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Deep Mobile Path Prediction With
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Abstract—Importance of user mobility has rapidly increased
in 5G due to reduced cell sizes, management of Multi-access
Edge Computing (MEC), and ultra-low latency services. Reactive
nature of existing management systems is a bottleneck, and it can
be solved by building proactive systems that exploit temporal
characteristics of time-series mobility data to predict long-term
user movement (i.e., path). However, user mobile path prediction
with useable accuracy is a challenging task, particularly for
lengthy target trajectories. This paper adopts general approaches
to propose two models for predicting mobile path with high accu-
racy. Step Forward Iteration (SFI) model is based on recursive
approach, whereas Encoder-Decoder (ED) model follows multi-
output approach, and both the models use Long-Short Term
Memory (LSTM) as the learning unit. Training and testing of
these models is done on mobility datasets from the wireless
network of Pangyo ICT Research Center, Korea and one of the
Korean mobile operators. The experiment results show viability
of the proposed models for leveraging mobile network manage-
ment, as they outperform state-of-the-art GRU with attention
(GRU-ATTN) and Transformer Network (TN) models. The high-
est prediction accuracies achieved for 3, 5, and 7 steps of target
sequences (i.e., predicted mobile path) in the campus dataset are
96%, 90%, and 87%, respectively.

Index Terms—Mobile user path, multi-step prediction, recur-
sive approach, multi-output approach, proactive mobility.

I. INTRODUCTION

5G MOBILE networks provide new services with ultra-low
latency through dense deployment of small cells and moving

network/service functions at the network edge by using Multi-
access Edge Computing (MEC). Current mobility management
system uses the signal strength of nearby base stations to make
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handover decisions, however, multiple base stations in dense
cell deployment can have high similarity in signal strengths.
This makes handover decisions a challenging and critical task
because erroneous handovers increase the load on system and
degrades the Quality of Service (QoS). Moreover, service func-
tions in MEC needs to migrate with the user mobility to maintain
the service quality by reducing the transmission delay between
user and service function. Service function migration is a chal-
lenging task as it is a time intensive operation and requires
resource allocation in next MEC [1]. Prediction based proac-
tive mobility management is one of the solutions to tackle
these challenges, where next Point of Attachments (PoAs) of
user mobiles are predicted in time-series. This reduces erro-
neous handovers and enables mobile networks to preemptively
allocated resources in MEC for delay intolerant services like
AI-assisted autonomous driving [2], [3]. Thus, proactive mobil-
ity management is essential for 5G mobile networks, however,
predicting the next multiple PoAs with high accuracy is crucial
for mobile networks performance.

Proactive mobility prediction is achieved through various
conventional models. Markov-process based models show
good prediction results, and one of studies has used it
the model to capture spatiotemporal nature of user mobil-
ity [4], [5]. Another study exploits Hidden Markov Model
to reduce the computation cost in addition to good prediction
results [6]. These conventional mobility prediction approaches
are not applicable in real mobile networks due to their limited
prediction accuracy and high time complexity. Deep Learning
(DL) models learn from given time-series data and have shown
high prediction accuracy in real time. In particular, Long
Short-Term Memory (LSTM) based DL model achieves bet-
ter performance than machine learning models [7] and it has
shown 91% accuracy in next PoA prediction from time-series
data for proactive mobility management [8]. Single step (i.e.,
next PoA) prediction is not sufficient for mobility manage-
ment in dense cell deployment, as it does not provide sense of
the path for effective handover decisions and optimal server
selection in MEC for resource allocation. To overcome the
limitations of single-step mobility prediction, multi-step user
mobile path prediction is necessary.

User mobile path is a combination of multiple steps in
time-series, where in each step a connection with PoA is
established. Hence, user path prediction can be addressed as
multi-step prediction problem. Multi-step prediction is gener-
ally achieved through either direct, recursive, or multi-output
approach. These approaches can be realized through vari-
ous DL models that have shown better performance than

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-2409-166X
https://orcid.org/0000-0001-6580-3232
https://orcid.org/0000-0003-2692-6883
https://orcid.org/0000-0002-6485-3155


812 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 9, NO. 3, JUNE 2023

conventional solutions, and they take time-series data as input
and provide multi-step prediction as output. DL models for
multi-step prediction have their own technical challenges
among which error accumulation is the most prominent and
causes severe performance degradation. In error accumulation,
the prediction error of first step causes larger error in the
next step and this way errors accumulate till the last step.
Prediction accuracy of the first step and length of predicted
sequence are the major influencers of error accumulation,
where high prediction accuracy of first step can reduce it
substantially. Other important challenges in determining the
performance of multi-step prediction DL models include the
composition of time-series data for training and its collecting
environment. The mobile path of users is obtained through
their movement which is depending on environmental features
such as regional characteristics and user behaviors [9]. Most of
the studies train using synthetically created data through sim-
ulations which makes their results unreliable due to limited
representation of real-world user mobility patterns in the syn-
thetic data [10], [11]. Multi-step prediction using real world
mobility data is presented in [12], and the results highlight the
challenges and negative impact of incorrect data manipulation
and preprocessing methods. For example, the generalization
capability of a model diminishes due to data segregation per
user and separated training by using individual dataset [7].

Aiming at the above problem, we propose Step-Forward
Iteration (SFI) model using recursive approach and Encoder-
Decoder (ED) model based on multi-output approach for
user mobile path prediction. SFI model predicts single step
result iteratively that is manipulated by data feeding layer
to attain multi-step prediction. ED model performs two dis-
tinct networks jointly, where Encoder network converts input
sequences to fixed-length vectors and Decoder network out-
put predicted mobile path based on the vectors. LSTM is used
as underlying learning unit in the models due to its talent
in addressing long sequences of time-series data. These mod-
els are evaluated using identifier-based dataset collected from
wireless network of a research center for two months and
preprocessed. Through the experimental results, we discuss
heterogeneous factors that influence performance and stability
of SFI and ED models and present their architectural effec-
tiveness in the mobile network management perspective. The
major contributions of this paper are summarized as follows.
• A novel data processing algorithm tracks raw single-hop

handover logs of each user in two live wireless networks
mobility datasets, and stich them together to craft mobile
path sequences of variable lengths. The length of such
a path sequence is configurable during the extraction
process to tolerate network scaling. To the best of our
knowledge, our raw handover log and the dataset are the
only publicly learnable resources [13] in this field.

• Selection of LSTM as an underlying spatial-temporal
learning unit is to fit the characteristics and structure of
created time-series sequences, and has best performance
in comparison to other ML and conventional techniques.

• Proposed SFI model based on LSTM implements a
novel data feeding layer that repeatedly exploits proposed
shift-and-join method with predicted output of previous

Fig. 1. Three different approaches for multi-step prediction.

step to create input sequences for iterative multi-step
prediction. It utilizes discounted significance of accumu-
lation assigned to inputs during the training to reduce the
accumulated errors in testing.

• Proposed ED model extends the iterative SFI model to
multi-step carry-ahead prediction for further mitigation of
accumulated errors in testing, and also utilizes discounted
significance of accumulation assigned inputs in training.

• Comprehensive performance evaluation and comparison
of the proposed SFI and ED models against state-of-the-
art GRU with attention (GRU-ATTN) and Transformer
Network (TN) models using preprocessed datasets. The
results show that the proposed models have 7.09% max-
imum accuracy gain over target models for campus
dataset, and for operator dataset it increases to 21.17%.

The remaining paper is structured as follows. Section II
explains three approaches for multi-step prediction with lit-
erature reviews. Section III first describes the collection and
preprocessing of the dataset and then thoroughly discusses
the two proposed models. Section IV shows experimental
results and analyzes the performance of the proposed models.
Conclusion and future works are presented in Section V.

II. RELATED WORK

Multi-step prediction requires to predict next q elements
of the sequence 〈ŝp+1, ŝp+2, . . . , ŝp+q 〉 from p elements of
the sequence 〈s1, s2, . . . , sp〉 in time-series. Literature stud-
ies for the mobile path prediction generally follow one of
the three general approaches for multi-step prediction namely,
direct, recursive, and multi-output [14], [15]. As shown in
Fig. 1, these three approaches are categorized based on their
structural features and outputs of multi-step prediction results.
For example, the direct approach-based prediction model in
Fig. 1 predicts next three steps of a sequence by concatenat-
ing the outputs from multiple leaning models f1, f2, and f3.
In contrast, recursive approach-based prediction model uses
a single learning model f1, which iteratively utilizes the pre-
dicted output to generate next output of a sequence. Multi-out
approach similarly uses a single learning model f1 that maps
multiple values of input sequence to output sequence simul-
taneously. Subsequent subsections give a detailed account
of three multi-step prediction approaches with their related
literature review.

A. Direct Approach for Multi-Step Prediction

Direct approach for multi-step prediction uses individual
learning models for predicting each element in the tar-
get sequence. These models are trained to predict the next
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single-step, and their results are concatenated in chronological
order to output the multi-step prediction result. As only ground
truth values are used in the input sequences of the models,
prediction error of one model does not affect the next step and
this avoids the error accumulation problem. However, tempo-
ral dependencies are major characteristics of time-series data
that the direct approach-based models are unable to exploit
due to the use of individual models. The computational cost
of direct approach is another limitation as it linearly increases
with the increase in target sequence length [16].

Early studies on multi-step prediction using direct approach
are done with auto-regression model for forecasting and esti-
mating indicators in economic area [17]. In various studies,
results of direct approach are comparatively analyzed against
recursive approach using nonlinear data [18], and it is con-
cluded that the direct approach shows better results for long
target sequences in terms of prediction error, parameter esti-
mation error, and efficient finite data samples [19]. A study
for vehicular route prediction defines mobility patterns as con-
secutive series of road segment selections. It uses multiple
Variable-order Markov Models (VMMs) to mine mobility pat-
terns of different road segments from the real taxi GPS trace
data, and results show only 40% of next road segments are
correctly predictable for a taxi [20]. The use of Artificial
Neural Network for a learning model overcomes the limita-
tion of low accuracy in nonlinear data [21]. The computational
and time costs rapidly increase in this approach due to the
use of Recurrent Neural Network (RNN) which learns the
temporal dependencies of time-series data. In general, direct
multi-step prediction approach shows low overall low accuracy
as it ignores temporal dependencies in data, and is not scalable
because of linearly increasing computation cost. Due to these
limitations, direct approach-based models are not suitable for
time-sensitive wireless networks, and this paper focuses only
on recursive and multi-output approaches for mobile path
prediction.

B. Recursive Approach for Multi-Step Prediction

The recursive approach achieves multi-step prediction
through recursive iterations of a single model. In each iteration,
the learning model predicts single element of target sequence
that is used in the next iteration to predict the next element.
Generic nature of this approach allows various ML/DL mod-
els to be designed in a recursive manner which enables use of
new sophisticated models for multi-step prediction. Limitation
of recursive approach is that the learning model uses pre-
dicted output in each iteration to update the parameters, and
this restricts the optimization of parameters for multi-step
prediction [22]. Furthermore, the error between predicted and
target values in each iteration are accumulated due to recursive
use of the predicted values regardless of their accuracy [23].
With consistent high prediction accuracy in each iteration,
error accumulation can be significantly mitigated [24].

An earlier study on mobility pattern prediction in cellu-
lar networks utilizes ML based model iteratively to calculate
HMM that predicts randomly generated user path in simulated
environment [25]. The results show that the model achieves

lower than 80% accuracy in predicted user path with a major
limitation of high computational complexity. A similar study
uses Semi-Markov model with recursion to predict user paths
with respect to sensing tasks (Point of Interests) based on GPS
coordinates data [26]. Later predicted paths are reduced to a
limited area mainly containing the PoI sensing tasks. Recent
studies on recursive approach have intuitively leverage from
high performance capability of various models to overcome
the error accumulation limitation. To this end, Support Vector
Machine (SVM) is proposed to reduce the stepwise prediction
errors where its hyper-parameters are tuned for multi-step
prediction [27]. More recently, DL models are forged to fit
the recursive approach for multi-step prediction, and a study
exploits RNN to predict flow patterns of road traffic [28].
Similarly, LSTM is recursively used to improve the detec-
tion of abnormal diagnostic signals from electronic health
records [29]. To reduce the error accumulation and improve
prediction performance, hybrid direct-recursive approach has
been adopted in [30] which is an extension of recursive
approach. It uses as many models as there are elements
in the target output sequence (i.e., direct approach), where
output of a model is used as an input for the next (i.e.,
recursive approach) Although this approach improves the
results, but has excessive computational cost and limited
scalability.

Recursive approach with DL models has been used for the
path prediction as well, and the time-series data used for this
purpose mostly consists of GPS coordinates or cell identi-
fiers in mobile networks. A study predicts the path of a vessel
by using GPS coordinates data that is augmented with auto-
matic identification system messages [31]. Another GPS-based
dataset [32] is used by recursive LSTM model for multi-step
prediction through periodic pattern mining [33]. The accu-
mulated error problem of recursive approach persists in these
studies due to limited accuracy of the prediction models which
serves as a major limitation for this approach. For this reason,
recursive approach is often utilized to generate sequences in
heterogeneous model structures [15], [34]. This paper tackles
the error accumulation limitation by not only increasing the
prediction accuracy of the model but integrating ground-truth
induced model training that eliminates the use of predicted
outputs in the learning process.

C. Multi-Output Approach for Multi-Step Prediction

The learning model in multi-output approach maps input
values to simultaneous multiple output values. This is con-
trary to previous two approaches where single-step prediction
models are extended for multi-step prediction. Hence, the
learning models used for multi-output approach are specif-
ically designed for the purpose of giving multiple outputs
from a single input sequence [15], and they fully exploit the
temporal dependencies of time-series data to achieve higher
prediction accuracy [35]. However, learning models based on
this approach require excessive datasets, have high computa-
tional and time costs, and have low flexibility (e.g., general-
ization) due to increased complexity of the computations and
structure.
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The error accumulation problem is less severe in multi-
output approach-based models, and this enables long-term
predictions with better accuracy. A study uses a multi-output
SVM model to perform multi-task learning for long-term
forecasting of air quality [36]. Another study improves the
results of multi-step prediction in wireless sensor networks
by exploiting both spatial and temporal features of data
through combination of LSTM and Convolutional Neural
Network [37]. However, Seq2Seq [38], [39] is the most preva-
lent solution for multi-output prediction and is widely used in
various domains [40], [41] due to its capability of predicting
output sequences of variable lengths with high accuracy.

The earlier efforts for user path prediction through multi-
output approach involve pattern mining by using temporal
and sequential characteristics of user movement data. Pattern
recognition is used to determine patterns of user movements
from the historical movement data, and they are used to predict
the user path [42]. However, the pattern recognition-based
models have low generalization capability, and they suffer
from nonlinear characteristics of user mobility. Recent studies
have focused on utilizing DL-based multi-output models for
user mobile path prediction, such as encoder-decoder model
that is built upon Seq2Seq framework [15], [34] and multi-
modal recurrent framework with multi-output approach [43].
A recent study utilizes encoder-decoder model architecture
with Gated Recurrent Unit (GRU) to predict mobile trajecto-
ries [44]. It enhances the prediction accuracy by implementing
the attention block in the encoder at the cost of elevated com-
putation. Another work exploits the encoder-decoder architec-
ture in Transformer network model to predict users mobility
which is used as an input for maximizing the coverage of Ariel
Base Stations by optimizing their positioning [45]. However,
performance of these models in terms of prediction error and
accuracy is still not sufficiently reliable and consistent to war-
rant their inclusion in live wireless networks. Additionally
these studies ignore the computational complexity aspect of
prediction models which is crucial factor in making DL based
prediction models viable for live mobile networks.

III. MOBILE PATH PREDICTION MODEL

This section presents preliminary techniques for proposed
models, collected dataset with preprocessing algorithm, and
two proposed models based on DL for mobile path prediction.
In Section III-A, we provide preliminary discussion on LSTM
that is used for both of proposed models. The dataset collection
and preprocessing algorithm are explained in Section III-B.
The proposed SFI model based on recursive approach is
described in Section III-C, and ED model based on multi-
output approach is described in Section III-D.

A. Preliminary

Temporal dependency is one of the characteristics in time-
series data where values are in chronological sequence. The
prediction models for time-series data require the learning
unit which can reflect the temporal dependency to predict
the output. To learn sequential features from the time-series
data, RNN [46] is proposed that computes inputs recursively

Fig. 2. Long Short-Term Memory cell architecture [48].

through connected structure of equivalent cells. However,
RNN has limitations in learning long sequences due to the
gradient vanishing problem [47] that restricts the model to
establish dependency relationship between the values in earlier
steps and latest steps (i.e., long-term dependency). To tackle
long-term dependency problem, LSTM is proposed that adds
new state vector namely cell state. The cell of LSTM in step
t requires three input values that are input data xt , cell state
ct−1 and hidden state ht−1, where ct−1 and ht−1 are compu-
tation results of the cell in previous step, as shown in Fig. 2.
These inputs are used by three gates that are a forget gate
ft , an input gate it , and an output gate ot for computation.
Forget gate ft controls the level of influence from cell state
of previous step to new cell sate by removing less-related fea-
tures. Input gate it decides how to incorporate new data for
updating cell state, while output gate ot resolves how updated
cell state to be forwarded as hidden state that includes the
features to be used in subsequent cells.

Forget gate ft takes input data xt and hidden state ht−1 as
inputs to the sigmoid with their corresponding weights, and the
output is multiplied with previous cell state ct−1 to determine
the impact of ct−1 as the scale of sigmoid ranges from 0 to 1
(1). Input gate it uses activation function and inputs similar to
ft with its corresponding weights (2), while hyperbolic tangent
tanh is used to amplify features of these inputs and produce
c̃t as an output (3). The calculated it and c̃t are multiplied
and the resultant features are added with ft × ct−1 to give
new cell state ct (4). Output gate ot uses similar inputs and
activation function as it , however, ot utilizes scale of sigmoid
function to determine level of cell state effect to the hidden
state ht (5). ht is calculated by multiplication of ot and output
of tanh whose input is ct , where purpose of tanh is to magnify
information in ct that is required for prediction in next step (6).
The composition of three gates in LSTM and their relations
are shown in Fig. 2, where × stands for Hadamard product.
In (1)-(6), W and b stand for weights and bias of subscripts
accordingly, and the training of weights is done through the
Backpropagation Through Time (BPTT) algorithm [49].

ft = σ
(
Wxf xt +Whf ht−1 + bf

)
(1)

it = σ(Wxixt +Whiht−1 + bi ) (2)

c̃t = tanh(Wxcxt +Whcht−1 + bc) (3)

ct = ft × ct−1 + it × c̃t (4)

ot = σ(Wxoxt +Whoht−1 + bo) (5)

ht = ot × tanh(ct ) (6)
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Fig. 3. Pangyo ICT Research Center floor plan with highlighted 12 APs.

B. Data Collection and Preprocessing

The performance of DL models in time-series learning is
highly dependent on the characteristics of data. Regardless
of the actual result values, it is more important to establish
superiority of a DL model over others independent of the
data, environment, and scenario. To achieve this, we have pro-
cessed two raw logs, one from the campus wireless network
with 12 APs and other from 62 BSs of one of the 5G mobile
network operators in Korea, to create Campus Mobile-path
Dataset (CMD) and Operator Mobile-path Dataset (OMD),
respectively. It is worth noting that the proposed SFI and ED
models can be used for multi-step ahead prediction over any
time-series data with appropriate changes in the loss functions
as per data type. Moreover, lack of auxiliary information such
as PoA location/range and signal strengths in open-source GPS
datasets make them unsuitable, as focus of this study is to find
user path in terms of PoAs to facilitate proactive mobility and
resource management.

The path of user mobile can be defined as a sequence
of identifiers (IDs) that represent the Base Stations (BSs) to
whom mobile has been connected in the chronological order.
To generate mobile-path dataset, we collect handover logs [13]
of the mobiles from wireless network of Pangyo ICT Research
Campus [50] located in Pangyo, Korea. As shown in Fig. 3,
the research center is an area of approximately 1587.74m2

including highlighted 12 Access Points (APs) with an average
of 70 people/users connecting to wireless network per day.
The user movements cause handover between the APs, and
the logs are collected by syslog program in AP controller for
two months. The total number of logs is 171, 141 and each log
entry consists of 3-tuple (mobile ID, Source AP, and Target
AP). The IDs are distinguished through MAC addresses of the
devices, and 12 APs are recognized by integers from 0 to 11.

The log entries are manipulated to create a sequence that
represents a path. A dataset of path sequences is created
through following three steps of preprocessing: classification
of mobile ID, concatenation, and normalization for sequence
length. The log entries of a mobile are classified using its ID,
which represents sequence of the movement since the han-
dover logs are collected in the order of their occurrences. The
classified log entries are concatenated to generate sequences

when the target AP of x th log equals to the source AP of
x + 1th log. For example, the sequence 〈1, 3, 5, 4〉 is gener-
ated when three log entries for mobile identifier i are given in
the order (i, 1, 3), (i, 3, 5), and (i, 5, 4). After this process,
we normalize the lengths of all the created sequences to unify
them based on the target length of combined input and out-
put sequences for model training and testing. The sequences
that are shorter than the target length is removed, and the
longer sequences are normalized to target length through split-
ting with shifting, and this makes the models agnostic to
network scaling. For example, when the sequences 〈s1, s2〉
and 〈s1, s2, . . . , s5〉, where sj is AP identifier at index j, are
given with the target length 3, the normalization process results
in removal of s1, s2 and the longer sequence is converted to
multiple subsequences 〈s1, s2, s3〉, 〈s2, s3, s4〉, 〈s3, s4, s5〉. At
the end of these three steps, we shuffle the order of cre-
ated sequences to prevent biased batch that limits training
performance of the models due to similar trend of subse-
quences from same mobile [8]. Algorithm 1 describes the path
sequence manipulation process.

The elements sj in the sequences are given as input for
the models, and they are computed in the LSTM cells. All
the sequence elements indicate AP ID in scale of 0 to 11,
however, two proposed models require different input data
formats. On this account, the elements are transformed into
different shapes as per the SFI and ED models requirements
through the processes of (1) and (2), respectively. (1) The ele-
ment for SFI model is converted to [1, 12] and divided by the
number of APs to rescale it in the range of (0, 1]. The ratio-
nal to dismiss the zero from AP representation is because its
usage causes the convergence of intermediate values to zero.
(2) The element in ED model dataset is tokenized through
one-hot encoding to map multiple elements of input and output
effectively. Consequently, the element is represented in one-hot
vector of 12 dimensions that represent 12 APs. For example,
AP ID 3 is converted into vector [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
and 5 into vector [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]. This rep-
resentation of elements is adapted for the comparison models,
GRU-Attention (GRU-ATTN) model [44], and Transformer
Network (TN) model [45].

The raw data for OMD are acquired from a 5G network
operator in South Korea. The raw data in OMD consists
of 110 million handover logs collected over 15 days from
an Access and Mobility Function (AMF) in 5G covering 62
PoAs and hosting on average 3.2 million subscribers per day.
To ensure the subscribers privacy, the collected logs comply
legal guidelines for personal information anonymization as per
Korean law. A raw log entry is a 4-tuple of Device ID, source
BS ID, destination BS ID, and timestamp. The aforementioned
mobile path sequences creation process for CMD is similarly
applied on OMD raw logs to create mobility sequences.

C. Recursive Approach Based Model

The proposed SFI model uses recursive approach to predict
the mobile path of target length q from a given historical path
of length p. This model is an extension of our previous work
on single-step prediction [8] that predicts next PoA by using
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Algorithm 1: Path Sequence Manipulation
Input: The handover logs G, sequence length l
Output: Dataset D of path sequences of length l
// Step 1: dividing handover logs based on mobile

IDs
1 for each d ∈ G do

// d is a 3-tuple of (uID, sourceAP,
targetAP)

2 i ← d .uID
3 U ← U ∪ {i} // set of mobile IDs
4 Insert d into Gi , the list of handover logs for mobile ID i

// Step 2: creating path sequences from the
handover logs

5 S ← [ ] // list of path sequences
6 for each i ∈ U do
7 prev ← −1, seq ← 〈 〉
8 for each d ∈ Gi do
9 if d .sourceAP �= prev then

10 if seq �= 〈 〉 then
11 Insert seq into S
12 seq ← 〈 〉

// make a new sequence with source and
target APs

13 seq ← 〈d .sourceAP〉‖〈d .targetAP〉
14 else

// append target AP into the current
sequence

15 seq ← seq‖〈d .targetAP〉
16 prev ← d .targetAP

17 if seq �= 〈 〉 then
18 Insert seq into S

// Step 3: normalizing path sequences to length l
19 D ← [ ] // list of normalized path sequences
20 for each seq ∈ S do
21 if len(seq) ≥ l then
22 j ← 0
23 while j ≤ len(seq)− l do
24 subseq ← 〈 〉
25 for k ← 0 to l − 1 do
26 subseq ← subseq‖〈seq[j + k ]〉
27 Insert subseq into D
28 j ← j + 1

29 Shuffle the order of sequences in D

stacked LSTM. As shown in Fig. 4, the single-step prediction
model is evolved into a three-layered architecture for SFI
model, which includes Data Feeding Layer, Prediction Layer,
and Output Layer. As an input in SFI model, the sequence
〈s1, s2, . . . , sp〉 1 from Data Feeding Layer is inserted into
LSTM cells in the first sublayer of Prediction Layer 2 . The
computation result through three sublayers of LSTM cells is
generated as 256-dimensional vector. The vector is fed to the
Fully Connected (FC) neural network 3 in the Output Layer,
and it is converted to 12-dimensional vector. The index of max-
imum value in the vector is selected to represent predicted next
AP ID ŝp+1 4 via argmax function, and ŝp+1 is appended
at the end of input sequence to generate new sequence 5 for
predicting next step ŝp+2. This process continues iteratively
q − 1 times ( 6 - 10 ), and subsequent paragraphs describe
the detailed operation of each layer in the SFI model archi-
tecture. Furthermore, the operational flowchart of SFI model
is illustrated in the Appendix.

Fig. 4. The architecture and operational flow of the proposed SFI model.

The Data Feeding Layer takes as sequence 〈s1, s2, . . . , sp〉
of length p as an initial input to predict ŝp+1, and uses
shift-and-join method to create new inputs in next iterations
for predicting target path sequence ŝp+2, ŝp+3, . . . , ŝp+q . The
shift-and-join method performs one step left shift on the input
sequence of previous iteration and appends the latest predicted
result at the end. These sequences reconstruction using shift-
and-join method and prediction results are repeated q − 1
times to output predicted mobile path of length q. For exam-
ple, an initial input sequence 〈s1, s2, . . . , sp〉 is passed to
Prediction Layer without any process as shown in Fig. 5. The
shift-and-join method creates a new sequence which is used to
predict ŝp+2 through upper layers, and same processes con-
tinue in q − 1 times. As shown in Fig. 5, the last predicted
result ŝp+q is not used for the reconstruction process as the
sequence of target length q is completely predicted.

The LSTM sublayers of the Prediction Layer in SFI model
are trained by updating computational parameters through loss
function in each iteration. However, the parameters can be
updated in the wrong direction to predict targets (i.e., ground-
truth) when incorrect prediction results are used in shift-and-
join method to create new input sequences. Moreover, the loss
is continuously increased in subsequent iterations since the
appended values are shifted and used in all the next iterations,
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Fig. 5. Data feeding layer in SFI model with transformation of single
sequence into q − 1 sequences.

and this causes high time-cost to converge parameters. To
avoid this problem, discounted significance of accumulation
mechanism is used for assigned inputs. In this mechanism
during training, the ground-truth value at each step of out-
put sequence is not only used for calculating loss but is
also used as an input in the data feeding layer for the next
step prediction instead of the predicted value. The differ-
ent values for sequence reconstruction in the training and
testing processes are depicted in Fig. 5, where the predicted
values are highlighted in orange with hat-symbols and ground-
truth in blue. The switch in the right of Fig. 5 indicates that
predicted and ground-truth values are used for testing and
training, respectively, and this transition happens only once
in an experiment.

The Prediction Layer of the SFI model employs three sub-
layers of LSTM v

w (v = 1, 2, 3 and w = 1, 2, . . . , p) cells,
where v is the layer number and w indicates the step. The
sublayers include p LSTM cells to compute input sequence of
p elements which are passed from the Data Feeding Layer. The
first element of the input sequence is computed by LSTM 1

1
gates to 256 dimensional vectors of cell state and hidden state
as described in Section III-A. The LSTM 1

2 computes new cell
state and hidden state using second element of input sequence
and the result of previous cell, and this process repeats for
p − 1 times. The process of the first sublayer is repeated sim-
ilarly in the upper layers which are stacked to increase the
number of cells and enables the model to learn complicated
temporal features through storing values in larger space. At
the end of the process, hidden state computed by LSTM 3

p
contains key temporal features of the sequence and is passed
to the Output Layer for producing the predicted result.

The Output Layer consists of a FC neural network and an
argmax function similar to structure of a typical classification
model that outputs by selecting from multiple options based
on their correctness probability. As shown in Fig. 4, FC neu-
ral network converts the received 256-dimensional vector to
12-dimensional vector through its 12 neurons with Softmax
activation function that normalizes all elements to fit in [0, 1]
with their sum as 1. This process results 12-dimensional vec-
tor representing the probability of each AP, and AP ID of next
predicted step is selected from the vector through the argmax
function that returns the vector index of the maximum value.
During the testing phase, the predicted AP ID in this iteration
is passed to the Data Feeding Layer where the input sequence
for next iteration is manipulated.

The training process uses the predicted AP ID in each
iteration to calculate the loss by comparing it with the ground-
truth value. Loss calculation is done through categorical
cross-entropy loss function that is widely used for typical
classification models. The 12-dimensional score (i.e., proba-
bility) vector from softmax function in the Output Layer and
ground-truth in one-hot vector format are used for calculating
loss, which is utilized by an optimizer that handles parame-
ter update. Adam optimizer that combines Stochastic Gradient
Descent with Momentum and RMSProp updates the trainable
parameters to minimize the loss. This process continues q
times for one sequence, and this repeats for each sequence
in the given training dataset.

D. Multi-Output Approach Based Model

The multi-output approach-based ED model predicts a
mobile path sequence of length q from historical path
sequence of length p through Encoder network and Decoder
network, which are illustrated as left and right blocks in the
Fig. 6, respectively. The Encoder network processes the input
sequence through a FC neural network and three sublayers of
LSTM cells to create Encoder state that contains compressed
representation of all the elements. The Encoder state is passed
to the Decoder network that simultaneously predicts q ele-
ments of target sequence by using two FC neural networks
and three sublayers of LSTM cells. In the subsequent para-
graphs, we first describe the overall functioning of the ED
model and then provide the detailed account of the Encoder
network and Decoder network operations.

The Encoder network takes the elements of given input
sequence 〈s1, s2, . . . , sp〉 1 that are individually transformed
to vectors through the FC neural network 2 . The vectors
are sequentially computed by LSTM v

w (v = 1, 2, 3, andw =
1, 2, . . . , p) cells 3 , and the results of cells in the last step
LSTM v

p (v = 1, 2, 3) represent the Encoder state and are con-
veyed to the Decoder network 4 . The cells LSTM v

w (v =
1, 2, 3, andw = 1, 2, . . . , q) 5 in the Decoder network are
initialized using the Encoder state, and the Start of Sequence
(SoS) vector 6 is passed to LSTM 1

1 through the FC neu-
ral network 7 . The cell computations are proceeded from
the LSTM 1

1 8 to cells in upper layers LSTM v
1 (v = 2, 3),

and their result is utilized by the FC neural network and the
argmax 9 to output AP ID ŝp+1 10 (i.e., first element of the
target sequence). ŝp+1 is used as input 11 for cell computa-
tions in next step p + 2, and this process is repeated q − 1
times to generate the predicted mobile path of length q (12
- 16 ). Furthermore, the operational flowchart of ED model is
illustrated in the Appendix.

The FC neural network in the Encoder network takes
sequence of length p as input and converts its elements into
256-dimensional vectors for the cell computation through
256 neurons of the neural network. As shown in the left
block of the Fig. 6, LSTM 1

1 3 takes input vector to com-
pute the cell state and hidden state which are passed onto
LSTM 1

2 on the right and only hidden state is passed above to
LSTM 2

1 . This sequential computation continues from left to
right (w = 1, 2, . . . , p) and bottom to top (v = 1, 2, 3). The
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Fig. 6. The architecture and operational flow of the proposed ED model.

hidden and cell states vectors of the pth cell in each sublayer
LSTM v

p (v = 1, 2, 3) defines the Encoder state which con-
tains extracted temporal features from entire input sequence.
These vectors are passed to the LSTM v

1 (v = 1, 2, 3) of the
Decoder network for state initialization, and this enables ED
model to operate jointly for the processing of input and output
sequence.

The Decoder network consists of two FC neural networks
and three sublayers of LSTM cells, where the computation
proceeds from bottom to top LSTM v

1 (v = 1, 2, 3) and carry-
ahead method then moves the result one step to the right.
In particular, FC neural network 9 takes the hidden state
of LSTM 3

1 and outputs the first element (i.e., carry) of the
output sequence ŝp+1 10 that is moved ahead as an input
to LSTM 1

2 for predicting ŝp+2. This carry-ahead operation
continues for additional q − 1 times to generate predicted
sequence of length q. However, this operation differs from the
recursive intake process in SFI model, as the operation does
not reshape the input sequence and only impact remaining
cells in the network. Additionally, it is worth mentioning that
the input for LSTM 1

1 is a 12-dimensional SoS vector con-
sisting of random values that are created once at the time of
model initiation and then used for each iteration after being
transformed to 256-dimension by FC neural network 7 .

The target sequence generation of length q from the
Decoder network through recursive operations improves with
the teacher forcing method in training, where the ground truth
values of the target sequence are used instead of the pre-
dicted values. This is similar to the sequence creation operation
in SFI model, and is depicted in right block of Fig. 6 as
switches 11 , 13 , and 15 which provide ground-truth and pre-
dicted values to the Decoder network in training and testing
processes, respectively. Another crucial aspect of ED model is

its training of both the Encoder and the Decoder networks by
using the multiple outputs of the Decoder network. For this,
loss value for each predicted element is individually calcu-
lated through categorical cross-entropy loss function, and this
value uses Adam optimizer to update the trainable parameters
in all the preceding steps including itself. For example, calcu-
lated loss value of last predicted element ŝp+q is utilized to
update parameters from p + q to 1, whereas loss value of last
predicted element ŝp+1 is utilized to update parameters from
p + 1 to 1.

The training computation time of both SFI and ED mod-
els is insignificant as training is done offline, however, time
required for predicting a target sequence in online deployment
is important for realtime systems [51]. To this end, we quan-
tify the computation time of both the models for single target
sequence inference. Computation time quantification can be
done through various criteria [52], however, this paper utilizes
the operational flow of the models in conjunction with num-
ber of LSTM cells and layers to derive the computation time
of single target sequence inference. SFI model and encoder
network in ED model consists of 3 layers with p LSTM cells
in each, whereas, ED model decoder network has 3 layers
with q LSTM cells in each. As shown in the Fig. 6, the dot-
ted grey lines in the encoder network represent simultaneous
computations in r time due to parallelized computation prop-
erty of LSTM, where r is max unit computation time for a
single or simultaneous LSTM cells. The p computations from
LSTM 1

1 to LSTM 1
p are completed in p · r time, and addi-

tional (3−1) · r time is required for LSTM 3
p−1,LSTM 2

p , and
LSTM 3

p cells computation. Hence, it takes (p +2) · r time to
compute LSTM with p cells and 3 layers. From this, the com-
putation time of LSTM with x cells and y layers is generalized
into (x +(y − 1)) · r . As SFI model repeats q times to predict
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TABLE I
TRAINING PARAMETERS FOR SFI AND ED MODELS

sequence of length q, the computation time of the model for
single sequence prediction is q · (p + 2) · r . For ED model,
the computation of the encoder network is (p + 2) · r that is
similar to SFI model. Whereas decoder network sequentially
computes three LSTM cells (i.e., one in each layer) to predict
an output which is carried-ahead to the next step, and this
continues for q times. Hence, decoder network computation
time is q · (3r), and for ED model it is (p + 2 + 3q) · r .

IV. RESULTS AND ANALYSES

The two proposed models are implemented using Keras
and CUDA libraries on the hardware environment consisting
of Intel i7 CPU, 64GB RAM, and RTX 2080 GPU. The
dataset is divided into training and testing data with 70:30
ratio, to provide comprehensive performance evaluation while
maintaining enough data for training [8], [53]. All four models
are trained for 300 epochs (110 epochs for OMD) using the
training data with batch size of 100. The testing data is used
to conduct experiments on both models, where each presented
result is an average of 30 experiments. The maximum number of
steps in the predicted target sequence are 7, because maximum
length of sequences in CMD is 29 and with input sequence
length 22 models can only be trained for predicting next 7 steps.
As the number of BSs in OMD are 5 times more than the
number of APs in CMD, we have increased input sequence
length 5 times to compensate for increased network scale and
mobile path diversity. Detailed parameters and their values are
shown in Table I for replication of experiments and results.

Hyperparameters play an important role in model
performance, among which epoch is the most significant. The
epoch value refers to training iterations required for converg-
ing model to optimal value, hence, epoch value is a function of
trainable parameters in the model. A low epoch value results
in partially trained model (i.e., underfitting), and a high epoch
value causes a model to over train (i.e., overfitting) which is
also detrimental for models’ performance. To determine the
best epoch value for the evaluation of the proposed and target
models, experiments with increasing epoch values are con-
ducted for 7 step prediction accuracy of all the models using
CMD, and the results are shown in Fig. 7. The highest number

Fig. 7. The accuracy of four models for varying epochs with CMD.

of trainable parameters are in ED model for 7-step prediction,
and the optimal epoch value in Fig. 7 for 7-steps confirms
that model also converges to optimal value for smaller-step
as well. For higher-step predictions, epoch values need to
increase due to more trainable parameters in the model. The
abnormal behavior of SFI accuracy from 100 to 200 epochs
can be explained by local and global optima. The local optima
and shows higher accuracy which later drops at 200 epochs
after coming out of local optima. At 300 epochs the model
converge to global optima as its performance remains consis-
tent for 400 and 500 epochs. Based on these results, epoch is
set as 300 for the remaining experiments with CMD.

Multi-step ahead prediction enables mobile operators to not
only proactively manage the user mobility but also assign,
reassign, or scale the network, and compute resources in
MECs proactively to enhance user experience. Consistent
accuracy of predictions plays a significant role in this, as
wrong prediction degrades service quality and causes overhead
in decommissioning proactively assigned mobility resources
and reassigning them reactively. To this end, outright accu-
racy results of three, five, and seven steps ahead predictions
for SFI model and ED model are depicted in Fig. 8 as a
function of input sequence length, and compared against two
state-of-the-art models GRU-ATTN [44], and TN [45]. For
the comprehensive analyses, the results of CMD and OMD are
separately illustrated in Figs. 8 (a) to (c) and (d) to (f), respec-
tively. Here, outright accuracy denotes that each step in the
output sequence is correctly predicted. In Figs. 8 (a) and (d)
for three steps ahead predictions, SFI model shows highest
accuracy of 96.2% and 76.3% with 22 and 110 input sequence
lengths, and outperforms other models by maximum 7% for
CMD and 21% for OMD. In case of CMD, the gap reduces to
3% as predicted output sequence length increases to five, and
this performance gap reverses for OMD result that ED shows
2% higher than SFI. For seven steps ahead predictions, ED
model outperforms SFI model by 2% in Fig. 8 (c) for CMD,
and this continues in Fig. 8 (f) for OMD where ED performs
1.5% better than SFI. The results in Fig. 8 indicate that SFI has
a definite edge over ED for output sequences of smaller length
like three or five, whereas ED model performs better in terms
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Fig. 8. The overall accuracy of four models in various prediction steps with Campus Mobile-path Dataset (CMD) and Operator Mobile-path Dataset (OMD).

of accuracy for output sequence of length seven. Moreover, the
performance drop of GRU-ATTN and TN models for OMD
suggests their unsuitability for mobile path prediction.

The results in Figs. 8 (a) to (c) show a direct correlation
between accuracy increment and increasing input length, as
the overall accuracy of four models improves with the increas-
ing sequence length up to 22 steps. From this upward trend it
can be estimated that the accuracy will further improve with
increment in input sequence length, however, our experiments
on the CMD show a drop in prediction accuracy for 7-step
target length when the input sequences are length of 24 and
above. This is presumed to be caused by under-fitting that is
occurred due to insufficient dataset for training. The required
length of the sequences for the training is the sum of input
and target sequence lengths p + q, and sequences that are
shorter than this length are not used in the training of the
models. Hence, with input length 24 and target length 7 the
required length of sequences for training is 31, and in the wire-
less network of 12 APs the movement of users is limited that
generate insufficient long sequences in dataset. Moreover, this
result provides an approximate upper bound on the accuracy
of multi-step prediction as a function of input sequence length
in small wireless networks.

The similar trend with CMD results is confirmed in OMD
results of Fig. 8 (d) to (f) that the overall accuracy of four mod-
els tends to improve with the increasing sequence length up to
110 steps. The maximum accuracy in OMD is 76.3% by SFI
for three steps ahead prediction, which is 19.9% lower than
CMD result. This decrease is attributed to much larger scale of
mobile network where OMD is collected and diverse mobility
patterns of users with higher entropy. As similar with CMD

results, SFI outperforms all other models for 3-step prediction,
however, ED dominants from 5 to 7 step predictions with the
sequence length 110 steps. The maximum performance gap
between the proposed and comparison models significantly
increases to 21.17% from 7.09% in CMD results. This is
because the comparison models are based on attention mech-
anisms which are used for natural language tasks to improve
a model performance by learning correlations of the words in
input and output sentences. In the mobile path prediction tasks,
attention over PoA (e.g., AP or BS) IDs does not provide the
necessary correlation for improvement since PoA IDs them-
selves are uncorrelated and it is temporal/sequential correlation
that is required.

The predicted output sequence defines ordered future PoAs
of the user and provides a sense of his/her mobile path. A
wrong prediction at any step of the predicted sequence is unac-
ceptable for proactive mobility management as it is handled
on per hop basis. However, MEC assignment in 5G and allo-
cation of resources are done based on general notion of the
user mobile path, where low prediction accuracy of one or two
steps in a long output sequence is tolerable. This warrants a
stepwise analysis of prediction models for seven steps, as it is
the longest prediction steps in our experiments. Here, correct
predictions at each step are only accounted if previous step
is correctly predicted as well. The results of four prediction
models for CMD in Fig. 9 (a) show a consistent and gradual
decrease in prediction accuracy from first to last step when
the input sequence length is 22. The average decrease in SFI
and TN is 2.17% and 2.28%, respectively, and for ED and
GRU-ATTN it is 1.5% and 1.61%, respectively. The SFI shows
higher accuracy than other models till fifth step, after that ED
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Fig. 9. The stepwise accuracy performance of four models with two datasets.

has 0.4% and 1.5% better results than SFI for sixth and seventh
steps, respectively. GRU-ATTN and TN models have lower
performance than SFI and ED for all the steps, where TN
is better than GRU-ATTN in first two steps and its vice versa
for the remaining. The results for OMD in Fig. 9 (b) show the
average decrements from first step to last step are increased
0.69% 2.91% compared to CMD results in Fig. 9 (a), and TN
achieves the lowest average decrement of 2.97%. Comparing
the individual prediction accuracy of any step with the extrap-
olated result based on decrement trend it can be see that the
results are similar. This confirms that the decrement accuracy
trend holds and can be used to extrapolate prediction accuracy
of steps beyond seven in both the datasets.

The results in Fig. 8 and Fig. 9 establishes that increas-
ing the input sequence length yields better overall prediction
accuracy, whereas the prediction accuracy of individual steps
decreases as the target sequence length increases. This is
because the variance of combinatorial possibilities increases
as we move towards tail end of the target sequence. The supe-
rior performance of SFI till fifth step in Fig. 9 (a) confirms
the effectiveness of discounted significance of accumulated
assigned inputs in the training and higher individual step accu-
racy. However, it has higher decrement slop due to error
accumulation, and for that reason ED results become better
than SFI for sixth and seventh steps due to lower decre-
ment slop despite having lower accuracy in the first step.
This is reaffirmed in results of OMD in Fig. 9 (b) that ED

outperforms from the fourth step, as the average decrement
of ED and SFI are greatly increased into 2.78% and 3.8%,
respectively. The proposed SFI and ED achieve better accuracy
than GRU-ATTN and TN for both CMD and OMD. The com-
parison models depict high performance degradation in OMD
as shown in Fig. 9 (b). This is because both of GRU-ATTN
and TN start with lower first step accuracy than the proposed
models, and GRU-ATTN model has the highest average decre-
ment of 4.5%. Based on the results in Figs. 8 and 9, it can
be concluded that SFI and ED comprehensively outperform
GRU-ATTN and TN, and for shorter output sequences SFI
has clear better performance whereas ED is preferred model
for longer output sequences. This is because ED model targets
to minimize loss of entire sequence while SFI model aims to
curtail loss at individual steps.

The increase in target sequence length (i.e., the number of
steps) gradually reduces the prediction accuracy in both the
models due to error accumulation. The error accumulation
occurs as a result of wrong prediction in step t and recur-
sion mechanism of the models to predict next step t + 1.
This paper reduces error accumulation in two ways. First, in
the training of both models, the accumulation is prevented by
the discounted significance accumulation method that provides
only ground-truth values. Secondly, SFI and ED models use
LSTM as a learning unit which has the best performance when
compared with RNN and Gated Recurrent Unit (GRU). This
is confirmed by the results shown in the Fig. 10 which are
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Fig. 10. The accuracy of three different learning units in the architecture of
SFI and ED.

for input and target sequences lengths 22 and 7, respectively.
LSTM enables SFI and ED models to first predict next step
p + 1 with high accuracy which leads to substantial reduc-
tion of error accumulation for predicting p + 2 during testing.
Through these two strategies error accumulation problem is
effectively subdued in SFI and ED models but cannot be com-
pletely mitigated due to inherent characteristics of recursive
and multi-output approaches.

The results in Fig. 9 provides a closeness measure of over-
all predicted output sequence to the ground-truth, and there
is a need for further dissection of results to determine how
each model performs in predicting q steps for different APs
in the network. To this end, the precision of each AP shows
consistency of each model correctness when it outputs a par-
ticular AP as while predicting q target steps. It is calculated as:

True positives
True positives+false positives , where true positives are correct
model predictions of a particular AP and false positives are
model predictions of a particular AP but they are incorrect. In
particular, the precision of each AP highlights that how often
the model has predicted it incorrectly, where low precision
value represent higher number of incorrect predictions. The
reason for higher incorrect predictions for certain APs can
be understood, when we correlate them with the locations of
APs in Fig. 3 and patterns of mobile paths. As the locations
of BSs in OMD are unknown, their precision results are not
included. For each AP in CMD, the average precision of 3,
5, and 7 steps and their standard deviation are computed with
four prediction models, and are shown in Table II. The average
value provides an insight that how many incorrect predictions
a model has made for an AP, and standard deviation shown
the precision consistency of a model for 3, 5, and 7 steps.
Although, intuitively the proposed models show higher aver-
age precision for each AP due to better accuracy performance
when compared to GRU-ATTN and TN, but no clear pattern
emerges. A closer look reveals that APs 7, 8, and 9 have
higher rate of significantly low average precision values and
high standard deviation for at least two models. Based on the
layout in Fig. 3, it can be seen that these APs are towards the
end of the campus and model predicts them to be the next AP
but user may takes a different direction at earlier point, which

TABLE II
AP PRECISIONS OF FOUR MODELS IN CAMPUS MOBILITY DATASET

leads to high incorrect predictions. For the same reason, we
can see similarly low precision values for APs 3 and 11. For
the remaining APs, all the models show varying results with no
particular pattern. Overall, SFI model precision results show
more consistent and reliable performance with 97.2% average
values above 0.9, whereas in ED model only 61.1% values
are above 0.9. On this account, SFI model is more preferable
over ED model to be used in mobile networks for mobility
and resource management despite its relatively low accuracy
for longer target sequences.

We confirm our analytically calculated computation times
by empirically investigating training and testing times of both
models for 3-step, 5-step, and 7-step predictions. These results
are summarized in Table III. The model training and test-
ing time generally increases with length of input and target
sequences for equal amount of dataset. Given that amount of
our training dataset reduces for longer sequences, the results
show decrease in training time with increase in q. This vari-
ation in dataset is because the sequences of required lengths
are created from same amount of raw handover logs, and the
increase in target sequence length decreases the number of
sequences in dataset. The time for model testing is signifi-
cantly less than training, since the testing data is smaller than
the training data, and backpropagation process is removed
at the testing phase. In particular, testing time of ED is
higher than SFI due to 3q · r computation time of decoder
network and its implementation in Keras library. The decoder
of GRU-ATTN has similar computation processes to ED with
an additional attention mechanism, thus it take more test-
ing time than ED. However, the training time of GRU-ATTN
model is insignificantly less than ED model, since GRU learn-
ing unit has reduced gate calculations than LSTM. Comparing
to other models, TN takes considerable training time due to
six layers of attention and fully-connected layers. The network
requires mobile path prediction for only few mobile users at a
time, and to this end Table III presents testing time for single
sequence (i.e., inference time). It shows that SFI predicts the
target sequence within 0.7 to 1.1ms which satisfies latency
requirements of 5G mobility management, while ED takes
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TABLE III
TRAINING AND TESTING TIME COMPARISON OF FOUR MODELS FOR VARIOUS TARGET SEQUENCE LENGTHS WITH INPUT SEQUENCE LENGTH 22

147 to 273 ms for same operations. The inference time of
GRU-ATTN is notably increased due to attention calculation,
while TN has the lower inference time through the parallelized
attention computations (e.g., multi-head attention). Based on
these results, average max unit computation time r for SFI
and ED can be quantified as 7.9µs and 5.28ms, respectively.
In our finding, this difference in r of two models is down to
implementation differences and use of GPU for computation
in Keras library.

V. CONCLUSION AND FUTURE WORK

This paper proposes SFI and ED models based on recur-
sive and multi-output approaches, respectively, for time-series
mobile path prediction that enables proactive mobility and
strategic MEC management in 5G. Training and testing of
the models is conducted on preprocessed sequences of user
movement which are collected from wireless network of
Pangyo reach center in the form of handover logs. The exper-
iments are done for the target path sequences of lengths 3, 5,
and 7, as this information is sufficient for preemptive mobil-
ity and MEC resource management. Overall accuracy result
and in-depth step wise analysis show that high accuracy of
single-step prediction model in SFI model successfully cur-
tails the accumulated errors till 5th step of target sequence
and has better results than ED model. The capability of ED
model to capture temporal dependencies for predicting simul-
taneous multiple outputs becomes prominent for 6th and 7th

step of target sequence as it shows higher accuracy than SFI
model. In terms of consistency and reliability of both models,
precision analysis of results exhibits that SFI model performs
more consistently than ED model. Furthermore, the ED model
requires shorter training time than the SFI model, but employs
longer time for model inference. This concludes that SFI
model is more suited for proactive mobility where shorter
target sequence is sufficient, while the ED model is more
appropriate for MEC resource management due to its higher
accuracy for longer target sequences despite of its limitations
in terms of consistency and time complexity.

We are currently extending both models with self-attention
mechanisms to exploit spatial and temporal domains to not
only predict mobility patterns but also the estimated dwell
time of users in the predicted PoAs. The model extensions
are designed using multi-branch architecture with joint loss
function for PoA and time prediction. Moreover, the proposed
SFI and ED are used in our Deep Reinforcement Learning
(DRL) based service migration framework that is currently
under implementation, and in our work on dynamic tracking
area for users in mobile networks.

Fig. 11. The operational flowchart of the SFI model.

APPENDIX

The operational flowcharts of both SFI and ED models
are shown in Fig. 11 and Fig. 12 respectively, that explains
sequence of different operations along with various conditions
and loops in training and the testing phases
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Fig. 12. The operational flowchart of the ED model.
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