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Abstract—Automatic modulation classification (AMC) can gen-
erally be divided into knowledge-based methods and data-driven
methods. In this paper, we explore combining the knowledge-
based method and data-driven technology to take full advantage
of both and propose a hybrid knowledge and data-driven deep
learning framework (HKDD) for AMC. To make the hand-
crafted features more discriminative, various traditional features
are adopted, including instantaneous features, statistical features,
and spectral features. In the HKDD framework, a feature fusion
mechanism is proposed to integrate the features learned from the
original signal with those processed by a fully connected network
from the handcrafted features. Besides, an attention mechanism
is implemented on the fused features to neglect immature features
and highlight important features. To evaluate the performance
of the proposed method, we construct two modulation classifi-
cation datasets containing both traditional features and raw IQ
data. The bigger one contains 36 modulation categories, which
is greater than the number of categories of any AMC dataset
currently available. Simulation results show that our proposed
method has significant performance gain in both adequate-sample
classification scenario and few-shot classification scenario.

Index Terms—Automatic modulation classification, few-shot
classification, deep learning, attention mechanism, traditional
features.

I. INTRODUCTION

W ITH the explosive development of wireless commu-
nication technology, various communication networks

have been deployed and intelligent terminals have gradu-
ally popularized. Nowadays, millions Internet of Things (IoT)
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devices have been deployed for providing wireless services,
and the number is growing with 25% rate annually, achieving
80 billion by 2030 [1]. The sharp increase of IoT devices has
posed a severe challenge to the spectrum resources, that is, it is
crucial to accommodate the ever-increasing demand for wire-
less services and allow a massive amount of IoT devices to
access the spectrum. An effective way for alleviating the situ-
ation is to use dynamic spectrum access (DSA) [2] technology
based on cognitive radio (CR) [3], [4] to improve the spectrum
utilization efficiency by allowing the unlicensed user to access
the licensed band when licensed user is absent. In the field of
DSA, automatic modulation classification (AMC) has become
a key technology to optimize spectrum allocation by assisting
the unlicensed user to detect the signal of a licensed user with-
out any prior knowledge [5], [6]. When the modulation type of
the licensed user is recognized, the unlicensed user can choose
an appropriate modulation type for transmission in order to
reduce interference to the licensed user. In addition, AMC
technology has also been widely used in other fields, includ-
ing interference identification, communication reconnaissance,
and blind signal processing.

Most traditional AMC algorithms are designed based on
domain knowledge which may come from presumptive sta-
tistical models or deterministic models associated with the-
ory in the field of communications and signal process-
ing. For example, the feature-based AMC methods design
handcrafted features based on the deterministic models of
the transmitted signal with respect to a specific modula-
tion type while the likelihood-based AMC methods usually
rely on the assumed channel model, e.g., additive white
Gaussian noise (AWGN) channel [7]. We refer to these
methods as knowledge-based methods which mainly rely on
the domain knowledge to perform modulation classification.
In general, the knowledge-based methods do not rely on
a large number of training samples to learn the relation-
ship between the input and the desired output because only
a few parameters are required to be estimated. However,
the knowledge-based methods are difficult to adapt to the
complicated and dynamic channel environment. Besides,
they depend too much on selecting applicable features for
different modulation types and these features are usually
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not optimal in recognizing large number of modulation
categories.

As the giant success of deep learning (DL) in various
applications such as image recognition [8] and text classifi-
cation [9], it has also been used in radio signal processing
including signal detection [10], signal classification [11], [12]
and information recovery [13]. The data-driven DL methods
for AMC are commonly used in a supervised learning manner.
A deep neural network is designed and trained with a mass
of labeled samples to extract high-dimensional features from
input signals to distinguish different modulation types. The DL
networks are generally regarded as a non-linear mapping from
the input to the output, and the mapping function specified by
a large number of parameters is optimized using the training
samples. In general, the data-driven DL methods can usually
obtain better performance than the knowledge-based methods
when adequate training samples are available. However, note
that the DL model is usually high-parameterized, once the
number of training samples is insufficient, it will be difficult
to find optimal values for the parameters of DL model, leading
to a sharp decline of classification performance for the DL-
based methods. Hence, the performance of DL-based AMC
methods will suffer in a few-shot scenario.

The next generation of artificial intelligence (AI) refers to
explainable AI that is able to explain the model behavior and
gains insight in the working mechanism by combining domain
knowledge [14]. Domain knowledge can provide constructive
guidance for adjusting the DL model to improve the related
performance. For example, knowledge about statistic prop-
erties of raw data was combined with convolutional neural
network (CNN) and broad learning to design a fault diagnosis
framework in [15]. Domain-specific knowledge of handwritten
Chinese characters, including deformation, non-linear normal-
ization, imaginary strokes, and path signature was incorporated
with CNN to improve the recognition performance of hand-
written Chinese characters in [16]. Knowledge-driven image
preprocessing module was introduced for camera recognition
in [17] to extract multi-scale knowledge of images. The multi-
scale knowledge of these images and the original image are
sent to CNN to get the camera type of the picture. These
works reveal the potential of combining domain knowledge
and data-driven technology to improve the performance of
recognition.

In the field of radio signal processing, we envision the
next generation of signal intelligence as the hybrid technology
that attempts to take the combination of domain knowl-
edge and data-driven technology into account which has not
been thoroughly investigated. In this paper, we propose a
Hybrid Knowledge and Data-driven Deep learning framework
(HKDD) for AMC which can obtain good performance in
both adequate-sample scenario where adequate labeled sam-
ples are available and few-shot scenario where only a small
amount of labeled samples are available. The knowledge we
considered in this paper is the handcrafted features explored in
feature-based AMC methods, which consist of instantaneous
features, statistical features and spectral features. Our proposed
network can be divided into three parts: DL network, knowl-
edge network and fusion network. The DL network is similar

to the DL-based AMC method, which gives the prediction
result based on the IQ signal input. The knowledge network
produces the prediction result based on the input of hand-
crafted features. The fusion network is to combine the learned
features from DL network and knowledge network and pro-
duce more discriminative joint features. We build two datasets
to evaluate the performance of our proposed method. Overall,
the contributions of this paper can be summarized as follows.

• In order to promote the classification performance of
AMC in both adequate-sample classification scenario
and few-shot classification scenario, we propose HKDD
to take full advantage of the DL-based method and
knowledge-based method through integrating the features
learned through a CNN from the original signal with
those processed by a deep neural network (DNN) from
the handcrafted features.

• To alleviate the influence of some immature features
caused by inadequate learning, we adopt an attention
mechanism to automatically learn corresponding weights
for fused features in our proposed HKDD, which can
abandon immature features by learning weights close to
0 and highlight important features by learning weights
close to 1.

• We build two datasets for validating our proposed
method, namely, HKDD_AMC12 which contains 12
different modulation types and HKDD_AMC36 which
contains 36 different modulation types. Besides raw IQ
sequences, traditional features of these signals are also
included in these datasets. We concatenate traditional
features into a vector for the convenience of DNN pro-
cessing. The number of categories of HKDD_AMC36 is
greater than the number of categories of any AMC dataset
currently available.

• We evaluate the performance of our proposed method
in both adequate-sample scenario and few-shot scenario.
Simulation results show that the proposed HKDD is
superior to the DL-based method and the knowledge-
based method in both scenarios. Furthermore, HKDD
also performs far better than an existing “hybrid” AMC
method.

The rest of the paper is organized as follows. We discuss
the related work in Section II and introduce the system model
in Section III. We give basic definitions of traditional features
adopted in our proposed method in Section IV. We explain
the details of our proposed HKDD framework in Section V.
The modulation datasets and simulation results are given in
Section VI and finally the conclusion is made in Section VII.

II. RELATED WORK

A. Knowledge-Based AMC Methods

Among the knowledge-based AMC methods, we focus on
the feature-based AMC methods since the handcrafted features
have low complexity in computation and easy to implement.
In general, the feature-based AMC methods usually utilize
several signal features to make a decision and the adopted
signal features need to be designed carefully for different
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modulations. Examples of the features include instantaneous
features, statistical features and spectral features.

Information contained in the instantaneous amplitude,
instantaneous phase and instantaneous frequency of the
received signal is valuable to discriminate the modulation
type and many methods have been proposed to extract this
information. In [18], [19], [20], the authors employed the
standard deviation of the absolute value of the normalized-
centered instantaneous amplitude to classify 2ASK and 4ASK
and the standard deviation of the absolute value of the normal-
ized centered instantaneous frequency to distinguish between
2FSK and 4FSK. Phase difference was used to identify the
PSK order in [21], [22]. Kurtosis of the amplitude was used
for PSK and QAM identification in [23].

The most commonly used statistical features for AMC
are high-order cumulants and moments. High-order moments
were employed as classification features in [24]. In [25],
high-order cumulants were introduced as the discriminative
features to distinguish between ASK, PSK, and QAM modu-
lations. In [26], a robust AMC algorithm based on fourth-order
cumulants was proposed when multipath fading channel is
considered and the prior information on the channel state
is unknown. Furthermore, the fourth-order cumulants were
extended to eighth-order cumulants in [27], and it has been
proved that the eighth-order cumulants-based algorithm can
achieve much better classification accuracy in distinguish-
ing PSK, FSK and QAM signals under multipath fading
channels. High-order cumulants were also used to classify
the modulations of multiple-input multiple-output (MIMO)
signals in [28], [29]. Recently, the AMC algorithm based
on high-order cumulants has been introduced in distributed
networks [30].

Spectral features represent features of signals in the
frequency domain, which provides another new perspective
to distinguish signals. Two key spectral features were intro-
duced in [31] for recognizing analog modulation signals,
the maximum value of the spectral power density of the
normalized-centered instantaneous amplitude and the signal
spectrum symmetry derived from the signal spectrum. The
former feature is used to divide various modulation types into
two families. One is the modulation type that the signal ampli-
tude carries information, such as M-PAM and M-QAM, and
the other contains modulation types that signal amplitude is
unchanged, such as FM, M-FSK. The latter feature is effec-
tive to measure the symmetry of the spectrum. Furthermore,
discrete Fourier transform (DFT) of the phase histogram was
used to identify the PSK order in [32]. The DFT of the
phase histogram was used to classify various QAM signals by
combining knowledge about the distribution of the magnitude
in [33].

B. Data-Driven AMC Methods

With the rapid development of DL, many AMC meth-
ods based on DL have been proposed. The data-driven DL
methods are commonly trained on massive labeled sam-
ples, where the original IQ signal is commonly used as the
input, and they aim at designing a deep network to extract

high-dimensional features from the raw input signals to dis-
tinguish different modulation types. With the advent of some
excellent CNN models in the task of image classification,
such as AlexNet [34], GoogleNet [35], ResNet [36], many
works have explored the usage of CNN to complete the task
of modulation classification. An AlexNet based feature learn-
ing network was proposed in [37]. It was designed to extract
deep features using parameter-based transfer learning tech-
niques for promoting multi-level representation capabilities
of features and reducing the requirements of sample size.
In [38], the authors designed a special architecture of CNN
with 34 layers for AMC. Moreover, the training set was
enhanced by means of interpolation, extraction, power nor-
malization, and Gaussian noise to improve the robustness of
the recognition algorithm. Due to the superior performance
of ResNet in image classification, it has been employed in
modulation classification recently in [39], [40], [41] and it
works well whether it classifies 24 modulation types or high-
order modulations, such as 256QAM and 1024QAM. As the
complex convolution can extract amplitude and frequency
features from the complex-valued signal, a designed complex-
ResNet was used in [42] to recognize multiple modulations
of signals. To bridge the gap between the wireless signals
and DL models, the authors in [43] proposed to trans-
form complex-valued signal waveforms into contour stellar
image (CSI), which can be treated as a general image data
format.

Considering the communication signal is actually a tempo-
ral sequence and correlated in time, recurrent neural networks
(RNNs) have been adopted for AMC. RNN is effective to learn
the non-linear characteristics of the time sequence due to its
memory mechanism. The authors in [44] focused on extract-
ing time-related characteristics of communication signals by
RNN rather than spatial-related characteristics by CNN and
compared the performance of CNN, RNN, long short-term
memory (LSTM), and gated recurrent unit (GRU) network.
A robust AMC method based on RNN was proposed in [45],
where the channel noise was considered as a mixture of differ-
ent noises. As the channel noise was found to be time-related
data, the RNN-based method was proved to be superior to the
method that requires estimating channel and noise iteratively.
A LSTM-based classifier was proposed in [46] for extracting
time-related relation with signal sequence without estimation
of the signal parameters.

Some works try to integrate different networks in order to
boost the performance of AMC. The authors in [44] achieved
performance gains through incorporating the RNN into the
CNN-based method in both the AWGN channel and Rayleigh
fading channel. In [45], a classifier composed of two convo-
lutional layers followed by one LSTM layer was proposed for
the modulation recognition. The experimental results reveal
that this structure can effectively extract the temporal correla-
tion and the classification performance is better than that with-
out LSTM. The authors in [47] proposed a new AMC method
that fused the features extracted from one-dimensional convo-
lution, two-dimensional convolution and LSTM. It improves
the accuracy of classification, especially for 16QAM and
64QAM.
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C. Hybrid AMC Methods

Hybrid AMC methods try to incorporate the knowledge-
based method and the DL-based method to improve the
performance of AMC. However, only a few works attempted
to take the combination of knowledge and data-driven tech-
nology into account. In [48], the authors integrated the hand-
crafted features with the extracted features by CNN from the
time-frequency distribution of the received signal for AMC.
However, the handcrafted features considered are limited. The
DL model was trained on adequate samples and the authors
didn’t take manner to ensure the classification performance
in the few-shot scenario. More importantly, the raw IQ input
was not considered in their hybrid structure which may lead
to severe performance loss. The authors in [49] focused on the
semi-supervised learning scenario, where some handcrafted
features, such as high-order cumulants features, entropy fea-
tures and time-frequency features were combined with unsu-
pervised features extracted by autoencoder as well as the
labeled samples to train an annotator to label the unlabeled
samples. As a result, adequate pseudo-labeled samples and a
few real-labeled samples were applied to train a classifier. It
can be seen that as a practical representation of domain knowl-
edge, the traditional handcrafted features are more favorite by
authors since their low complexity of computation and easy
implementation. Different from that only the adequate-sample
classification scenario was considered in the above works, in
this paper we consider both the adequate-sample classification
scenario and few-shot classification scenario. Furthermore, in
our proposed HKDD, we jointly optimize sub-networks for
the handcrafted features input and the IQ data input rather
than concatenating the handcrafted features with the extracted
features from the IQ data directly, thereby avoiding the influ-
ence of excessive value of the handcrafted features on the
classification layer of DL model.

III. SYSTEM MODEL

Considering a discrete-time baseband equivalent model, the
relation between the transmitted signal sm(n) and the received
signal r(n) at time instant n can be expressed as

r(n) = sm (n) ∗ h(n)ej (2πnΔf+θ0) + w(n), (1)

where * represents the convolution operation, sm(n) is the
modulated signal which is generated from one of M modula-
tions {s1(n), s2(n), . . . , sM (n)}, h(n) is the impulse response
of the transmitted wireless channel, which is simply an
impulse function δ(n) for ideal channel, w(n) is complex-
valued white Gaussian noise with zero mean and variance
σ2n , Δf is the frequency offset of carrier, θ0 is a random
phase shift due to frequency offset of carrier and phase jitter,
n = 0, 1, . . . ,N − 1, and N denotes the signal length.

Modulation classification is commonly modeled as a clas-
sification problem with M categories. The goal of modulation
classification is to recognize the modulation type of transmit-
ted signal sm (n) using the received signal r(n) and maximize
the probability Pr(sm(n) ∈ Mi |r(n)), where Mi represents
the i-th modulation scheme. For simplicity in implementation
and computation, the received signal is generally represented

in N × 2 format, where N is the signal length. The in-
phase and quadrature components of r(n), also known as IQ
components, are stacked in parallel for the convenience of
implementation. The IQ components can be represented by

I (n) = real(r(n)),

Q(n) = imag(r(n)), (2)

where I(n) and Q(n) correspond to the in-phase and quadrature
components of r(n) respectively, real(·) and imag(·) represent
the real and imaginary parts of the signal.

IV. ADOPTED TRADITIONAL FEATURES

We consider hybrid modulation classification scenario
where multiple traditional features which are usually derived
from domain knowledge are combined with the IQ samples
to improve the modulation classification performance. In this
section, we give the basic definitions of traditional features
adopted in this paper, which can be divided into three cate-
gories, namely, instantaneous features, statistical features, and
spectral features.

A. Definitions of Instantaneous Features

For a received signal r(n),n = 0, 1, . . . ,N − 1, where N
is equal to the sampling points, the instantaneous amplitude
a(n) of received signal is defined as

a(n) =

√
I (n)2 +Q(n)2. (3)

Instantaneous amplitude used in the paper is normalized-
centered instantaneous amplitude A(n) and the operation of
normalization is expressed as follows:

A(n) =
a(n)

E(a(n))
− 1, (4)

where E(·) is to calculate the mean value.
The instantaneous phase is calculated through the following

equation:

P(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Q(n) = 0, I (n) > 0,

arctan(Q(n)/I (n)), Q(n) > 0, I (n) > 0,

π − arctan(Q(n)/I (n)), Q(n) > 0, I (n) < 0,

π/2, Q(n) > 0, I (n) = 0,

π, Q(n) = 0, I (n) < 0,

π + arctan(Q(n)/I (n)), Q(n) < 0, I (n) < 0,

3π/2− arctan(Q(n)/I (n)), Q(n) < 0, I (n) > 0.

(5)

The instantaneous frequency f (n) is obtained by the differ-
ence of instantaneous phase P(n) as

f (n) = P(n)− P(n − 1),n = 1, 2, . . . ,N − 1. (6)

In order to keep the length of f (n) equal to the length of r(n),
we set f (n) = 0 when n = 0. Instantaneous frequency used
in the paper is centered instantaneous frequency F(n), which
utilizes the mean of f (n) to implement self-centralization and
it can be represented as

F (n) = f (n)− 1

N

N∑
n=1

f (n). (7)
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Instantaneous features are designed based on the instanta-
neous amplitude and the instantaneous frequency as follows.

• The number of instantaneous amplitude of received sig-
nals within a given range is defined as

K =

{
n : 0.4 <

∣∣∣∣
r(n)− E(r(n))

std(r(n))

∣∣∣∣ < 0.8

}
, (8)

where std(·) represents standard deviation operation. We
normalize K to sampling points and we have

K1 =
K

N
. (9)

• The standard deviation of instantaneous amplitude is
defined as

σa =

√√√√√ 1

N

(
N∑

n=1

A2(n)

)
−
(

1

N

N∑
n=1

A(n)

)2

. (10)

• The standard deviation of absolute value of instantaneous
amplitude is defined as

σaa =

√√√√√ 1

N

(
N∑

n=1

A2(n)

)
−
(

1

N

N∑
n=1

|A(n)|
)2

. (11)

• The standard deviation of absolute value of instantaneous
frequency is defined as

σaf =

√√√√√ 1

N

(
N∑

n=1

F 2(n)

)
−
(

1

N

N∑
n=1

|F (n)|
)2

. (12)

• The kurtosis of instantaneous amplitude is defined as

μa =
E
(
A4(n)

)

[E(A2(n))]2
. (13)

• The kurtosis of instantaneous frequency is defined as

μf =
E
(
F 4(n)

)

[E(F 2(n))]2
. (14)

B. Definitions of Statistical Features

Statistical features include high-order moments and cumu-
lants of the received signal.

• For a complex-valued signal r(n), the k th - order mixed
moment with q conjugations Mk ,q is defined as

Mk ,q = E
[
r(n)p ·

(
r(n)∗

)q]
, (15)

where p + q = k, r(n)∗ is the conjugations of r(n).
Throughout the paper, the moments of interest are
the 2nd -order, 3th -order, 4th -order, 6th -order, 8th -order,
12th -order and 16th -order moments: M2,0, M2,1, M3,0,
M3,1, M4,0, M4,1, M4,2, M6,0, M6,1, M6,2, M6,3, M8,0,
M8,1, M8,2, M8,3, M8,4, M12,0, M12,1, M12,2, M12,3,
M12,4, M12,5, M12,6, M16,0, M16,1, M16,2, M16,3,
M16,4, M16,5, M16,6, M16,7, and M16,8.

• The cumulants are defined using joint cumulant func-
tion [50]. For example, a 6th -order cumulant C6,3 of r(n)

is defined as

C6,3 = cum
[
r(n), r(n), r(n), r(n)∗, r(n)∗, r(n)∗

]
,

(16)

where cum[·] is the joint cumulant function, and the
normalized 6th -order cumulant Ĉ6,q is defined as

Ĉ6,q =
C6,q(
C4,2

)3 , q = 0, 1, 2. (17)

Besides, the normalized 4th -order cumulant Ĉ4,2 and
the normalized 8th -order cumulant Ĉ8,q are implemented
with the following calculations:

Ĉ4,2 =
C4,2(
C2,1

)2 , (18)

Ĉ8,q =
C8,q(
C4,2

)2 , q = 0, 1, 2, 3. (19)

In this paper, the 2nd -order, 3rd -order, 4th -order, 6th -
order, 8th -order cumulants as well as the normalized 4th -
order, 6th -order and 8th -order cumulants are used: C4,0,
C4,1, C4,2, C6,0, C6,1, C6,2, C6,3, C8,0, C8,1, C8,2, C8,3,
C8,4, Ĉ4,2, Ĉ6,0, Ĉ6,1, Ĉ6,2, Ĉ8,0, Ĉ8,1, Ĉ8,2 and Ĉ8,3.

• A new signal sequence z(n, D) is defined which is
calculated by

z (n,D) = r(n)r∗(n −D), (20)

where D is an integer constant and r∗(n − D) is the
conjugate of r(n − D). In this paper, we consider D to
be the constant 2, 4 and 8. When z(n, D) is obtained,
we then calculate the above mentioned statistical features
of z(n, 2), z(n, 4) and z(n, 8), and splice them with the
statistical features of r(n).

C. Definitions of Spectral Features

Spectral features are designed according to the Fourier
transform of the signal.

• The maximum value of spectral power density of instan-
taneous amplitude [31] is defined as

γmax = max
(
|DFT(A(n))|2

)
, (21)

where DFT(·) represents the discrete Fourier transform,
i.e., A(k) = DFT(A(n)) =

∑N−1
n=0 A(n)e−j2πkn/N ,

k = 0, 1, . . . ,N − 1.
• The symmetry of spectrum [31] is to measure whether

the spectrum is symmetric or asymmetric, which can be
calculated through the following equation:

P =
PL − PU

PL + PU
, (22)

where PL =
∑N

2
−1

k=0 |R(k)|2, PU =
∑N−1

k=N
2

|R(k)|2,

and R(k) = DFT(r(n)).
• In order to take full use of spectral amplitude, we define

an operation Find(x) as finding the three local maximum
values of spectral amplitude. Thus, we have[

F 1
1 ,F

1
2 ,F

1
3

]
= Find(10 lg |DFT(r(n))|),



ZHENG et al.: TOWARD NEXT-GENERATION SIGNAL INTELLIGENCE: A HKDD FOR RADIO SIGNAL CLASSIFICATION 569

TABLE I
ADOPTED TRADITIONAL FEATURES

Fig. 1. The structure of the proposed HKDD framework. In this figure, “FIQ ” is the learned features by CNN and “FMF ” is the learned features from
multiple traditional features. “FC M” is the final classification layer and M is equivalent to the number of categories to classify.

[
F 2
1 ,F

2
2 ,F

2
3

]
= Find

(
10 lg

∣∣∣DFT
(
r2(n)

)∣∣∣
)
,

[
F 4
1 ,F

4
2 ,F

4
3

]
= Find

(
10 lg

∣∣∣DFT
(
r4(n)

)∣∣∣
)
,

[
F 8
1 ,F

8
2 ,F

8
3

]
= Find

(
10 lg

∣∣∣DFT
(
r8(n)

)∣∣∣
)
. (23)

The logarithm operation is performed to avoid excessive
values.

D. Summary of Adopted Features

In summary, the adopted traditional features in this paper are
shown in Table I. It should be noted that we calculate 52 sta-
tistical features from each variable, r(n), z(n, 2), z(n, 4) and
z(n, 8), respectively. From Table I, we can see that there are 6
instantaneous features, 208 statistical features and 14 spectral
features. Thus, a total of 228 different features are adopted in
this paper.

V. PROPOSED HKDD AMC FRAMEWORK

In this section, we introduce the details of the proposed
HKDD framework for modulation classification. First, a

lightweight CNN consisting of depthwise separable convolu-
tion is constructed to deal with IQ sequence and a DNN with
three hidden layers is used to deal with multiple traditional
features. Then considering the varying importance of different
features extracted from two different data sources, an attention
mechanism is adopted in the HKDD network for learning the
corresponding weight for each feature.

A. The Structure of HKDD Network

The HKDD network we designed contains two kinds of
neural networks with different properties, CNN and DNN,
because there are two kinds of data with different formats
to be processed, i.e., the IQ data and the handcrafted features.
Specifically, a CNN is designed for extracting features from IQ
data, and a DNN with three fully connected layers is designed
for processing the handcrafted features. For convenience, the
traditional features are concatenated into a one-dimensional
vector beforehand while the IQ data is shaped as N × 2, where
N represents the length of the IQ data. Details of the HKDD
framework are shown in Fig. 1. Concatenation operation in
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the HKDD is used to collect the learned features from both
the CNN and DNN, which are represented by FIQ and FMF
respectively in Fig. 1. FIQ and FMF are appended vertically
to generate a joint feature representation Fc which is then sent
to the module of attention mechanism to obtain the final fea-
ture vector Fa . Finally, Fa is sent to the last classification layer
for obtaining probabilities of the received signal belonging to
each modulation class. Besides concatenated to create a new
feature vector, the features learned by CNN and DNN are also
sent to the classification layers to predict results corresponding
to their own inputs. Results of the three classification layers
are used to update the parameters of the HKDD network in
the training phase. However, in the inference phase, only the
results obtained from Fa are used as the final classification
results of our proposed HKDD.

B. CNN for IQ Input

Recently, some lightweight networks such as
MobileNet [51], ShuffleNet [52] and Xception [53] have been
proposed to diminish the network and speed up the training of
the network through designing group convolution manually.
The advantage of group convolution is that the parameters in
the network can be greatly reduced. In this paper, when we
consider the few-shot classification scenario, the imbalance
between the large number of trainable parameters in the
network and few labeled samples is a problem that needs to
be addressed. Therefore, the use of group convolution can
alleviate this problem to some extent.

The core depthwise separable convolution of MobileNet is
a special group convolution, which can be divided into two
steps, depthwise convolution and pointwise convolution. In
the process of depthwise convolution, a single convolution
kernel is used to convolve with a single channel of the input,
which forces the number of kernels identical to the number of
channels of the input. After the operation of depthwise con-
volution, the number of channels stays the same and the size
of each channel may change due to downsampling. After the
depthwise convolution, pointwise convolution is followed. The
pointwise convolution is actually a conventional convolution
with 1 × 1 kernels and the channels of output depend on
the number of kernels explicated. The purpose of pointwise
convolution is to ensure interchange of different feature maps
because the corrections between channels are not taken into
account during the process of depthwise convolution. Overall,
the depthwise separable convolution, as shown in Fig. 2, can
be expressed as

Di = Fi ⊗Ki , i = 1, 2, . . . ,M , (24)

F ′
j =

∑
i

Di ⊗Kj ,i , j = 1, 2, . . . ,P , (25)

where Di represents the i-th depthwise features after depth-
wise convolution, Fi is the i-th feature map of input, Ki is
the convolution kernel of i-th group for depthwise convolu-
tion, ⊗ denotes the operation of convolution, F ′

j represents
the j-th output feature map after pointwise convolution and
Kj ,i represents the j-th kernel with size 1 × 1 for pointwise
convolution.

Fig. 2. Process of depthwise separable convolution. In this figure, “Map*M”
means the number of feature maps is M and “Kernel*M” means the number
of convolution kernels is M.

Fig. 3. The structure of lightweight CNN. In this figure, “conv 32 × 15 × 2”
denotes a convolutional layer with 32 kernels and the size of kernel is 15 × 2,
“pooling” denotes that there is a maximum pooling layer after convolutional
layer, and the stride of maximum pooling is 2, and “DepthConv” denotes the
depthwise separable convolution. Batch normalization layer and activation
layer between convolutional layer and maximum pooling layer are not shown
for simplicity.

The depthwise separable convolution is used to design a
lightweight CNN for extracting features from IQ data. The
structure of the designed lightweight CNN is shown in Fig. 3.
It mainly consists of one traditional convolution layer and six
depthwise separable convolution layers. After obtaining fea-
ture maps from IQ data, a global pooling layer is used to
transform the feature maps into a one-dimensional feature vec-
tor. Finally, a fully connected layer with 64 neurons is added
to generate FIQ .

C. DNN for Traditional Features Input

DNN is used to learn a mapping rule from input space S
to target space T through a parametric function Fθ : S → T ,
where parameters θ are specified by layers in DNN. The layers
in DNN are called fully connected layers or dense layers. As
a fundamental layer in DNN, the dense layer achieves the
function of affine transformation:

f (x ) = Wx + b, (26)
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where W and b are the trainable parameters in a single dense
layer. For a DNN consisting of several dense layers, the para-
metric function Fθ that maps the input to the desired output
is presented by

Fθ = ◦fn (◦fn−1(· · · ◦ f1(x ))), (27)

where the parameters θ in Fθ are a union of parameters in each
dense layer. However, if a DNN is a simple composition of
multiple dense layers, then Fθ is unable to represent non-linear
relation between the input and the output. For this reason,
DNN applies activation layers to introduce non-linear function
interleaved with dense layers. ◦ in (27) denotes the non-linear
function.

In our proposed HKDD framework, the input space
S of DNN consists of handcrafted features shaped as
one-dimensional vectors and the target space T consists of
the true labels corresponding to the input. As we need to
focus on the hidden feature vector FMF , the mapping rule
from the input space to the output space is modified as
Fθ : S → FMF → T . Parametric function fθ′ : S → FMF
is specified by a DNN architecture composed of three dense
layers interleaved with ReLU layers. The number of neurons
in the three dense layers are 128, 96 and 64 respectively.

D. Attention Mechanism in HKDD Network

We represent FIQ as Mi = [m1,m2, . . . ,mi ] and FMF as
Nj = [n1,n2, . . . ,nj ]. The joint feature representation Fc is
obtained by combining the FIQ and the FMF , which can be
represented as follows:

Fc = Mi ⊕ Nj , (28)

where the operation of ⊕ is implemented as a concate-
nate function. Thus, Fc = [m1,m2, . . . ,mi ,n1,n2, . . . ,nj ],
Fc ∈ R

i+j . It should be pointed out that not all features in Fc

are helpful for classification. Some immature and adverse fea-
tures may exist due to the inadequate learning in the few-shot
scenario. Thus, we adopt an attention mechanism to learn cor-
responding weight vector Wc ,Wc ∈ R

i+j which is obtained
from a DNN with three fully connected layers. The number of
neurons in the first and last fully connected layer is identical to
the number of features in Fc while the number of neurons in
the second fully connected layer is half of the number of fea-
tures in Fc . The activation functions of these fully connected
layers are Tanh and Sigmoid. After the learned weights are
finally activated by Sigmoid, their values are forced to dis-
tribute between 0 and 1. In this way, the immature features
could be abandoned through assigning their weights with small
values. On the contrary, the important features’ weights will
be assigned with values closed to 1.

The process of the attention mechanism can be represented
as follows:

Q1 = Tanh(W1Fc + b1),

Q2 = Tanh(W2Q1 + b2),

Wc = Sigmoid(W3Q2 + b3),

Fa = Fc ⊗Wc , (29)

where W1 ∈ R
(i+j )×(i+j ),W2 ∈ R

(i+j )×(i+j )/2,W3 ∈
R
(i+j )/2×(i+j ) are the trainable weight matrices, b1, b3 ∈

R
(i+j ), b2 ∈ R

(i+j )/2 are the trainable biases. Tanh(·) and
Sigmoid(·) denote the tanh activation function and sigmoid
activation function respectively. Multiplication ⊗ is defined as
Fa,t = Fc,t · Wc,t , t = 1, 2, . . . , (i + j ). The joint feature
representation Fc is transferred to Fa after using the attention
mechanism.

E. Loss Function for HKDD Network

The goal of training is to optimize the weights and
biases of the network by minimizing the loss between the
true output of the network and the desired output or the
given label of training data. In the supervised training pro-
cess, the output of the network is a probability distribution
with respect to categories of the classification problem. As
a commonly used loss function, cross-entropy is adopted
to measure the error between true probability distribution
P(x ) = [p(x1), p(x2), . . . , p(xM )] and predicted probability
distribution Q(x ) = [q(x1), q(x2), . . . , q(xM )], which can be
represented as

L = −
M∑
i=1

p(xi ) log(q(xi )), (30)

where M is the number of categories designed to
classify, p(xi ) represents the true probability belong-
ing to the i-th class and q(xi ) represents the pre-
dicted probability belonging to the i-th class. However,
in the HKDD network, there are three predicted proba-
bility distribution Q1(x ) = [q1(x1), q1(x2), . . . , q1(xM )],
Q2(x ) = [q2(x1), q2(x2), . . . , q2(xM )] and Q3(x ) =
[q3(x1), q3(x2), . . . , q3(xM )], which are obtained from the
predicted results of FIQ , FMF and the joint feature repre-
sentation Fc . So the loss function in the HKDD network can
be represented as

Lsum = −
3∑

m=1

M∑
i=1

p(xi ) log(qm (xi )). (31)

Lsum is used to update parameters in the HKDD network and
Adam optimizer is adopted during training.

The weights and biases are adjusted iteratively by applying
the gradient of loss, which is given as:

w l+1
k (i + 1) = w l+1

k (i)− η∇L = w l+1
k (i)− η

∂L
∂w l+1

k (i)
, (32)

bl+1
k (i + 1) = bl+1

k (i)− η∇L = bl+1
k (i)− η

∂L
∂bl+1

k (i)
, (33)

where w l+1
k represents the trainable k-th weight in (l + 1)-th

layer while bl+1
k is the corresponding bias, and η is the step

size.
In summary, the training algorithm for HKDD network is

shown in Algorithm 1.

VI. SIMULATION RESULTS

In this section, we first give the settings for simulation,
which include the two datasets we build and parameter settings
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Algorithm 1 The Training Process of the HKDD Network

Input: IQ training set D =
{(

[I (n),Q(n)](i), y(i)
)}N

i=1
,

features training set F =
{
F (i), y(i)

}N
i=1

, minibatch Nb ,
learning rate r, maximum number of iterations I;

Randomly initialize parameters of the network;

for t = 1, 2, . . . , I do
1. Randomly choose a mini-batch of Nb samples from

D and F with the same sample indexes;
2. Calculate the total classification loss according

to (31);
3. Update parameters of the network according to (32)

and (33);

end for
Output: The HKDD model fθ.

for training. Then we provide the simulation results in two
scenarios: the adequate-sample scenario with enough training
samples and the few-shot scenario with a small number of
training samples. Finally, we compare the performance of our
proposed method with existing AMC methods.

A. Simulation Settings

1) Datasets: In order to verify the performance of our
proposed modulation classification method, we generate two
different datasets using MATLAB.1

• HKDD_AMC12: A dataset containing 12 different mod-
ulation signals: BPSK, QPSK, 8PSK, OQPSK, 16QAM,
32QAM, 64QAM, 4PAM, 8PAM, 2FSK, 4FSK, 8FSK.

• HKDD_AMC36: A dataset containing 36 different mod-
ulation signals: BPSK, QPSK, 8PSK, OQPSK, 16PSK,
32PSK, 2FSK, 4FSK, 8FSK, 16QAM, 32QAM, 64QAM,
128QAM, 256QAM, 16APSK, 32APSK, 64APSK,
128APSK, 256APSK, 4PAM, 8PAM, 16PAM, MSK,
GMSK, 4CPM, 8CPM, OFDM-BPSK, OFDM-QPSK,
OFDM-16QAM, AM, FM, OOK, 4ASK, 8ASK, AM-
MSK, FM-MSK.

In both datasets, the original bit sequence is chosen from
0 and 1 in a random manner to ensure that the probability
of appearance for each symbol is equivalent. The length of
each modulated signal is 1024 for dataset HKDD_AMC36
and 512 for dataset HKDD_AMC12. The oversampling rate
is 8, so each sampled sequence in dataset HKDD_AMC36
contains 128 symbols and each sampled sequence in dataset
HKDD_AMC12 contains 64 symbols. A root raised-cosine
(RRC) filter with 6-symbols truncated length is employed as
the pulse-shaping filter and the roll-off coefficient of RRC is
randomly chosen within the range 0.2 to 0.7. The frequency
offset is randomly chosen from −0.2 to 0.2 (normalized to the
sampling frequency). The range of SNR is (−20 dB, 30 dB)
for dataset HKDD_AMC36 and (−20 dB, 20 dB) for dataset
HKDD_AMC12 with an interval of 2 dB. The number of train-
ing samples for each modulation type is 1000 in each SNR and

1The datasets are available at https://github.com/yexijoe/HKDD.

the number of testing samples is half of the training samples.
Both datasets contain both IQ signals and traditional features.
HKDD_AMC36 is the dataset currently available that contains
the most number of modulation categories.

2) Model Training: The datasets mentioned above are
separately used to train the HKDD network. For dataset
HKDD_AMC36, the HKDD network is regarded as a clas-
sifier with 36 categories, while for dataset HKDD_AMC12,
the output category of the HKDD network is 12. In the pro-
cess of training, the mini-batch size is 128 for HKDD_AMC12
and 256 for HKDD_AMC36. The total number of parameters
of the proposed HKDD network is about 0.1 M, about 0.03 M
for the DNN part and about 0.07 M for the CNN part. In train-
ing HKDD, the initial learning rate is 0.003 and after every
5 epochs, the learning rate is reduced to half of the previous
value. The network is trained for 30 epochs, which takes about
half an hour with NVIDIA GeForce RTX 2080.

B. Performance in Adequate-Sample Scenario

We first verify the performance of the proposed HKDD on
the two datasets. For comparison, the performance of DNN
using traditional features (denoted as the DNNTF method)
and the CNN using IQ sequence (denoted as the CNNIQ
method) on the two datasets is also given. Fig. 4(a) shows the
performance of the methods on the dataset HKDD_AMC12.
We can see that in the low SNR region, the CNNIQ method
gets the worst performance. The performance of the DNNTF
method is better than the CNNIQ method because the tra-
ditional features used by the DNNTF method, such as σaf ,
high-order moments and cumulants, are helpful to distinguish
M-PSK and M-FSK signals in low SNR region. However,
when the SNR increases, the performance of the DNNTF
method is inferior to the CNNIQ method. This is because
CNN has the ability to extract deeper-level features compared
with the traditional features used by the DNNTF method.
Because of the two methods’ respective different contributions,
the HKDD network achieves the best performance in all SNR
ranges. Fig. 4(b) illustrates the performance of these methods
on the dataset HKDD_AMC36 which contains 36 modulation
types. We can see that the HKDD network still achieves the
best performance, with about 8% absolute accuracy improve-
ment compared with CNNIQ in the low SNR region and
about 10% absolute accuracy improvement compared with the
DNNTF method in the high SNR region.

In order to evaluate the performance of the attention mech-
anism, the performance of the HKDD network without the
attention mechanism is also given. It can be observed that in
this adequate-sample scenario, the HKDD method without the
attention mechanism achieves nearly the same performance as
that of the HKDD method. This is because the network is
fully trained and the attention mechanism does not provide
additional information in this adequate-sample scenario. To
further illustrate the function of the attention mechanism, we
plot the weight vectors Wc of attention mechanism in Fig. 5.
The values in Wc are used to measure the extent of impor-
tance for the features in Fa . We test on 128 samples and
the obtained weight vectors, each of which is with length of
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Fig. 4. Performance of HKDD network on the two datasets.
(a) HKDD_AMC12 and (b) HKDD_AMC36.

128 for each sample, form a 128 × 128 matrix with val-
ues distributed between 0 and 1. In Fig. 5(a) and Fig. 5(b),
the left half shows the weights corresponding to the features
learned by CNN while the right half illustrates the weights
corresponding to the features learned by DNN. We can see
that the two parts of the weight vectors are relatively average,
which shows that the features learned from raw IQ and the
features learned from traditional features are both important
for AMC in adequate-sample scenario.

For an intuitive presentation, we further provide the con-
fusion matrices of classification on HKDD_AMC12 and
HKDD_AMC36, which are shown in Fig. 6 and Fig. 7 respec-
tively. In Fig. 6(a), the confused modulations for DNNTF
method are among 16QAM, 32QAM and 64QAM, and
between 4PAM and 8PAM. It is clear that 16QAM exhibits the
worst classification accuracy of about 33%, which is confused
with 32QAM by 34% and with 64QAM by 31%. In Fig. 6(b),
with CNNIQ method, 16QAM, 32QAM and 64QAM are
also confused. Furthermore, QPSK is confused with 8PSK.
However, in Fig. 6(c), for our proposed HKDD method, the
confusion between 4PAM and 8PAM, as well as the confu-
sion between QPSK and 8PSK do not exist. What’s more, the
classification of 16QAM, 32QAM and 64QAM is improved

Fig. 5. Weights of attention mechanism for joint features. (a) Dataset
HKDD_AMC12 and (b) dataset HKDD_AMC36.

in Fig. 6(c), which illustrates that our proposed method is
effective by incorporating the knowledge into the DL model.
Fig. 6(d) shows the confusion matrix of HKDD without atten-
tion mechanism, which is similar to that of HKDD in Fig. 6(c)
as expected.

In Fig. 7, for clarity of graphical representation, we split
the confusion matrix of the 36-modulation classification into
a confusion matrix of 19-modulation classification and a
confusion matrix of 17-modulation classification. For exam-
ple, Fig. 7(a) and Fig. 7(e) together represent the classifi-
cation confusion of DNNTF method on HKDD_AMC36.
We can see from Fig. 7 that the main classification confu-
sions arise in high-order PSK modulations, such as 8PSK,
16PSK, and 32PSK, high-order QAM modulations, such as
64QAM, 128QAM, 256QAM, and OFDM modulations, i.e.,
OFDM-QPSK and OFDM-16QAM. Similarly, in Fig. 7(c) and
Fig. 7(g), these classification confusions are ameliorated when
using the HKDD method.

C. Performance in Few-Shot Scenario

We now discuss the influence of few-shot learning
to the performance of the HKDD network. For dataset
HKDD_AMC12, four few-shot scenarios are considered:
(1) 10% of samples, (2) 5% of samples, (3) 1% of samples
and (4) 0.5% of samples. For dataset HKDD_AMC36, the four
few-shot scenarios considered are: (1) 5% of samples, (2) 1%
of samples, (3) 0.5% of samples and (4) 0.2% of samples.
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Fig. 6. Confusion matrices of modulation classification at 6 dB for dataset HKDD_AMC12 with different methods. (a) DNNTF method, (b) CNNIQ method,
(c) proposed HKDD and (d) HKDD without attention.

Fig. 7. Confusion matrices of modulation classification at 10 dB for dataset HKDD_AMC36 with different methods. (a) DNNTF method (19-modulation),
(b) CNNIQ method (19-modulation), (c) HKDD method (19-modulation), (d) HKDD without attention (19-modulation), (e) DNNTF method (17-modulation),
(f) CNNIQ method (17-modulation) (g) HKDD method (17-modulation) and (h) HKDD without attention (17-modulation).

Considering that the network will not have enough opportu-
nity to update the parameters as the number of training samples
decreases, we reduce the batch size to alleviate this situation.
Batch size in each few-shot scenario is set to 64, 64, 36, 36
for dataset HKDD_AMC12 and 128, 96, 64, 48 for dataset
HKDD_AMC36.

Fig. 8 shows the performance of the three methods in
four few-shot scenarios for dataset HKDD_AMC12. The
performance of the HKDD network without the attention
mechanism is also given. Compared with the simulation results
in Fig. 8(a), we can see that when 10% samples are used, the
decline in classification accuracy of the CNNIQ method is
more dramatic than that of the DNNTF method. Specifically,
the classification accuracy of the CNNIQ method drops from
nearly 100% to about 78% while the classification accuracy of
the DNNTF method drops from around 95% to around 92%.
In Fig. 8(d), we can see that the most obvious trend is that
with the decrease in the number of training samples, the clas-
sification accuracy of the CNNIQ method rapidly declines.
On the contrary, the classification accuracy of the DNNTF

method is only slightly reduced. To be more specific, the
accuracy of the CNNIQ method is decreased from about 78%
to around 43% and the accuracy of the DNNTF method is
decreased from about 92% to around 83% in the highest SNR,
i.e., 20 dB in this case. It means that the CNNIQ method
which needs a large number of training samples to learn a
mapping from input to output has inferior performance on
the task of few-shot classification compared with the DNNTF
method. That is because, during the training of CNN, over-
fitting will occur in the few-shot scenario, and the fewer the
training samples, the more serious the overfitting. However,
the traditional features used in the DNNTF method represent
the low-dimensional information of signals. Unlike the high-
dimensional information extracted by CNN, which requires a
large number of samples to learn, the low-dimensional features
can directly obtain the result of classification through sev-
eral fully connected layers. Nevertheless, the HKDD network
can achieve remarkable performance gain when 10% and 5%
of samples are used. Although the CNNIQ method performs
poorly in the scenario of 0.5% of samples, the HKDD network
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Fig. 8. Performance of HKDD network in few-shot scenarios for dataset HKDD_AMC12. (a) 10% of samples, (b) 5% of samples, (c) 1% of samples and
(d) 0.5% of samples.

can still achieve the same performance as the DNNTF method.
It is the result of the attention mechanism, which will discard
a part of features extracted by CNN and pay more attention
to the features of DNN as we will discuss later. Besides, we
notice that when the attention mechanism is not added, the
HKDD suffers from a little performance loss.

We further verify the effectiveness of the HKDD network
for the few-shot classification on dataset HKDD_AMC36. The
classification performance is shown in Fig. 9. It is similar to
the trend in Fig. 8, that is, as the number of training samples
decreases, the classification accuracy of the CNNIQ method
declines faster than that of the DNNTF method. In the four
few-shot scenarios, the difference between the highest accu-
racy and the lowest accuracy is about 41% for the CNNIQ
method, and about 15% for the DNNTF method. It should be
noted that the SNR range is −20 dB to 30 dB in this exper-
iment, which is wider than that of the above experiment. For
this reason, the number of samples used in this experiment is
actually more when the same proportion of dataset samples
are used for the two experiments. So, we consider an extreme
situation where only 2 samples are used in each SNR, and
the simulation result is shown in Fig. 9(d). We can see that
the DNNTF method achieves about 70% accuracy for clas-
sifying 36 modulation signals in the highest SNR, 30 dB in

this case. The accuracy of the HKDD network is still a little
higher than that of the DNNTF method. From Fig. 9, it can
be found that the HKDD network is always the most effective
method compared with the CNNIQ and DNNTF methods in
terms of classification accuracy. However, when we remove the
attention mechanism in the HKDD network, the classification
accuracy of the HKDD network will decrease, which illustrates
the attention mechanism is helpful in this framework.

To further explain the function of the attention mechanism,
we draw the weights of the attention mechanism in Fig. 10.
Similarly, we test on 128 samples and the corresponding
weights for each sample form a vector with 128 values dis-
tributed between 0 and 1. The values are used to measure the
extent of importance for the features in Fa . Fig. 10(a) shows
the feature vector in attention mechanism when 1% of samples
in dataset HKDD_AMC12 are used and Fig. 10(b) shows the
feature vector when 1% of samples in dataset HKDD_AMC36
are used. In Fig. 10(a) and Fig. 10(b), the left half shows the
weights corresponding to the features learned by CNN while
the right half shows the weights corresponding to the fea-
tures learned by DNN. We can see that few features extracted
by CNN are allocated with weights close to 1. On the con-
trary, most weights for features extracted by DNN are with
value close to 1. It illustrates that CNNIQ is vulnerable to
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Fig. 9. Performance of HKDD network in few-shot scenarios for dataset HKDD_AMC36. (a) 5% of samples, (b) 1% of samples, (c) 0.5% of samples and
(d) 0.2% of samples.

Fig. 10. Weights of attention mechanism for joint features. (a) 1% of samples in dataset HKDD_AMC12 and (b) 1% of samples in dataset HKDD_AMC36.

inadequate learning in few-shot scenario, and most features
extracted by CNN are immature and detrimental to the clas-
sification results. The attention mechanism tends to highlight
the features extracted by DNN due to the better performance
of the DNNTF method in few-shot scenarios.

D. Comparison With Other AMC Methods

Finally, we compare the performance of the proposed
HKDD with other AMC methods on dataset HKDD_AMC36.

The existing AMC methods used for comparison include a
raw IQ-based method which uses LSTM as the deep neural
network structure and the hybrid VF method given in [48].
Specifically, the LSTM model used is a structure with 2
LSTM layers. The VF method uses time-frequency distri-
bution instead of the raw IQ as one of its inputs which
is quite different from our proposed HKDD. Fig. 11(a) and
Fig. 11(b) show the comparison of modulation classification
results on the complete dataset HKDD_AMC36 and it’s few-
shot scenario with only 1% training samples, respectively.
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Fig. 11. Comparison with other AMC methods. (a) Complete dataset
HKDD_AMC36 and (b) 1% of training samples of dataset HKDD_AMC36.

From Fig. 11(a), we can see that with sufficient training
samples, the classification accuracy of LSTM in low SNR
region is about the same as that of CNNIQ, both lower than
that of DNNTF. In the high SNR region, the performance of
LSTM is better than that of DNNTF though worse than that
of CNNIQ. We also replace CNNIQ in HKDD with LSTM
to get another hybrid version HKDD-LSTM. Obviously, com-
pared with LSTM and DNNTF, the classification accuracy of
HKDD-LSTM in all SNR range is greatly improved, which
further shows the effectiveness of our proposed hybrid frame-
work. As for the existing hybrid framework VF [48], in the low
SNR region, the performance of VF is slightly better than that
of HKDD, possibly by virtue of its usage of time-frequency
distribution which is beneficial in low SNR. However, in high
SNR region, the VF method suffers seriously and it performs
even worse than CNNIQ. This may be caused by the lack of
using raw IQ input as one of its inputs which is probability
a severe limitation of VF. The performance gap between our
proposed HKDD over the VF method is quite large in the
high SNR region. In general, our proposed hybrid framework
HKDD performs far better than VF.

Fig. 11(b) illustrates the results in the case of few-shot sce-
nario. It is obvious that LSTM has the worst performance when
there are few training samples. Meanwhile, HKDD-LSTM

which combines LSTM and DNNTF improve the performance
to close to that of the DNNTF method. In particular, in the
case of few-shot scenario, the classification performance of VF
in all SNR is inferior to that of HKDD. The performance gap
is larger in the high SNR region. Specifically, when SNR =
30 dB, the classification accuracy of VF is about 61%, how-
ever, the classification accuracy of HKDD is about 84%. It
confirms that our proposed HKDD has excellent modulation
recognition capability in few-shot scenario.

VII. CONCLUSION

In this paper, we have presented a HKDD framework
for AMC which combines the knowledge-based method and
the DL-based method in order to improve the classification
performance in both the adequate-sample scenario the few-
shot scenario. To take full advantage of the knowledge-based
method, we have calculated various instantaneous features, sta-
tistical features and spectral features from the raw signal. In
our HKDD framework, a CNN is used to extract features from
IQ sequences and a DNN is used to process the handcrafted
features. Moreover, a fusion method is adopted to combine
learned features to form a joint feature vector and an atten-
tion mechanism is designed to abandon immature features and
highlight important features. For validating the effectiveness
of our proposed method, we have constructed two modula-
tion classification datasets containing both traditional features
and raw IQ data. Simulation results have proved that our
proposed HKDD is superior to the DL-based method and the
knowledge-based method in both scenarios. The performance
gain increases remarkably with the decrease of the num-
ber of training samples. In addition, the attention mechanism
has been proved to be useful in detecting the importance of
different features when training in the few-shot scenario.

While recently data-driven deep learning plays an increas-
ingly important role in AMC, we also pay our attention
to traditional features derived from domain knowledge. The
proposed HKDD framework focuses on the integration of the
knowledge domain and the data domain which brings inspi-
ration to build the next-generation signal intelligence. In the
future work, we will extend HKDD to deal with other tasks
in radio signal processing including signal sensing, signal
parameter estimation, and specific emitter recognition.
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