
386 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 9, NO. 2, APRIL 2023

Data-Driven Spectrum Partition for
Multiplexing URLLC and eMBB
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Abstract—Multiplexing ultra-reliable low-latency communica-
tions (URLLC) and enhanced mobile broadband (eMBB) are
critical in the next generation mobile network. URLLC requires
ultra-high reliability and extremely low latency, whereas eMBB
demands high data rates. Thus, the coexistence system of URLLC
and eMBB faces the challenge of sharing the spectrum efficiently
and effectively. In this study, we comprehensively investigate
the state of the art spectrum partition methods in combined
URLLC and eMBB services. We formulate a joint optimization
problem for maximizing the eMBB throughput and guaran-
teeing the URLLC performance. For the eMBB and URLLC
multiplexing system, a full separative spectrum partition scheme
based on data-driven genetic algorithm-based spectrum parti-
tion (DDGSP) is proposed. Our simulation results demonstrate
that the proposed DDGSP can make the URLLC and eMBB coex-
istence system outperform the state-of-the-art methods in terms
of the error rate and computational efficiency.

Index Terms—5G new radio, spectrum partition, wireless
scheduling, URLLC, eMBB.

I. INTRODUCTION

A. Motivation and Problem Statement

5G NEW radio (NR) wireless systems are expected to
efficiently support enhanced mobile broadband (eMBB)

and ultra-reliable low-latency communication (URLLC)
services [1]. The services of URLLC aims to achieve an
extremely low delay (0.25–0.3 msec/packet) while guaran-
teeing high reliability with 99.999% packet success trans-
mission probability [2]. Furthermore, eMBB is required to
provide high throughput (gigabit per second) data rates with
millisecond-level latency [3], [4]. More importantly, 5G NR
wireless systems require eMBB and URLLC to be dynamically
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Fig. 1. Coexistence schemes.

multiplexed on the same channel to improve the spectrum effi-
ciency [5], [6]. Hence, to satisfy the communication quality
of service (QoS), URLLC and eMBB adopt different random
access technologies.

Furthermore, URLLC adopts grant-free random access
to meet strict latency requirements by skipping the grant
acquisition phase [7]. User equipment (UE) transmits data
using grant-free transmission without sending a scheduling
request (SR) and receiving a resource allocation (RA). This
arrival-and-go manner can significantly reduce latency [8].
On the other hand, grant-based transmissions provide reliable
access and high peak data rate for eMBB services, but barely
reach the latency requirement [3]. Specifically, eMBB UEs
continue transmitting large-sized packets and thus require high
throughput [9]. The packet size of URLLC transmissions is
much smaller than that of eMBB transmissions. Due to relia-
bility and time-critical transmission constraints, URLLC UEs
have a higher priority than eMBB UEs [9], [10], [11]. How to
design an efficient resource allocation mechanism to maximize
spectrum usage is a challenge for the coexisting eMBB and
URLLC system.

To address this issue, various multiplexing mechanisms,
such as fully separate (FS), fully overlap (FO), and partially
overlap (PO), are proposed for sharing spectrum between
URLLC and eMBB users [2]. Fig. 1 shows that the over-
lapped spectrum sharing schemes can outperform the separate-
based method in terms of spectrum efficiency. However, PO
and FO schemes must overcome interference issues because
packet collisions deteriorate the performance of high-quality
communication services. The FS scheme achieved better com-
munication quality than the overlap-based spectrum partition
due to the lack of packet collisions and improve the spectrum
efficiency of the multiplexed eMBB and URLLC systems [12].
However, the optimal spectra-sharing strategy for multiplexed
URLLC and eMBB is a challenging research issue because it
is a multi-objective optimization (MOO) problem subject to
complex constraints [13].

Three kinds of solutions have been proposed to resolve the
MOO problem, including mathematical optimization, genetic
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algorithm (GA), and reinforcement learning (RL) [14], [15],
[16], [17], [18]. Mathematical optimization, like linear regres-
sion and the least-squares method (LSM), provides effective
solutions to convex optimization problems with low com-
putational complexity [16], [19]. However, the considered
Moo spectrum sharing problems are nonconvex and intractable
because of the coupling of multiple variables and nonconvex
constraints. To address this issue, the RL-based method has
been suggested [20]. Unfortunately, RL-based optimization is
limited by memory capacity and computing resources [14].
Inspired by natural selection, GA was proposed to resolve
nonconvex optimization using an iterative search process with
biological-like operations [15]. The GA-based method has
been widely used to solve the communication resource allo-
cation problem thanks to low computational complexity and
the ease of design [21], [22].

B. State-of-the-Art Methods

1) Mathematical Optimization: The authors of [17] adopted
the weighted LSM to smoothen the binary matrix of photographs
and optimize the quality. A generalized iteratively reweighted
LSM was proposed to effectively solve the joint low-rank
and sparse minimization problems [23]. Despite several ben-
efits in [17] and [23], the simple mathematics-based method
can only be used to solve the convex-structured optimization
problem. Further, generalized bender decomposition (GBD)
was proposed to decompose the nonconvex mixed-integer non-
linear programming problem (MINLP) into primal and master
problems, and then resolve the decomposed two sub-problems
iteratively until their solutions converge [24]. The authors
of [25] used multi-generation cuts for the master problem
to improve GBD’s computational efficiency. ML techniques
were proposed to further reduce the computational complexity
of multi-cut GBD by dropping the cuts irrelevant to conver-
gence [26]. The use of GBD-based optimization must satisfy
the primal problem’s convexity requirement after decomposi-
tion [27]. Hence, it is impractical to adopt GBD to solve the
spectrum sharing optimization problem.

2) Reinforcement Learning-Based Optimization: A robust
deep RL-based energy harvesting method was proposed
in [20] to maximize the energy efficiency of unmanned aerial
vehicle (UAV)-assisted communications subject to the QoS
requirements. In [28], RL was used to allocate communication
resources to improve the users’ quality of experience in the
Internet-of-Things networks. Another paradigm of RL-based
resource allocation is to efficiently improve the throughput
and reduce the interference of dynamic ultra-dense small
cells [29]. Cooperative-aware multi-agent RL (MARL) was used
to optimize the spectrum efficiency in vehicular networks by
encouraging each agent to make decisions independently [30].
The authors of [31] adopted the Nash equilibrium-based MARL
to optimize spectrum usage by determining the power-level and
the sub-band without information exchange between UAVs.

3) Genetic Algorithm-Based Optimization: The effective-
ness and efficiency of GA-based optimization have been
demonstrated in various practical applications since it can
optimize the resource allocation performance with acceptable
computational complexity [15], [18], [32]. The authors of [32]

developed a GA-based model to investigate the optimal sink
locations on the trajectory for sensor clusters and increase the
lifetime of wireless sensor networks. A multi-objective GA
was proposed to improve the average CPU usage and reduce
the energy consumption of cloud data centers by dynamically
predicting resources usage in the next time slot [33]. The
work of [34] used multi-objective GA to optimize the com-
plex multi-task planning for UAVs and achieved the desired
performance.

4) Limitations: Mathematically based optimization algo-
rithms, such as linear regression, LSM, and GBD, have differ-
ent limitations in solving MOO problems [19], [24], [26], [35].
Linear regression solves optimization problems with a single
objective, reducing its effectiveness in the MOO problem of
spectrum sharing between URLLC and eMBB [19]. GBD-
based methods require convexity and linear separateness for
the decomposed primal and master subproblems, respectively,
suitable only for specific problems [24], [26]. The LSM-based
approach loses effectiveness in large-scale optimization prob-
lems and faces the challenge of high error rates [35]. However,
LSM can smooth the throughput curves of URLLC and eMBB
services on the same channel, which can help analyze the rela-
tionship between URLLC and eMBB to improve the spectrum
efficiency [16]. Deep RL has demonstrated its ability to deter-
mine a satisfactory solution in dynamic environments [14].
Thus, the deep RL-based approaches have significant poten-
tial since they can optimize the spectrum resource allocation
problem in a constantly changing communications environ-
ment. However, deep RL has high computational complexity
and its performance can be easily affected by the unavoid-
able inaccurate estimation of the action-value function [20].
GA-based optimization method, which takes advantage of
both the mathematical method and the learning algorithm,
has been widely used to solve the communication resource
allocation problems because of its global search capability
and low computational complexity [32]. Further, the GA-
based optimization algorithm performs well even when the
environment changes slightly [15].

Based on the aforementioned review, this study adopts GA
to optimize the spectrum allocation between URLLC and
eMBB traffic, whereas the mathematical and RL-based meth-
ods are the benchmark for evaluating the proposed GA-based
spectrum-sharing method.

C. Contributions

This study maximizes the spectrum usage efficiency sub-
ject to the critical QoS requirements when URLLC and eMBB
transmissions share the same channel. Practically, we investi-
gate the overlap and separate-based multiplexing mechanisms
for the URLLC and eMBB coexistence system that can reduce
packet collisions and provide high-quality communication.
Further, this study formulates the spectrum resource alloca-
tion problem as the MOO problem because the targets of
the URLLC and eMBB services are different. To address the
formulated problem, we explore state-of-the-art optimization
methods, such as the mathematical, GA, and RL methods, and
provide a comprehensive comparison of these methods. The
main contributions of this study are as follows:
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Fig. 2. The multiplexing mechanism of URLLC and eMBB.

1) We present the multiplexing URLLC and eMBB model
based on the FS mechanism and then formulate the
corresponding spectrum-sharing problem as the MOO
problem.

2) We propose a data-driven GA-based spectrum partition
(DDGSP) to maximize eMBB throughput while satis-
fying URLLC latency and reliability requirements. The
proposed DDGSP can perform well even under slight
changes in the communication environment.

3) We verify the effectiveness and efficiency of the
proposed DDGSP through rigorous numeral simula-
tions. Moreover, the detailed comparison of the proposed
DDGSP and state-of-the-art methods demonstrates the
superiority of the proposed spectrum partition in terms
of trade-off efficiency and practicality.

D. Paper Organization

The rest of this article is organized as follows. The system
model and problem formulation are given in Sections II
and III, respectively. The design of the benchmarks is detailed
in Section IV. Section V presents the proposed spectrum par-
tition mechanism. The numerical results and conclusions are
presented in Sections VI and VII, respectively.

Notations: Table I summarizes a partial of the important
notations in this paper.

II. SYSTEM MODEL

A. System Assumption

This study considers that multiple URLLC and eMBB UEs
perform transmission in a grant-free and grant-based manner,
respectively. Further, the arrival of the UE data packet for
URCCL and eMBB traffic follows the Poisson process with
data rates εu and εe , respectively. Denote Nu and Ne as the
UE number of the URLLC and that of the eMBB, respectively.

TABLE I
GLOSSARY OF NOTATIONS

Referring to [12], we consider that the grant-free opportu-
nity (GFO) presents the entire time of a single grant-free
transmission, in which the URLLC UE receives the acknowl-
edgment (ACK) from the BS until its timer expires. The
transmitter retransmits the same ACK data after the first trans-
mission to minimize the negative effect of packet collision.
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However, retransmission is allowed only once due to a latency
constraint [36]. Based on 3GPP standards [1], URLLC trans-
missions are scheduled with a short transmission time interval
size of a mini-slot (0.125 msec), whereas eMBB transmissions
are scheduled with 1 ms. Figure 2 shows that the URLLC
packet preempts the eMBB transmission and spans multiple
frequency bands [5].

B. URLLC Transmission Model

The resource blocks (RBs) assigned to URLLC transmis-
sions should not be accessed by eMBB transmissions to avoid
packet collisions between eMBB and URLLC. Let NRB rep-
resent the total number of RBs. Denote N ui

RB and N
ej
RB as

the number of RBs assigned to the i-th URLLC receiver and
the j-th eMBB receiver in each time (long) slot t, respectively.
Consider M URLLC mini-slots in each eMBB long slot for
this assumption. The BS does not have precise parameters for
URLLC packets due to the single link dependency of grant-
free transmission [8]. As shown in Figure 2, each URLLC
traffic provides two transmissions for a URLLC UE, i.e., a first
transmission and retransmission, which occupies two mini-
slots. During each sampling period, the URLLC transmitter
provides receivers with information on the number of total
packets, Np . The total reliability of URLLC, Pu , in each
long-slot (1 ms), t, can be calculated as

Pu(t) =
Nu∑

i=1

N ui
ACK1

+ N ui
ACK2

Np
, (1)

where N ui
ACK1

and N ui
ACK2

denote the number of URLLC ACK
packets of the first transmission and retransmission for the i-th
URLLC receiver, respectively.

Assume that the RBs assigned for the i-th URLLC UE are
consistent throughout the first transmission and retransmission
phase. Without loss of generality, it is assumed that each trans-
mission occupies one mini-slot. The number of ACK packets
received by the i-th URLLC receiver at the l-th transmission
during the time-slot t can be obtained by

N ui
ACKl

=

N
ui
RB∑

b=1

fbK
l
b(t)

M × Pu
log2

(
1 +

Eb(t)hb(t)

σ2

)
× T , (2)

where fb is the bandwidth of the RB b, and K l
b(t) is the

number of mini-slots for the l-th (l ∈ {1, 2}) transmission of
the i-th URLLC UE during the time slot, t. Eb(t) and hb(t)
represent the downlink transmission power and time-varying
Rayleigh fading channel gain on the RB b, respectively. T is
the duration of the time slot, t, equal to the long slot of eMBB.
Pu denotes the data size of a packet for the URLLC UE, i.
Therefore, the latency for each transmission l of the URLLC
receiver i can be denoted as:

Lui
ACKl

=
T

M × N ui
ACKl

=
1

N
ui
RB∑

b=1

fbK
l
b(t)

Pu
log2

(
1 +

Eb(t)hb(t)
σ2

)
, ∀l ∈ {1, 2}.

(3)

C. eMBB Transmission Model

The eMBB traffic uses the grant-based transmission, in
which the transmitter knows the receiver. As collision-free
access, the grant-based transmission contains three links,
which include SR, RA, and ACK transmissions. The effec-
tive throughput, Rej (t), of the eMBB UE, j, can be calculated
throughout the Shannon capacity and is given as follows:

Rej (t) = fb

N
ej
RB∑

b=1

(
1− K l

b(t)

M

)
log2

(
1 +

Eb(t)hb(t)

σ2

)
. (4)

Therefore, the number, N
ej
ACK , of ACK packets received by

the eMBB receiver, j, in the time slot t can be expressed as
follows:

N
ej
ACK =

Rej (t)× T

Pej
, (5)

where Pej is the size of the data packets for each eMBB
receiver j. The total capacity of eMBB transmissions during
the time slot, t, can be obtained as follows:

R(t) =
Ne∑

j=1

Rej (t)

=
1

T

Ne∑

j=1

N
ej
ACK ∗ Pej . (6)

III. PROBLEM FORMULATION

The objective of this study is to reduce RB waste under
the premise of satisfying URLLC reliability requirements and
eMBB throughput. Following [12], we give URLLC traffic
a higher priority than eMBB traffic. Therefore, this study
maximizes eMBB throughput while satisfying the constraints
of the URLLC reliability requirement. The problem can be
formulated as follows:

max
N

ui
RB

R(t) =
Ne∑

j=1

Rej (t),

s.t . C1 : Pu (t) ≥ 99.999%

C2 : Lui
ACKl

≤ 0.25msec/packet, ∀i ∈ [1,Nu ], l ∈ {1, 2}

C3 :

Nu∑

i=1

N
ui
RB +

Ne∑

j=1

N
ej
RB = NRB , (7)

where C1 and C2 represent URLLC reliability and delay
requirements, respectively. C3 is the upper limited number
of RBs for all URLLC and eMBB UEs. The optimization
problem is nonconvex due to the discrete feasible region and
the coupling of multiple variables, implying that it is diffi-
cult to effectively solve this problem using standard convex
optimization methods. This study develops a novel DDGSP to
optimize the spectrum allocation between URLLC and eMBB
traffic, while mathematical and RL-based methods are the
benchmarks for evaluating the proposed approach.
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IV. DESIGN OF THE BENCHMARKS

In the literature review, we examined several optimization
methods such as linear regression, LSM, GBD, RL, and GA.
Linear regression performs a regression task that requires a
linear relationship of the input and output variables. However,
because of multiple complexity constraints, the MOO problem
formulated in (7) is not linear. The principle of GBD is to
decompose the MINLP problem into a primal and master
problem [24]. The primal problem of GBD is convex and
corresponds to the original MINLP problem when the inte-
ger variables are fixed. The master problem must be linear
given the continuous variables [26]. Unfortunately, all the vari-
ables in (7) are integer variables that cannot be efficiently
solved by GBD. Therefore, we design LSM- and RL-based
spectrum sharing approaches as benchmarks to evaluate the
proposed DDGSP. Notably, URLLC reliability and eMBB
throughput are observed to be directly and inversely pro-
portional to the total number of RBs assigned to URLLC,
NU
RB =

∑Nu
i=1N

ui
RB , respectively.

A. Least-Squares Method-Based Spectrum Sharing

The relationships between URLLC reliability and eMBB
throughput are nonlinear due to various channels, and cannot
be obtained directly. LSM is a common algorithm for solv-
ing the regression problem by approximating the minimum
sum of the squares of the residuals between the observed
and predicted points. Therefore, this study adopts LSM to
fit the curve of the relationship between URLLC reliability,
eMBB throughput, and the total number of RBs assigned to
URLLC, i.e.,

∑Nu
i=1N

ui
RB . The nonlinear relationship between

URLLC reliability can be denoted as (Pu (t), NU
RB ). We

approximate the nonlinear relationship with the linear curve
Pu (t) = β1 × NU

RB + β2, based on LSM [37]. Then, we
can approach the NU

RB threshold that satisfies the requirement
of Pu (t) ≥ 99.999%. The value of NU

RB must accurately
reach the point Pu (t) = 99.999% to avoid resource waste
and maximize the performance of eMBB.

The discrete values of NU
RB result in a constant fluctuation

in URLLC reliability, which can be observed using an exhaus-
tive algorithm. Following [17], we further smoothen the LSM
curve by reconstructing NU

RB into NU
RB = NU ′

RB + δ,where δ

is small and rapidly varying and NU ′
RB is close to NU

RB . The
weighted LS energy function for the smoothed curve can be
expressed as follows:

min

{∥∥∥NU ′
RB −NU

RB (i)
∥∥∥2

+ λ

m∑
i=1

(
NU

RB (i + 1)−NU
RB (i)

)2}
, (8)

where m is the number of sampled data and NU
RB (i) is the

number of RBs assigned to URLLC transmission in the i-th
data. λ is a smoothing parameter. The LS problem can be
resolved by the following:

(
I + λDTD

)
NU ′
RB = NU

RB , (9)

where D is a matrix n × (n + 1), which is defined as follows:

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
0 − 1 1 · · · 0 0 0
0 0 − 1 0 0 0

...
. . .

...
0 0 0 1 0 0
0 0 0 · · · − 1 1 0
0 0 0 0 − 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The reconstructive data can be obtained using the above
equation.

B. Q-Learning-Based Spectrum Sharing

This study considers the RL expressed as
〈S ,A,PT ,R, γ〉. A = {a1, a2, . . . , at} and S = {s1, s2,
. . . , st} are finite sets of actions and states, respectively. By
applying the action at ∈ A of the time step t, which is the
time slot t in this study, in the current state, st ∈ S , the
system will return an instant reward rt ∈ R : S ×A×S → R

to the agent. Then, the communication environment changes
from the current state, st , to a new state, st+1 ∈ S , of the
next time step, t + 1. The transition function based on a
probability distribution over the set of possible transitions is
denoted as PT : S × A × S → [0, 1]. Typically, the reward
function, R, and the transition function, P, comprise the
model, π∗ : S → A, to maximize the long-term reward
calculated by the following:

max
π∗

J (π∗) := E

[
∑

t

γtrt (st , π∗(st ))
]
, (11)

where γ ∈ [0, 1] is the discounting factor that determines the
importance of future rewards based on the current state.

We consider a Q-learning algorithm with low computa-
tional complexity and rapid convergence since the time-critical
URLLC service requires fast decisions. The state and obser-
vation space, action space, and reward design are illustrated
in the following.

1) Action and Observation Space: For simplicity, we
define the action space as increasing or decreasing the number
Δt ∈ {−Δ,+Δ} of RBs assigned to URLLC transmission.
The action of the agent at the time step t can be expressed as:

at = ±Δ. (12)

The Fibonacci sequence is used to generate the value of
action Δ according to [38]. It follows that

at = ±
(
C 0
n−1 + C 1

n−2 + · · ·+ Cm
n−1−m

)
,n ∈ [2, 7]. (13)

The state of the communication environment directly affects
the policy’s decision and the reward of the current action. The
number of RBs assigned to URLLC directly affects the reli-
ability under the assumption of the system model, implying
that it is also closely related to the reward of this action. The
more the RBs assigned to the URLLC transmission, the greater
the reliability of URLLC. Therefore, we define the number of
RBs currently assigned to the URLLC transmissions as the
observation at the time step, t, which is given by:

st = NU
RB . (14)
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Therefore, the transited observation of the next time step st+1

can be expressed as follows:

st+1 = st + at = NU
RB (t)±Δt . (15)

2) Reward Design: Before the agent performs the action
of the next step, the system assesses the quality of this action
and performs the corresponding state transition. The positive
reward represents the objective of the proposed framework,
which is to maximize the total eMBB throughput of the
coexistence system while guaranteeing the required URLLC
reliability. Further, eMBB throughput and URLLC reliability
are inversely and positively correlated with NU

RB , respec-
tively. Therefore, eMBB throughput reaches the maximum
value when URLLC reliability meets the demand threshold
simultaneously. We define the reward function as follows:

rt = θ − α× (Ptarget − Pu(t)
)2
, (16)

where Ptarget = 99.999% and Pu (t) represents the current
URLLC reliability based on the action performed at the time
step t. θ is a given constant, and α > 0 represents the effect
of the difference between the reliability on the overall score.
The designed reward function shows that the closer the cur-
rent URLLC reliability is to the target reliability, the higher the
reward obtained. Furthermore, the maximum number of RBs
assigned to eMBB is achieved when the URLLC requirements
are satisfied. The throughput of eMBB decreases as the relia-
bility of URLLC increases. Therefore, the reward function (16)
aims to reduce the deviation between the required URLLC
reliability threshold and the current URLLC reliability.

3) Training Process: Figure 3 illustrates the training pro-
cess of the proposed Q-learning-based spectrum partition.
After applying the current state and action pairs (st , at ) in
the environment, the environment returns the corresponding
reward rt of the time step t and transfers the state to the next
step st+1. The goal of Q-learning is to determine the optimal
strategy, π∗ : s → Δt , in which the agent is to update its
Q table based on the reward and state obtained. The Bellman
function for the agent to update its policy can be expressed as
follows:

Q(st , at ) = (1− ω)Q(st , at ) + ωmax
at+1

(rt + γQ(st+1, at+1)), (17)

where ω is the learning rate. At each time step, the optimal
action is selected based on the current strategy of the environ-
ment state and the reward. After several iterations, the Q-table
finally converges to the optimal strategy.

Algorithm 1 shows the Q-learning-based spectrum sharing
for the URLLC and eMBB coexistence system. Furthermore,
the coordinate of the designed Q-learning table is the state
representing the number of RBs assigned to URLLC UEs,
NU
RB , and the abscissa is the action. The value of st + Δt

cannot exceed [0,NRB ] since there is a limited number of
total RBs. Otherwise, the reward is set to −100 if the value
of st +Δt exceeds [0,NRB ].

V. DATA-DRIVEN GENETIC ALGORITHM-BASED

SPECTRUM PARTITION

In this section, we propose a novel DDGSP to effi-
ciently allocate spectrum resources for the URLLC and eMBB

Fig. 3. The learning process of the Q learning-based spectrum partition.

Algorithm 1: Q-Learning-Based Spectrum Sharing

1 Initial: All state and action pairs, Q(st , at ), are
initialized to zero;

2 Initial: A given number of total steps, τ ;
3 for t = 0 to τ do
4 Select an optimal action, at , based on the current

Q-value strategy, Q(s , ·), for the current
environment state st ;

5 Applying the current state and action pairs (st , at ) in
the envirnment;

6 Obtain the corresponding reward, rt , of the time step,
t, and transfers the state to the next step st+1;

7 Using the Bellman Equation (17) to update the policy.
8 end

multiplexing system. Inspired by Darwin’s theory of evolution,
GA transforms specific problems into basic chromosome-like
information sequences. It solves a problem with data that
have a similar chromosome-like structure by encoding the
solution, retaining key information, and then reorganizing the
data to obtain the corresponding results. GA can continuously
optimize the problem and determine the most suitable results
using selection techniques such as crossovers, and mutations.
The proposed DDGSP, which is a combination of the origi-
nal GA and the data collection process, is introduced in this
section. The DDGSP population is the number of RBs N u

RB
assigned to URLLC UEs.

A. Evaluation

The evaluation function in the proposed DDGSP assesses
each individual in the population to obtain its corresponding
fitness value. The throughput of eMBB and the reliability of
URLLC are inversely and positively correlated with the num-
ber of RBs assigned to URLLC UEs, respectively. The higher
the URLLC reliability, the lower the eMBB. This is because
the total RBs resources are finite in the coexistence system.
Based on the aforementioned discussions, it can be concluded
that when URLLC reliability and latency just meet the demand
threshold, the throughput of eMBBs simultaneously reaches
a relative maximum. The fitness value is derived from the
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Fig. 4. Fitness Function.

optimization problem’s objective to evaluate the resource allo-
cation strategy. Therefore, the balance of the URLLC QoS
requirements and eMBB throughput reaches the optimal solu-
tion when the fitness value is maximized. If the URLLC
latency requirement cannot be met, the fitness value for the
current strategy can be denoted as:

Vu
fitness = −1, if ∃Lui

ACKl
> 0.25msec/packet. (18)

If the URLLC latency is guaranteed but its reliability is not
satisfied (< 99.999%), the fitness value can be expressed as
follows:

V̄u
fitness = −(Ptarget − Pu(t)

)2
,Pu(t) < 99.999%, (19)

where Ptarget represents the URLLC reliability thresh-
old (99.999%). The fitness value will be calculated from (18)
if both the reliability and latency of URLLC do not satisfy the
requirement. Vfitness approaches to zero when the reliability
of URLLC Pu(t) closes to the target reliability of 99.999%
and the latency requirement is guaranteed. Further, the fitness
value is re-generated to maximize the eMBB throughput when
URLLC reliability and latency are guaranteed and is written as

Ve
fitness =

1

T

Ne∑

j=1

N
ej
ACK ∗ Pej . (20)

Referring to (18), (19), and (20), the fitness value for the
current strategy k can be expressed as

Vk
fitness =

⎧
⎨

⎩

Vu
fitness , if ∃Lui

ACKl
> 0.25msec/packet

V̄u
fitness , if Pu(t) < 99.999%
Ve

fitness , otherwise.
(21)

Figure 4 shows that one can obtain the fitness function by
classification when the URLLC latency requirement is satis-
fied. In the figure, the abscissa represents the number of RBs
assigned to URLLC, and the ordinate represents the fitness
value corresponding to the current number of RBs. The left

part is the fitness value when URLLC reliability does not sat-
isfy the requirements. The right part is the fitness value to
maximize the eMBB throughput. Fitness value of different
individuals can assess whether the allocation strategy is appro-
priate for the current network. Therefore, the fitness value is
designed to be negative when URLLC reliability and latency
requirements cannot be met. Furthermore, the positive fit-
ness value is positively correlated with the eMBB throughput
when all URLLC requirements are satisfied. The optimization
objective of this study is equivalent to finding the strategy to
maximize the fitness value. However, to exhuasively find the
maximized fitness value is time consuming. To this end, we
proposed a DDGSP algorithm to reach the maximum fitness
value.

B. Selection

The input of the GA operation consists of each indi-
vidual and its corresponding fitness value. The allocation
strategy with fitness values exceeding a given threshold will be
selected as the next-generation strategy according to Darwin’s
theory of survival of the fittest. The GA operation cre-
ates an intermediate population by the selection step before
generating the next population from the current population.
Following [39], the proposed DDGSP uses the roulette-wheel
random method to implement the selection operation.

Let each spectrum resource allocation strategy be an individ-
ual. With n individuals, the fitness value of the k-th individual
is defined as Vk

fitness . The total number of RBs assigned to

URLLC traffic in this strategy is indicated as N k
RB . The corre-

sponding area of each individual in the roulette, representing
the probability of being selected, is denoted as

psk =
Vk

fitness∑
n Vk

fitness

. (22)

The strategy that maximizes the eMBB throughput under the
URLLC requirements has the highest probability of being
selected according to (22), which is equivalent to the objec-
tive of the problem described in (7). After obtaining the
selected probability psk of each resource allocation strategy,
the individual is sent to the roulette wheel for stochastic sam-
pling. Thus, the first batch of the intermediate population is
generated. For each selection, the higher the individual’s fit-
ness value, the greater the probability of it being selected.
Therefore, the individual with a high fitness value must be
selected multiple times after several independent repeated
selections. In this way, the DDGSP can naturally simulate the
survival rules of the fittest and choose the optimal resource
allocation strategy quickly.

C. Crossover and Mutation

In the intermediate generation, different individuals will
be randomly selected as parents to create new offspring by
mutation and crossover. The next generation is formed by the
intermediate generation and new offspring. The offspring are
formed by implementing crossover and mutation operations.
Initially, we define the set of all allocation strategies as the
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population. We do not use binary string encoding for each indi-
vidual, rather, we use the allocation strategy as the processing
object.

The crossover and the mutation operations are described
below. We randomly select two individuals from the
intermediate population as father and mother and define them
as N f

RB and Nm
RB , respectively. Their corresponding fit-

ness values are Vf
fitness and Vm

fitness , and the offspring are
calculated based on the following formula:

NOS
RB =

Vm
fitness

Vf
fitness +Vm

fitness

Nm
RB

+
Vf

fitness

Vf
fitness +Vm

fitness

N f
RB (23)

According to (23), the higher the parent’s fitness value, the
higher the probability that it will affect the offspring. This
is because the offspring can approach to the optimal strategy
without falling into the local optimum. This process illustrates
how the crossover operation produces new offspring.

Naturally, mutations are uncertain and have an extremely
low probability of occurrence. Thus, not every generation has
mutants. The probability of mutation is determined by the
given probability pm 
 1. In this study, we use a uniformly
distributed function to generate a random number φ ∈ (0, 1).
If φ ≥ pm , the mutation operation is applied to the current
generation; otherwise, there are no mutants in this generation.

For the mutation operation, we randomly generate a number
μ ∈ (0, 2) and use (24) to mutate the current individual k to
generate a new offspring

N om
RB = μ× N k

RB (24)

We can get different new offspring using the aforementioned
cross-mutation. These new offspring and the intermediate
population generated in the selection replace the current
generation as the next generation population. Mutation and
crossover operations can prevent the DDGSP from falling into
the local optimum.

The aforementioned steps form one iteration of the proposed
DDGSP. The pseudocode of the proposed DDGSP is summa-
rized in Algorithm 2. The allocation strategy is continually
optimized until it obtains the appropriate spectrum resource
allocation. Specifically, this study defines §(G) as the high-
est fitness value in each iteration G. Therefore, the stop-
ping condition of the proposed DDGSP can be defined as
§(G) == §(G+ 1), indicating that the highest fitness in the
new generation no longer increases.

D. Convergence Analysis

The proposed DDGSP performs the roulette wheel selection
to select individuals to generate offspring. Individuals with
high fitness have a higher probability of being selected to pro-
duce offspring according to (22). Due to multiple selection
operations being performed in each iteration, the population
size of the offspring is several times greater than that of their
parents. The high-fitness individual’s offspring will increase
with iterations, similar to Darwin’s theory of evolution. The

Algorithm 2: The Proposed Data-Driven Genetic
Algorithm-Based Spectrum Partition

1 Input: The index of iterations G = 0, the index of
seletion, � = 0, in each iteration, the highest fitness
value, §(G) = −1, in the G-th iteration;

2 Input: The ratio, χ, of the individual being selected for
crossover in each iteration, the number of selections, ζ,
in each iteration;

3 Input: The given probability of mutation pm 
 1;
4 Initial: Initial the dataset, D, of URLLC and eMBB

traffics in the multiplexing system;
5 Initial: Randomly generate a population of n individuals;
6 Evaluate: Calculate the fitness value of each individual k

using (21) on D;
7 while G = 0 or §(G)! = §(G− 1) do
8 Selection:
9 Calculate the selection probability, psk , of each

individual k using (22);
10 for � < ζ do
11 Use roulette wheel selection method and the

selection probability, psk , to select χ× n
individuals as the set of crossover;

12 � = � + 1;
13 end
14 � = 0;
15 (1− χ)× n individuals with the greatest fitness

value are directly put into the set of the
next-generation individuals;

16 End
17 Crossover:
18 Pair the crossover individuals up;
19 Produce offspring by (23) to generate the

next-generation individuals;
20 End
21 Mutation:
22 Generate a random number φ ∈ (0, 1) follows the

uniformly distributed function;
23 if φ ≥ pm then
24 Randomly generate a number μ ∈ (0, 2);
25 Randomly select φ× n individuals from the

generation G+ 1 for mutation;
26 Use (24) to mutate the selected individuals

generate new offspring;
27 end
28 End
29 Evaluation:
30 Calculate the fitness value of each individual k in

the geneartion G+ 1 using (21) on D;
31 G = G+ 1;
32 End
33 end
34 Return: The individual with the highest fitness value;

convergence of GA has been proved using Markov chain the-
ory [40]. The convergence performance of GA depends on
the probabilities of crossover and mutation [41]. However,
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TABLE II
SIMULATION PARAMETERS

the classical GA-based method can converge to a suboptimal
solution [40]. This happens because the individual with the
globally optimal solution may be eliminated by selection. To
this end, the proposed DDGSP selects (1−χ)×n individuals
with the highest fitness value directly into the next generation.
Therefore, once a globally optimal solution is found, it must
survive in the population and produce offspring. The DDGSP
must converge to a globally optimal solution [40], [42].

VI. SIMULATION

In this section, the proposed DDGSP-based method is eval-
uated through rigorous numerical simulations. In addition,
we provide comprehensive comparisons between the proposed
DDGSP and the state-of-the-art techniques in terms of com-
putational complexity and spectrum sharing performance.
Following [43], we consider the propagation scenario in an
urban area. The BS sends small packets to URLLC UEs using
the grant-free transmission mechanism, whereas large pack-
ets are sent to eMBB UEs using the grant-based transmission
mechanism. The communication environment in this study
is constantly changed because the packets are transmitted
randomly. Table II lists the simulation parameters.

A. System Performance of Least Square Method

Figure 5 shows the simulation results of the LSM-based
spectrum partition. In the figure, the URLLC reliability and
EMBB throughput curves have been smoothened. The objec-
tive of the LSM-based spectrum partition is to determine the
point closest to 99.999%. The figure shows that the number of
RBs assigned to URLLC is 24 when the reliability of URLLC
just reaches 99.999% and the eMBB throughput achieves the
corresponding maximum value. We conducted 1,000 repeti-
tions of the URLLC and eMBB multiplexing experiments to
verify the obtained spectrum partition strategy. In addition, we
define the evaluation error rate as follows:

Kerror =
Nfail

Ntotal
, (25)

where Nfail is the number of experiments in which URLLC
reliability did not meet demand and Ntotal is the total number

Fig. 5. Simulation results of the LSM-based spectrum partition.

Fig. 6. Simulation results of the proposed DDGSP.

of experiments. The error rate, Kerror , of the LSM-based
approach is 48.2% after 1,000 experiments, which cannot guar-
antee system performance. This is due to the changes in the
communication environment in different experiments.

B. System Performance of the Q-Learning Algorithm

Table III describes the optimization performance of the Q-
learning-based spectrum sharing approach for the URLLC
and eMBB multiplexing system. The maximum reward is
obtained when the state and action are 28 and –3, respec-
tively. Therefore, the optimal N u

RB for the current strategy
is (28 − 3 =)25. We used the obtained strategy to per-
form repeated independent experiences to further evaluate
the performance of the Q-learning-based spectrum partition.
The error rate of the Q-learning-based approach is 16.2%
after 1,000 experiences, which significantly outperforms the
LSM-based spectrum partition.

C. System Performance of the Proposed DDGSP

Figure 6 illustrates the optimization performance of the
proposed DDGSP for multiplexing of URLLC and eMBB trans-
missions. The abscissa is the number of RBs N u

RB assigned
to URLLC UEs. The figure shows that the URLLC reliability
requirement, 99.999%, is addressed when the optimal value
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TABLE III
RESULTS OF THE Q-LEARNING METHOD

Fig. 7. The convergence performance of the proposed DDGSP.

of N u
RB is 26. The corresponding maximum eMBB through-

put was also achieved in the same strategy. We conducted
1,000 independent experiments to verify the obtained spec-
trum partition strategy of the proposed DDGSP. The error rate
of the proposed DDGSP is 4.1% based on Eq. (25), which is
much lower than the LSM-based spectrum partition approach.
Performance fluctuations and error rates are unavoidable since
the communication environment changes randomly. However,
the proposed DDGSP-based algorithm reaches the best and most
stable performance among the state-of-the-art approaches in
the dynamic communication environment.

The size of the initial population directly affects the
performance and convergence speed of GA-based meth-
ods [15]. The larger initial population necessitates more
computational resources, but the convergence process is accel-
erated [44]. This is because the larger population has the higher
probability of finding the optimal solution [45]. However, there
is no solution to find the optimal population size that can con-
verge quickly and reduce computational costs. Therefore, we
conducted several experiments with different initial popula-
tions to determine the optimal value of the initial population.
Due to the total RBs NRB = 200, the initial popula-
tion size and the running population size are empirically set
from 20 to 30 for the test, which is 10%–15% of the total
solutions [44], [45], [46]. Figure 7 compares the convergence
performance with population values ranging from 20 to 30.
All curves in the figure converge to 26 during 10 genera-
tions, except the line of experience with a population value
of 21. Further, the convergence speeds of different population

TABLE IV
COMPARISON OF DIFFERENT METHODS

sizes are different. Figure 7 shows that the convergence speed
increases as the population size increases. The learning pro-
cess converges in two generations when the population size is
greater than 26. This is because the probability that the ini-
tial individuals contain the near-optimal solution is very high
when the population size is greater than 26 in this experimental
scenario. For this study, 26 is the optimal initial population to
compensate for the computational complexity and convergence
performance.

Table IV compares the proposed DDGSP with the con-
ventional techniques in terms of optimizing the spectrum
partition strategy of the URLLC and eMBB multiplexing
system. This table shows that the LSM-based approach has the
lowest computational complexity, but suffers the highest error
rate (48.2%). The Q-learning-based approach has the highest
computational complexity with an error rate of 16.2%. The
proposed DDGSP achieves the lowest error rate (4.1%) with
accepted computational complexity of O(n2).

In summary, the proposed DDGSP achieves the best
performance among the three spectrum partition methods
because DDGSP reaches the trade-off between the error rate
and the computational complexity of the URLLC and eMBB
multiplexing system. The LSM-based method has the lowest
computational complexity, but with an extremely high error
rate. Compared to the Q-learning-based spectrum sharing, the
proposed DDGSP has a lower computational complexity and a
lower error rate. Therefore, the proposed DDGSP outperforms
LSM- and Q-learning-based methods in the considered data-
driven URLLC and eMBB multiplexing system. Furthermore,
the convergence speed of the proposed DDGSP increases as
the population size increases in the data-driven architecture.
Clearly, the larger the population size, the higher the proba-
bility of including individuals with a globally optimal solu-
tion. As such, the computational complexity of the proposed
DDGSP also increases as the population size increases. Hence,
finding the optimal population size that achieves fast conver-
gence at acceptable computational complexity is worthy of
future research.
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VII. CONCLUSION

This study investigates the spectrum partition mech-
anisms for a URLLC and eMBB multiplexing system.
The time-critical URLLC service necessitates extremely
low latency (0.25–0.3 msec/packet) while guaranteeing
99.999% reliability. In contrast, eMBB services require the
maximization of their throughput for high-speed transmissions.
We formulate the objective of spectrum sharing in URLLC and
eMBB multiplexing as a multi-objective optimization (MOO)
problem and propose a data-driven genetic algorithm-based
spectrum partition (DDGSP) to solve it. The proposed
DDGSP outperforms conventional techniques, least squares
method (LSM), and Q-learning, in terms of optimization
performance and computational complexity. Our simulation
results demonstrated the effectiveness and efficiency of the
proposed DDGSP, which significantly reduced the system
error rate from 48.2% to 4.1%. It is worthwhile further
investigating a technique to provide resilience for the DDGSP-
based spectrum partition against variability in the communi-
cation environment to improve the system performance for
the coexistence of URLLC and eMBB. Additionally, finding
the optimal population size to achieve fast convergence at
acceptable computational complexity is also worthy of future
research.
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