF

t/r }. The
ensemble learner then collects the predicted classes, with
its prediction being the class adopted by a majority voting
mechanism among the classifiers. To this aim, a voting
counter Ψ ∈ N

1×Ω indicates the total number of classi-
fiers adopted by each RF chain class. The class with the
highest value of the voting counter is thus adopted as a
prediction of the ensemble learner.

• Regression: Similar to the classification approach, M ran-
dom subsets Xm (m ∈ M ) of the entire training sample
set χ are considered for training M NARX regressors

9Note that a “weak learner” is generally referred to here as a classifier (e.g.,
GoogleNet beam selector) or a regressor (e.g., NARX beamspace channel
predictor).
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as weak learners. Once the weak learners (i.e., NARX
regressors) are trained simultaneously, a typical unseen
sample xm ∈ Xm can be predicted by each regressor.
The ensemble learner then collects the predicted values,
with its prediction given by averaging over the predictions
made by the regressors. Note that for the case where the
adopted regressors are of various types, a weighted aver-
aging mechanism is known to be more accurate, wherein
the involved regressors with higher prediction accuracy
have more impact on the final prediction for the ensemble
learner.

It is also worth noting that it may be preferable for weak learn-
ers to be trained in multiple iterations over different subsets
to avoid an accuracy loss.

VI. COMPLEXITY ANALYSIS

In this section, the order of complexity for the proposed
methods of beamspace channel tracking and analog beam
selection is investigated. The computational complexity of
training a deep learning network mainly depends on the
function that it is trained with. The computational complex-
ity of training the proposed fine-tuned GoogleNet via the
conventional stochastic gradient descent method (SGDM) is
given by

OGN

(
IconvM

(
4Ncl × Nray + 2

))
, (52)

where Iconv is the number of iterations for the fine-tuned
GoogleNet to converge. The computational complexity of
training the proposed fine-tuned NARX via the Levenberg-
Marquardt policy is expressed as

ONA

(
C
(
1 + logΥ

[ κ

υε2

]))
ε−2, (53)

where υ and Υ are the updating rule and the updating step,
respectively. Further, 0 < ε < 1 is the error tolerance with
||∇f NARX|| < ε, while κ and C correspondingly denote
the determinant factor and the constant of the Levenberg-
Marquardt policy as defined in [42]. Finally, the computational
complexities of the ensemble GoogleNet network and the
ensemble NARX network can respectively be expressed as

OEnsGN = OGN1
+OGN2

+ · · ·+OGNM1

= max
j

{
OGNj

}
, ∀j ∈ {1, 2, . . . ,M1}, (54)

and

OEnsNA = ONA1
+ONA2

+ · · ·+ONAM1

= max
j

{
ONAj

}
, ∀j ∈ {1, 2, . . . ,M1}. (55)

VII. SIMULATION RESULTS

In this section, we consider a clustered THz channel with
Ncl = 10 clusters and Nray = 3 propagation rays in each
cluster. The signal wavelength is λ = 1.36, the AoDs and
AoAs are i.i.d. and follow a uniform distribution over [−1

2 ,
1
2 ],

while the complex-valued gain follows CN (0,1). Simulations
are conducted for a lens-aided MIMO system equipped with

TABLE I
DEEP LEARNING CONFIGURATIONS

Nr = 64,Nt = 256. For the NARX parameters according
to Table I, we set a 10-layer MLP with the number of input
and output delays nθt = nθr = 10 over 50 observation time
slots, where the samples are injected within 1-second interval.
We consider 10000 samples in 50 batches, 70% of which are
used for training, while the rest are used for validation and
testing.

For the simulations related to the GoogleNet, we fol-
low the configurations presented in Table I, where 70% of
the sampling data are used for training and the rest are
used for validation, all in a randomized manner. Further,
the “MiniBatchSize” corresponds to the number of images
employed at each iteration of training/validation. The maxi-
mum number of training epochs is indicated by “MaxEpochs”
and the “Shuffle” field is for every epoch that randomly
initiates a new datastore with the same training/validation
data. The initial learning rate “InitialLearnRate” slows down
the learning in the transferred layers owing to its adopted
small value and the “ValidationFrequency” field specifies
that validation is performed every three iterations during
training.

A. Performance Measures

To evaluate the performance of our proposed method, we
assess the well-known error metrics, such as RMSE, as well
as the normalized mean square error (NMSE) over M training
samples, which correspond to

RMSE =

√√√√
M∑

i=1

||Hi
b(t)− Ĥi

b(t)||22, (56)

and

NMSE = E

{∑M
i=1 ||Hi

b(t)− Ĥi
b(t)||22

∑M
i=1 ||Ĥi

b(t)||22

}

, (57)

where Hi
b(t) and Ĥi

b(t) are the ground truth and the predicted
values of the beamspace channel for the ith sample at time
step t, respectively. We also consider the standard deviation
and the mean absolute deviation metrics for evaluating the
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Fig. 5. Accuracy of fine-tuned GoogleNet for training and validation.

Fig. 6. Loss rate of fine-tuned GoogleNet for training and validation.

channel tracking variance [43], which correspond to

τ1 =

√√√√
∑M

i=1 ||Ĥi
b(t)− μ||22
Q

, (58)

and

τ2 =

∑M
i=1 ||Ĥi

b(t)− μ||2
Q

, (59)

with the prediction average μ. The achievable SE of a hybrid
analog-digital system can be expressed as (60), as shown at
the bottom of the page, where Rn = (WBB)

H (Sr)H SrWBB
is the noise covariance matrix after combining.

B. Performance Evaluation for Analog Beam Selection

The baseline analog beam selection strategies MLP, k-NN,
and SVM with the same internal configurations as in [13],
the conventional ReLU-driven GoogleNet, the Swish-driven
GoogleNet, and the ensemble learning schemes are compared

here in terms of the achievable SE.10 Additionally, the fully
digital zero-forcing (ZF) strategy that employs entire beams at
the transceivers is the optimal benchmark baseline. Simulation
results in this subsection report that the proposed analog beam
selection outperforms other baselines and remains the closest
to the fully digital ZF baseline.

The performance gains mainly come from the high precision
of the GoogleNet and its ensemble model for analog beam
selection. First, we assess the accuracy and the loss ratios for
the training/validation process of the proposed Swish-driven
GoogleNet scheme in Figs. 5 and 6, respectively. Clearly,
the training/validation process is inaccurate in the first iter-
ations. That is because the weights and biases of the input
layer and the linear layer are not well-adjusted with the
sampling data. Gradually, as the iterations progress, the train-
ing/validation accuracy improves (tends to 100%), while the
training/validation loss drops (tends to 0).

10Since our analog beam selection method comprises three stages, the
accuracy of each stage for analog beam selection should be analyzed individ-
ually. Further, possible performance gains of the overall beamspace system
composed by each stage need to be assessed independently and compared
to similar schemes via simulations. To this aim, the intermediate stages
of our analog beam selection method, including the GoogleNet-ReLU, the
GoogleNet-Swish, and the ensemble model, are evaluated numerically with
separate baseline schemes.

SE = log2

∣∣∣∣∣
INs

+
ρ

σ2Ns
R−1
n (WBB)

H (Sr)
HHbStFBB(FBB)

H (St)
H (Hb)

H SrWBB

∣∣∣∣∣
(60)
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Fig. 7. Performance evaluation of beam selection strategies for increased SNR, number of selected transmit beams, and number of users.

Further, we analyze the performance of our considered
schemes in a comparative fashion. The benchmark fully-digital
ZF strategy that uses NRF

t = 256 and NRF
r = 16 RF chains,

as expected, has the largest achievable SE in Fig. 7(a) and
Fig. 7(b) at the expense of high system complexity, energy
consumption, and hardware cost. Fig. 7(a) with varying SNR
in 0dB∼30dB and NRF

t = NRF
r = Ns, where Ns = 4, indi-

cates that under increased SNR the achievable SE improves
for all the baselines as per (60). In Fig. 7(b), with varying Ns

in 4∼10, where NRF
t = NRF

r = Ns and SNR = 10dB, the
achievable SE increases for a higher number of simultaneous
data streams. Our proposed ensemble learning scheme is supe-
rior amongst others and remains the closest to the benchmark
due to its better accuracy. According to Fig. 7(a), this scheme
improves the achievable SE of the MLP strategy [13] by up
to 34% at SNR = 30dB. Also at SNR = 30dB, the proposed
Swish-driven GoogleNet and the conventional ReLU-driven
GoogleNet schemes achieve better performance with respect
to other strategies (MLP, SVM, and k-NN) by exhibiting 21%
and 17% achievable SE gains, respectively, as compared to the
MLP option [13].

In Fig. 7(c), under the same configuration as in Fig. 7(b)
with Ns = 4, we assess the accuracy of analog beam selection
strategies. The ensemble learning strategy with 94% accuracy
is the best, while the Swish-driven GoogleNet and the conven-
tional ReLU-driven GoogleNet schemes with 86% and 83%,
on average, are the second and the third best options for ana-
log beam selection. The reason is that retraining/modifying
pre-trained networks such as GoogleNet based on the trans-
fer learning method for classification tasks (e.g., analog beam
selection) is more accurate than training a deep network such
as MLP [13] from scratch. Following the transfer learning
principles, the parameters of a pre-trained deep structure are
for the most part kept unchanged, whereas a few certain
parameters are adjusted based on samples.

Considering a multi-user scenario in Fig. 7(d), we compare
the performance of our proposed analog beam selection against
the baseline scheme “deep reinforcement learning” (DRL)
in [45]. Accordingly, for a larger number of users, a higher
achievable SE for the beamspace system is observed. Further,
our proposed baseline schemes (ensemble, GoogleNet-Swish,
and GoogleNet-ReLU) outperform the DRL baseline option
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Fig. 8. Performance evaluation of beamspace channel tracking strategies for increased SNR and number of data streams.

TABLE II
GOOGLENET-BASED ANALOG BEAM SELECTION

ACCURACY COMPARISON

by up to 19%, 17%, and 14%, respectively. We also examine
the accuracy of the conventional ReLU-driven GoogleNet as
well as of the fine-tuned Swish-enabled GoogleNet schemes
by applying different training functions, e.g., root mean
square propagation (RMSPROP), adaptive moment estimation
(ADAM), and SGDM, as demonstrated in Table II. One can
observe that the Swish-driven GoogleNet scheme trained by
the SGDM can achieve the highest analog beam selection
accuracy.

C. Performance Evaluation for Beamspace Channel Tracking

In this subsection, we evaluate the performance of the
Gaussian mixture learning-aided AMP (GM-LAMP) [8],
learning-aided AMP (LAMP) [9], LSTM [11], and orthogonal

matching pursuit (OMP) [19] baseline schemes for beamspace
channel tracking in comparison with the proposed NARX
scheme as well as the ensemble learning strategy. Here, the
benchmark scheme named full-CSI is having the ground truth
information. Simulation results indicate that our proposed
methods are the closest ones to the full-CSI baseline as com-
pared to the counterparts. The performance benefits come from
a more accurate tracking capability of the fine-tuned NARX
and its ensemble model on the beamspace channel.

First, we assess the performance of our proposed schemes
in a comparative manner. To this end, Fig. 8(a) and Fig. 8(b)
contrast the achievable SE for the baseline beamspace channel
tracking schemes, while increasing the SNR and the number
of data streams, respectively. In Fig. 8(a), with varying SNR
in 0dB∼30dB and NRF

t = NRF
r = Ns, where Ns = 4,

the ensemble learning scheme shows the best performance
against other weak learner schemes, which improves the
LSTM performance [11] by up to 23% for SNR = 15dB. The
proposed NARX scheme closely approaches the upper bound
in both figures owing to its much lower error and thus offers up
to 15% gain over [11] for SNR = 15dB in Fig. 8(a). Further,
as SNR grows in Fig. 8(a), all of the schemes become closer
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Fig. 9. Training, validation, testing, and prediction accuracy of the proposed scheme for beamspace channel tracking.

to the perfect CSI option due to their accurate predictions. In
summary, the proposed schemes can tightly track the perfect
CSI at higher SNR values.

In Fig. 8(b), under varying Ns in 4∼10, where NRF
t =

NRF
r = Ns and SNR = 10dB, the achievable SE increases

with a higher number of simultaneous data streams, while the
superiority of our proposed schemes is evident for a vary-
ing number of Ns. In Fig. 8(c), we analyze the NMSE values
at varying SNR in 0dB∼30dB, where NRF

t = NRF
r = Ns

and Ns = 4. As observed, for increased SNR, all of the
schemes perform more accurately, while the ensemble learn-
ing approach shows better performance as it exploits multiple
predicting modules simultaneously. Also, our proposed NARX
scheme remarkably outperforms the LSTM option, especially
at lower SNR values, due to its higher time-series prediction
accuracy.

Further, Fig. 9(a) confirms that training the NARX with
Levenberg-Marquardt policy yields lower variance devia-
tions in predictions, as compared to training with random
weights, by up to 35% and 42% for τ1 and τ2, respec-
tively. Additionally, the ensemble learning technique reduces

the prediction variance, in contrast to a single trained NARX
module, by up to 47% and 52% for τ1 and τ2, respectively.
In Fig. 9(b), the convergence behavior of NARX during train-
ing, validation, and testing is reported. First, it is apparent that
due to the lower prediction variance in Fig. 9(a), a negligible
RMSE for training, validation, and testing at the convergence
point is observed. Importantly, appropriate initialization of the
learning rate in MLP of NARX through the Bayesian opti-
mizer offers faster convergence. Unlike the typical ANNs such
as spiking neural network (SNN), which take a long time to
converge (one can refer to [15, Fig. 7]), NARX training con-
verges within a limited number of epochs subject to adequate
initialization of its hyperparameter.

In Fig. 9(c), we analyze the loss range during training,
validation, and testing against the number of samples in a
batch. Clearly, the higher number of samples there is in a
batch, the lower errors are observed. Also, the error is much
smaller during the training phase of NARX (indicated by blue
lines), which is due to the availability of the ground truth
samples in the open-loop structure. In the validation and test-
ing phases, errors mostly occur close to the zero error line,
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TABLE III
AVERAGE GENERALIZATION ERROR ANALYSIS

which is negligible. In Table III, the generalization error of
the proposed ensemble model for beamspace channel tracking
is evaluated for a varying number of training samples as well
as the maximum layers of the incorporated NARX models in
the ensemble model. As observed, with the higher number of
training samples provided, the respective generalization error
is lower while predicting the AoDs/AoAs. As an example, for
10000 training samples, the lowest errors are observed in this
table. Concerning the number of NARX layers, we report the
lowest error for LNARX

max = 4 as compared to other baselines,
while these demonstrate higher generalization errors. Note that
the number of layers as a hyperparameter in the NARX model
can be optimized by the Bayesian hyperparameter optimization
error.

VIII. CONCLUSION

This paper addresses beamspace channel tracking and ana-
log beam selection in THz beamspace MIMO systems. First, a
time-series-based deep learning approach is detailed to track
the historical beamspace channel features and predict them
for the upcoming time steps. Simulation results suggest that
the proposed scheme, due to employing various learning-
based enhancements, offers more accurate performance for the
beamspace channel tracking as compared to its existing coun-
terparts. Second, we propose to fine-tune GoogleNet being
a pre-trained image classifier to learn analog beam selec-
tion as a classification task. Numerical results demonstrate
that this approach adapts well to the analog beam selection
problem and achieves remarkable improvements in accuracy
by contrast to prior research. This is owing to the superior
classification performance of the pre-trained networks such
as GoogleNet over the conventional deep learning techniques
such as ConvNet.

APPENDIX A
PROOF OF LEMMA 1

Note that

fΓ

(
θr(t)

)
= WNARXθr(t) + bNARX (61)

is an affine and, therefore, a piecewise linear function. Hence,
there exists a ReLU-driven NARX estimator incorporating at
most 	log2(LNARX

max + 1)
 hidden layers (with LNARX
max indi-

cating the size of the input layer) to represent such a function.
Owing to this, f ∗ can be well-approximated and convergent to
MMSE [28]. Therefore, for the proposed ReLU-driven NARX
estimator equipped with at most 	log2(LNARX

max + 1)
 hidden

layers (LNARX
max = Nr×Nt in our case), the configuration Γε,

and a given precision ε > 0, we have E{||fΓε
− f ∗||22} ≤ ε.

As defined in Section III-C, f NARX
Γ∗ indicates the minimum

MSE achieved across all the NARX configurations, e.g., Γε.
Hence, it can be observed that

E

{∣∣∣
∣

∣∣∣
∣f

NARX
Γ∗ − f ∗

∣∣∣
∣

∣∣∣
∣
2

2

}
≤ E

{∣∣∣
∣

∣∣∣
∣fΓε

− f ∗
∣∣∣
∣

∣∣∣
∣
2

2

}
≤ ε, (62)

where the definition of the expectation E(.) entails that

E

{∣∣∣∣

∣∣∣∣f
NARX
Γ∗ − f ∗

∣∣∣∣

∣∣∣∣
2

2

}
≤ E{ε} = ε. (63)

The proof is completed.

APPENDIX B
PROOF OF LEMMA 2

For finite-length ||Γ∗||2 and ||Γχ||2, the large numbers
principle [44] induces

Lχ

(
f NARX
Γ∗

)
− L

(
f NARX
Γ∗

)
−→ 0, (64)

and

Lχ

(
f NARX
Γχ

)
− L

(
f NARX
Γχ

)
−→ 0. (65)

Concerning the approximation error that results in
L(f NARX

Γχ
)− L(f NARX

Γ∗ ) ≥ 0, we have
[
L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)]
−

[
Lχ

(
f NARX
Γχ

)
− Lχ

(
f NARX
Γ∗

)]

+

[
Lχ

(
f NARX
Γχ

)
− Lχ

(
f NARX
Γ∗

)]
≥ 0. (66)

In addition, since Lχ(f
NARX
Γχ

) − Lχ(f
NARX
Γ∗ ) ≥ 0, it can be

observed that[
L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)]
−

[
Lχ

(
f NARX
Γχ

)
− Lχ

(
f NARX
Γ∗

)]

+

[
Lχ

(
f NARX
Γχ

)
− Lχ

(
f NARX
Γ∗

)]

≤
[
L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)]

−
[
Lχ

(
f NARX
Γχ

)
− Lχ

(
f NARX
Γ∗

)]
. (67)

Accordingly, since [28]
[
L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)]
−

[
Lχ

(
f NARX
Γχ

)
− Lχ

(
f NARX
Γ∗

)]

Pr−→ 0, (68)

the proof is completed as L(f NARX
Γχ

)− L(f NARX
Γ∗ )

Pr−→ 0.
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APPENDIX C
PROOF OF COROLLARY 1

Relying on (41) and (42), one can observe that

L
(
f NARX
Γχ

)
− L(f ∗) = L(f NARX

Γ∗
)
+

[
L
(
f NARX
Γχ

)
− L(f NARX

Γ∗
)]

+ E

{∣∣∣∣
∣∣∣∣f NARX
Γ∗ − f ∗

∣∣∣∣
∣∣∣∣
2

2

}
− L(f NARX

Γ∗
)

= E

{∣∣∣∣
∣∣∣∣f NARX
Γ∗ − f ∗

∣∣∣∣
∣∣∣∣
2

2

}

+ L
(
f NARX
Γχ

)
− L(f NARX

Γ∗
)
. (69)

On the one hand, the approximation error is bounded by a
predetermined threshold according to Lemma 1, i.e.,

E

{∣∣∣∣

∣
∣∣∣f

NARX
Γ∗ − f ∗

∣
∣∣∣

∣
∣∣∣
2

2

}
≤ ε, (70)

whereas the generalization error, on the other hand, is conver-
gent to zero for the sufficiently large number of samples, i.e.,

L
(
f NARX
Γχ

)
− L

(
f NARX
Γ∗

)
Pr−→ 0, (71)

from Lemma 2. Therefore, it can be written that

lim
||χ||−→+∞

Pr

([
L
(
f NARX
Γχ

)
− L(f ∗)

]
> ε

)
= 0, (72)

which completes the proof.
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