
98 January 2022

ith the rapid proliferation
of telecommunication and

RF applicat ions, so, too,
has demand grown for tools to design
and characterize these devices. scikit-
rf is a Python package designed to

make RF/microwave engineering
both robust and approachable. The
package provides a modern, object-
oriented l ibrary for RF network
analysis, circuit building, calibra-
tion, and simulation.

Besides offering standard micro-
wave network operations, such as read-
ing/writing Touchstone files (.sNp
files), connecting or de-embedding
N-port networks, frequency/port slic-
ing, concatenation, or interpolations, it

Digital Object Identifier 10.1109/MMM.2021.3117139
Date of current version: 2 December 2021

Alexander Arsenovic (alex@810lab.com) is
with 810 Labs LLC, Stanardsville, Virginia,

22973, USA. Julien Hillairet (julien.hillairet@
gmail.com) is with CEA, IRFM, F-13108
St-Paul-Lez-Durance, France. Jackson

Anderson (ander906@purdue.edu) is with
Purdue University, West Lafayette, Indiana,

47907, USA. Henrik Forstén (henrik.forsten@
vtt.fi) is with VTT Technical Research Centre
of Finland, Espoo, 02044, Finland. Vincent

Rieß (vincent.riess@aes-aero.com) is a GitHub
contributor and with AES GmbH, Bremen,
28199, Germany. Michael Eller (mbe9a@

virginia.edu), Noah Sauber (nds5yf@virginia
.edu), and Robert Weikle (rmw5w@virginia

.edu) are with the University of Virginia,
Charlottesville, Virginia, 22904, USA.

William Barnhart (william.barnhart@he360.
com) is with HawkEye 360, Herndon,

VA, 20170, USA. Franz Forstmayr (franz
.forstmayr@rosenberger.com) is with

Rosenberger Hochfrequenztechnik GmbH &
Co. KG, Fridolfing, 83413, Germany.

scikit-rf: An Open Source Python Package
for Microwave Network Creation, Analysis, and Calibration
■ Alexander Arsenovic, Julien Hillairet, Jackson Anderson, Henrik Forstén, Vincent Rieß,

Michael Eller, Noah Sauber, Robert Weikle, William Barnhart, and Franz Forstmayr

W

©
IM

A
G

E
 L

IC
E

N
S

E
D

 B
Y

 IN
G

R
A

M
 P

U
B

LI
S

H
IN

G

January 2022 99

is also capable of advanced operations,
such as vector network analyzer (VNA)
calibrations, time gating, vector fitting,
interpolating between an individual set
of networks, deriving network statisti-
cal properties, and support of virtual
instruments for direct communica-
tion to VNAs. The package also allows
straightforward plotting of rectangu-
lar plots (decibels, magnitude, phase,
group delay, and so on), Smith charts or
automated uncertainty bounds.

The project was created in 2009 and
has been continually developed since.
The package is distributed under the
Berkeley Software Distribution license
and is actively developed by more
than 50 volunteers on GitHub (see
https://github.com/scikit-rf/scikit
-rf/graphs/contributors). The project
has users in several universities and
research institutes around the world as
well as corporate users from large com-
panies, including Keysight, Rohde &
Schwarz, National Instruments, Nvidia,
and 3M. As of 2021, the package has
been downloaded more than 220,000
times since its creation and has been
used in more than 30 publications.

As the package is developed in
Python, it is naturally compatible with the
rich set of modern scientific Python librar-
ies. Results can be shared and directly
reproduced by other researchers using
tools such as Binder or Google Colab.
Being a Python library, it is also com-
patible with the robust testing and code
coverage frameworks developed for that
language, with reproducible modeling
approaches using online virtualization
services. Because it is open source, users
of scikit-rf are able to see exactly what the
source code is doing and, if a feature does
not exist, freely contribute it to extend the
library for their work and that of others.
In addition, of course, it is free.

Basic Usage of scikit-rf
Detailed installation instructions can
be found in the scikit-rf documenta-
tion (https://scikit-rf.readthedocs.io/
en/latest/). For those familiar with
Python, it is no different from install-
ing any other package and is distrib-
uted through both pip and Conda.

After installation, the package can be
imported, which is assumed for all of
the following examples:
1 import skrf

The fol lowing sect ions outline
some fundamental features of scikit-
rf and include code snippets to pro-
vide a starting point for new users.

Reading and Plotting Networks
The central object in the scikit-rf pack-
age is an N-port microwave Network
object. A Network can be created in
various ways, for example, by reading
a Touchstone file named measured_
data.s2p:
1 example_network = skrf.
Network(‘measured_data.s2p’)
For the reader to reproduce the

given examples, a test case is provided
in the package and can be imported
via the following:
1 >>> from skrf.data import
ring_slot

2 >>> ring_slot
3 2-Port Network: ‘ring slot’,
75.0—110.0 GHz, 201 pts,
z0=[50.+0.j 50.+0.j]
The basic attributes of a micro-

wave network are provided by the
following properties of the Network
class:

 • s: the scattering parameter ma-
trix

 • z0: the port impedance matrix
 • frequency: the frequency ob-
ject.

S-parameters are represented
by a ()n N Nbf # # NumPy array [1]
(https://numpy.org/), where nbf is
the number of frequency points, and
N is the number of ports of the net-
work. For example, to inspect the
2 2# scattering parameters for the
first frequency element, the following
is used:
1 >>> ring_slot.s[0] # or
ring_slot.s[0,:]

2 array([[−0.50372318 +
0.4578448j, 0.6134571 +
0.36678139j],

3 [0.6134571 + 0.36678139j,
−0.19958433 + 0.6483347j]])
The Network object has numerous

other properties and methods, which

can be found in the documentation. If
you are using IPython [2], the Jupyter
Notebook [3], or any advanced Python
editor, then these properties and meth-
ods can be “tabbed” out on the com-
mand line:
1 >>> ring_slot.s<TAB>
2 ring_slot.s ring_slot.s_
arcl

3 ring_slot.s11 ring_slot.s_
arcl_unwrap …
scikit-rf uses the matplotlib package

[4] to generate various different types
of plots for the attributes of a Network.
For example, plotting the ring slot’s
scattering parameters on the Smith
chart can be done in one line, with the
output shown in Figure 1(a):
1 >>> ring_slot.plot_s_smith
(lw = 2)
The frequency ranges of Networks

can also be selected by using human-
readable strings. For instance, the fol-
lowing line will plot the logarithmic
magnitude of S ,1 1 in decibels for the fre-
quency range of 80 90- GHz, expressed
in “natural” language. The output is
shown in Figure 1(b):
1 >>> ring_slot[‘80-90ghz’].
plot_s_db(m = 0, n = 0)
Other parameters are accessible, such

as impedance (Z), admittance (Y), trans-
fer (T), or chain (ABCD) parameters using
ring_slot.z, ring_slot.y, ring_
slot.t, or ring_slot.a, respectively.
Several other features related to network
processing can be found in the scikit-rf
documentation. The next sections illus-
trate a few of them.

Network Operations
Elementwise mathematical operations
on the scattering parameter matrices
are accessible through overloaded oper-
ators. Hence, Networks can be added,
subtracted, and multiplied along the
frequency and port axes. For example,
to plot the complex difference between
a short and a delayshort, the fol-
lowing is used:
1 >>> from skrf.data import
wr2p2_short as short

2 >>> from skrf.data import
wr2p2_delayshort as
delayshort

100 January 2022

3 >>> difference = (short -
delayshort)

4 >>> difference.plot_s
_mag(label=’Mag of
difference’)

Another common application is calcu-
lating the phase difference between two
networks using the division operator (/):
1 >>> (delayshort/short)
.plot_s_deg(label=’Detrended
Phase’)

Cascading and De-Embedding
scikit-rf supports the connection of
arbitrary ports of N-port networks.
Cascading and de-embedding two-
port networks with scikit-rf can also
be done though the Python power
operator (**). For example, as shown
in Figure 2, the cascaded connection
of two individual two-port networks,
line and short, can simply be calcu-
lated with

1 >>> short = skrf.data.
wr2p2_short

2 >>> line = skrf.data.wr2p2
_line

3 >>> delayshort = line **
short

De-embedding can be accom-
plished by cascading the inverse of a
network, as shown in Figure 3. This is
implemented in scikit-rf through the
Network.inv property. To de-embed
the short from delayshort, the fol-
lowing is used:
1 >>> short_2 = line.inv **
delayshort

2 >>> short_2 == short
3 True

As shown in the previous example,
Python comparison operators, such as
==, also work with Network objects.

Statistical Analysis
The NetworkSet class is useful for
analyzing multiple .sNp files initial-
ized as Network objects or read from
a directory. NetworkSets implement
the same plotting routines as regu-
lar Networks, which is convenient to
plot a group of frequency responses.
In addition, the NetworkSet class
enables statistical analyses, such as
calculating and plotting the uncertainty
with the method plot_uncertainty_
bounds_s_db. This is demonstrated in
the following example, with the outputs
shown in Figure 4:
1 from skrf.data import
ro_1, ro_2, ro_3

2 ntwk_list = skrf.
NetworkSet([ro_1, ro_2,
ro_3])

3 ntwk_list.plot_s_db()
4 ntwk_list.plot_uncertainty
_bounds_s_db(label=’ro
mean with uncertainty, S11’)
The standard deviations of data in a

NetworkSet can be applied to a vari-
ety of attributes. The method uncer-
tainty_ntwk_triplet can be uti-
lized for gain output, similar to the
previous example. For that case, the
arguments s_mag and 3 are used to
specify that the uncertainty bounds
should be for the magnitude of the scat-
tering parameters within the range of

Two-Port
Network

Line

Two-Port
Network

Line

One-Port
Network

Short

One-Port
Network

Short

One-Port Network Delayshort

inv ** =

Figure 3. De-embedding using the inverse and cascade operators in scikit-rf. inv:
inverse.

Two-Port
Network

Line

Two-Port
Network

Line

One-Port Network Delayshort

One-Port
Network

Short** = One-Port
Network

Short

Figure 2. The cascading of two two-port Networks in scikit-rf works with the **
operator.

(a)

80 90 100 110
Frequency(GHz)

−30

−20

−10

0

M
ag

ni
tu

de
(d

B
)

Ring Slot, S11

Ring Slot, S12

Ring Slot, S21

Ring Slot, S22

(b)

Figure 1. The scattering parameters of (a) the ring_slot plotted on a Smith chart
and (b) in logarithmic magnitude.

January 2022 101

three standard deviations. The Network
objects generated by this function can
be saved in various formats to be reused
later:
1 ntwk_mean, ntwk_lb, ntwk
_ub = ntwk_list.uncertainty
_ntwk_triplet(‘s_mag’, 3)

Interpolation and
Concatenation
A common need is to change the num-
ber of frequency points of a Network,
for instance, but the previous operators
and cascading functions require the net-
works to have matching frequencies:
1 >>> from skrf.data import
wr2p2_line1 as line1

2 # next line fails due to
different frequencies

3 >>> line1 + line
4 # next line works
5 >>> line.interpolate_from
_f(line1.frequency) + line1
A related application is the need to

combine networks that cover differ-
ent frequency ranges. Two Networks
can be concatenated (stitched) using
stitch(), which concatenates the
Networks along their frequency axis.
For example, to combine a WR-2.2
Network with a WR-1.5 Network, the
following is used:
1 >>> from skrf.data import
wr2p2_line, wr1p5_line

2 >>> big_line = skrf.stitch
(wr2p2_line, wr1p5_line)

Port Impedance
Renormalization
Scattering parameters are defined for a
given reference impedance .Z0 It can be
necessary to renormalize these param-
eters to a different reference imped-
ance. This example demonstrates how
to use scikit-rf to renormalize the scat-
tering parameters of a Network to
different port impedances. Although
trivial, this example creates a matched
load in 50X and then renormalizes
to a 25-X environment, producing
a reflection coefficient of 1/3. In the
case of complex reference impedances,
scikit-rf supports both power-wave
and pseudowave scattering parameter
definitions [5]:

1 >>> match_at_50 = skrf.wr10
.match()

2 >>> match_at_50
3 1-Port Network: ’’,
75.0—110.0 GHz, 1001 pts,
z0=[50.+0.j]

4 >>> match_at_50.s[0] #
S-parameter for the first
frequency point

5 array([[0.+0.j]])
6 >>> match_at_50.renormalize
(25)

7 >>> match_at_50
8 1-Port Network: ’’,
75.0—110.0 GHz, 1001 pts,
z0=[25.+0.j]

9 >>> match_at_50.s[0]
10 array([[0.33333333 + 0.j]])

Calibration
It is possible with scikit-rf to calibrate a
device under test (DUT), assuming that
an acceptable set of standards has been
measured and a corresponding set of
ideal responses is known. This may be
referred to as offline calibration because
it is not occurring onboard the VNA
itself. One benefit of this technique
is that it provides maximal flexibility
for nonconventional calibrations and
preserves all raw data. Self-calibration
algorithms, such as thru–reflect–line
(TRL) [6], do not require predefined
ideal responses.

Several calibration routines are
available in scikit-rf for single-, two-,
or multiport networks. Tradit ional
12- [7] or 16-term [8] error models are
available as well as eight-term mod-
els [9], short–open–load–thru (SOLT)

[10], overdetermined one port [11],
unknown–thru [12], short–delay–delay–
load (SDDL) [13], and some special
algorithms developed by our contribu-
tors. In some cases, it may be necessary
or desirable to use a one-port network
analyzer to determine the full set of scat-
tering parameters of a two-port device.
This technique is called one-port, two-tier
calibration [14] and is also implemented
in scikit-rf. A complete list can be found
on the scikit-rf website, and only a single
one-port network is given as an example
in this section.

One-Port Example
A calibration in scikit-rf is generated
using the Calibration object. In
general, Calibration objects require
two arguments: a list of measured
and ideal Networks. The following
example assumes that the sets of mea-
sured and ideal network standards are
stored in separate directories named
ideals and measured, for example,
a conventional SOL calibration kit.
These are used to create a one-port
Calibration and subsequently cor-
rect a measured DUT:
1 from skrf.calibration
import OnePort

2 # reads all Touchstone
files located in the
specified directory

3 my_ideals = skrf.load_all
_touchstones_in_dir
(‘ideals/’)

4 my_measured = skrf.load
_all_touchstones_in
_dir(‘measured/’)

500 550 600 650 700 750

Frequency (GHz)

−16

−15

−14

−13

M
ag

ni
tu

de
(d

B
)

(a)

500 550 600 650 700 750

Frequency (GHz)

−16

−15

−14

−13

M
ag

ni
tu

de
(d

B
)

(b)

ro1, S11
ro2, S11
ro3, S11

Figure 4. The logarithmic magnitudes of S11 of the ro example networks. (a) The
individual frequency responses. (b) The calculated average and uncertainty bound ().3v

102 January 2022

5 # create a Calibration
instance

6 cal = skrf.OnePort(\
7 ideals = [my_ideals[k]

for k in [‘short’,
’open’,’load’]],

8 measured = [my_
measured[k] for k in
[‘short’,’open’,
’load’]],

9)
10 # run calibration algo-

rithm
11 cal.run()
12 # apply it to a DUT
13 dut = skrf.Network(‘my

_dut.s1p’)
14 dut_caled = cal.apply

_cal(dut)

Multiline TRL Calibration
scikit-rf can also be used for wideband
TRL calibration using multiple lines [15].
The necessary calibration standards
in TRL calibration involve at least two
transmission lines of different lengths
and one or more reflective loads. The
exact responses of the transmission
lines and reflective loads do not need
to be known and will be solved during
the calibration. Ordinary SOLT or Line-
Reflect-Reflect-Match [16] calibration
usually moves the reference plane after
the calibration to the SubMiniature ver-
sion A connector or probe tip used to
contact the calibration standards. TRL
calibration can be used to move the

reference planes to the transmission
lines on the substrate being measured
if every measured standard includes
a similar launch to the transmission
lines. This makes TRL calibration very
useful when accurate short, open, load,
and thru standards cannot be manufac-
tured or when the measurement refer-
ence plane needs to be on the substrate
being measured.

Time Domain and Gating
Time gating is a processing technique
that is commonly used to pinpoint a
response of interest in the presence
of multiple reflections to isolate their
effects [17], [18]. This is commonly done
onboard a VNA. However, if, instead,
the time gating occurs offline on a com-
puter, the user can keep the raw mea-
surements separate from the processed
results. This is important so that the pro-
cessing algorithm can be altered in the
future without remeasuring the data.

In the following example, the time-
gating functions of scikit-rf are used
to filter out the effects of an undesired
reflection. This can be done by using
the method Network.time_gate and
providing it an appropriate center and
span (in nanoseconds):
1 probe_s11 = skrf.Net-
work(‘./probe.s2p’).s11

2 probe_s11.name = ‘Probe’
3 probe_s11_gated = probe
_s11.time_gate(center = 0,
span = 0.2)

4 probe_s11_gated.name =
‘Gated probe’

5 # time-domain plot:
6 s11.plot_s_db_time()
7 s11_gated.plot_s_db_time()
8 # frequency-domain plot:
9 s11.plot_s_db()
10 s11_gated.plot_s_db()

To see the effects of the gate, both
the original and gated response are
compared. As shown in Figure 5, the
original response shows an interfer-
ence pattern in the frequency domain
due to this undesirable reflection
at 0.2 ns. After gating, the response
is cleaned.

Circuit Building
scikit-rf enables the building of a cir-
cuit with arbitrary topology, consist-
ing of an arbitrary number of N-port
Networks connected together. Similar to
an electronic circuit simulator, the cir-
cuit must have one or more ports con-
nected to the circuit. With the Circuit
object, the combined responses of the
M-port network can be calculated (and,
thus, its network parameters: S, Z, and
so on), where M is the number of ports
defined. Moreover, the Circuit object
also allows calculation of the scat-
tering matrix S of the entire circuit,
that is, the “internal” scattering matri-
ces for the various intersections in the
circuit. The calculation algorithm is
based on [19].

Figure 6 illustrates a network with
two ports, Network elements ,Ni and
intersections. To define such a circuit,
the connection list needs to be defined,
which describes how the networks are
connected:

−0.5 0 0.5
Time (ns)

−120

−100

−80

−60

−40

−20

M
ag

ni
tu

de
(d

B
)

(a)

500 550 600 650 700 750
Frequency (GHz)

−50

−40

−30

−20

−10

M
ag

ni
tu

de
(d

B
)

Probe, S11 Gated Probe, S11

(b)

Figure 5. A comparison of the original network response S11 with its gated version in
the (a) time and (b) frequency domains.

Port 1 Port 2
0

0 0

0
0

0

0

0
2

2
N2

N5N4

N1

N3

1

1 1

1
1

Figure 6. An example of a Circuit
made of various kinds of N-port
Networks. N: an integer greater than 1.

January 2022 103

1 connections = [
2 [(network1, network1_port
 _nb), (network2, network2
 _port_nb), (network2,
 network2_port_nb), …],

3 …
4]

The connection list to construct the
Circuit illustrated in Figure 6 could
be
1 >>> connections = [
2 [(port1, 0), (network1,
0), (network4, 0)],

3 [(network1, 1), (network2,
0), (network5, 0)],

4 [(network1, 2), (network3,
0)],

5 [(network2, 1), (network3,
1)],

6 [(network2, 2), (port2,
0)],

7 [(network5, 1), (ground1,
0)]

8]
In this example, the Circuit ele-

ments port1, port2, ground1, and all
of network1 through network5 are
assumed to be scikit-rf Network objects
with the same Frequency attribute.
The individual networks can have dif-
ferent (real) reference impedances, and
mismatches are taken into account. Note
that port1 of network4 is left open and
so is not described in the connection list.
Once the connection list is defined, the
Circuit is built with
1 resulting_circuit = skrf.
Circuit(connections)
The resulting two-port Network is

obtained with Circuit.network
1 resulting_network =
resulting_circuit.network

Vector Fitting
Microwave circuit design requires
simulations in the time or frequency
domain with accurate models of all
involved circuit elements. For passive
structures, electromagnetic field simu-
lations or measurements can provide
accurate network models in the form
of sampled frequency responses, but
these cannot directly be used in circuit
simulators, such as SPICE. To trans-
late the sampled frequency responses

of an N-port network
into a model for circuit
simulations, scikit-rf
provides an imple-
mentation of the well-
known vector-fitting
algorithm to fit the sam-
ples in the frequency
domain [20]. The ratio-
nal basis functions used
for the fit enable the
subsequent generation
of linear equivalent cir-
cuits based on resistors,
capacitors, inductors,
and controlled current
and voltage sources to be used in most
types of circuit simulators [21].

To summarize the vector-fitting
approach, the vector ()sH represents
the stack of fitting functions for the
N N$ individual network responses
defined in the Laplace domain with

:js v ~= +

 () ,ps s sH d e z
k

k

k

K

1
= + +

-
=

/ (1)

where ()sH includes a series of K
rational fractions with a common set
of poles pk for all of the responses of
the network but with individual zero
vectors zk as well as individual con-
stant and proportional vectors d and e,
respectively.

For example, the scattering param-
eters of a two-port network can be sub-
jected to vector fitting with K poles.
The objective is, therefore, to match the
original network samples at all sam-
pling frequencies [, , ,]:m M1 2 f!~ ~ ~ ~

()
()
()
()

.

j j

j j

j j

j j

S
S
S
S

d e p
z

d e p
z

d e p
z

d e p
z

!

,

,

,

,

m

m

m

m

m
m k

k

k

K

m
m k

k

k

K

m
m k

k

k

K

m
m k

k

k

K

11

12

21

22

11 11
11

1

12 12
12

1

21 21
21

1

22 22
22

1

~

~

~

~

~
~

~
~

~
~

~
~

=

+ +
-

+ +
-

+ +
-

+ +
-

=

=

=

=

J

L

K
K
K
KK

J

L

K
K
K
K
K
K
K
K
K
K

N

P

O
O
O
OO

N

P

O
O
O
O
O
O
O
O
O
O

/

/

/

/

(2)

The fitting process involves run-
ning an iterative least-squares algo-
rithm [20], which is implemented
in scikit-rf including the speed

improvements pro-
posed in [22] and [23].

In scikit-rf, the class
VectorFitting i s
instanced with the
Network to be fitted.
A subsequent call of the
vector_fit routine
starts the fitting pro-
cess with the number
of real and complex-
conjugate poles defined
in the function argu-
ments. Once the fitting
is finished, the func-
tion write_spice_

subcircuit_s can be called to gener-
ate a SPICE subcircuit file based on the
fitted poles p, zeros z, constants d, and
proportional coefficients e of the scat-
tering parameter responses:
1 nw = skrf.Network(’example
.s4p’)

2 vf = skrf.VectorFitting(nw)
3 vf.vector_fit(n_poles_real
= 2, n_poles_cmplx = 32)

4 vf.write_spice_subcircuit_s
(’example.sp’)
In Figure 7(a) and (b), four of the

16 vector-fitted scattering parameter
responses of the example network are
plotted and compared to the original
network samples, showing an abso-
lute error of less than 0.01. SPICE sim-
ulations using the exported subcircuit
file in ngspice [24] achieve a similar
accuracy. The simulated scattering
parameters obtained from an ac simu-
lation are shown in Figure 7(c).

The quality of the fit strongly depends
on the choice of real and complex-
conjugate starting poles, which should
suit the number of resonances in the
responses. Measurement noise in the
sampled responses, as included in this
four-port example, further contrib-
utes to the deviation of the fit with the
smooth basis functions used by the vec-
tor-fitting method. The translation of the
fitting parameters into the SPICE equiv-
alent subcircuit is straightforward, and
the accuracy is limited only by round-
ing errors. However, the accuracy of the
simulation results also depends on the
tolerance settings of the simulator.

The quality of
the fit strongly
depends on the
choice of real
and complex-
conjugate
starting poles,
which should
suit the number
of resonances in
the responses.

104 January 2022

Conclusions
scikit-rf is an open source Python
package produced for RF/microwave
engineering. The package provides a
modern, object-oriented library for RF
network analysis, circuit building, and
calibration. A current nonexhaustive
feature list of scikit-rf (as of version
0.18) includes the following:

 • microwave network operations:
 • read/write touchstone (.sNp)
files

 • S/Z/Y/ABCD/T parameter con-
versions

 • arithmetic operations on scat-
tering parameters

 • mixed-mode and single-ended
port conversion

 • cascade/de-embed networks
 • frequency and port slicing and
concatenation

 • the assembly of multiple-port
networks

 • the vector fitting (S-, Z-, and
Y-parameters) and export of
equivalent SPICE subcircuits
(based on S-parameters only)

 • sets of networks:
 • the statistical properties of a set
of a Network

 • the interpolation between a
set of a Network (frequency or
parametric)

 • methods to sort and visualize
set behavior

 • plotting abilities:
 • rectangular plots (decibels,
magnitude, phase, and group
delay)

 • Smith charts
 • automated uncertainty bounds

 • calibration routines:

 • one port: SOL, least squares, and
SDDL

 • two ports: TRL, multiline TRL,
SOLT, unk nown thru, and
eight/16 terms

 • partial: enhanced response and
one port, two paths

 • virtual instruments (complete-
ness varies by model):
 • VNAs: PNA, PNAX, ZVA, HP8510,
and HP8720

 • Spectrum analyzer: HP8500
 • Other: ESP300

 • transmission line physics:
 • distributed circuit, coaxial/
coplanar/rectangular/circular
waveguides, and free space

 • transmission line voltage, cur-
rent, power, and loss calculations

 • complex characteristic imped-
ance support.

In addition to these rich features,
there are also GUIs for time gating and
.sNp file viewing, with source code
available at https://github.com/scikit
-rf/dash-apps and functional demos
hosted by Plotly at https://dash-gallery
.plotly.host/Portal/.

Contributing
scikit-rf is a free and open source proj-
ect. For those seeking help or report-
ing bugs, there is a public mailing list
and GitHub issue tracker, which can be
found on the scikit-rf website (http://
scikit-rf.org). If you would like to partic-
ipate in development, first join GitHub
(https://github.com) and then take a
look at the scikit-rf development pages.

Acknowledgment
scikit-rf would not be possible with-
out the feedback, bug fixes, and new
features contributed by its user com-
munity. Visit https://github.com/
scikit-rf/scikit-rf/graphs/contributors
to see a full list of contributors.

References
[1] C. R. Harris et al., “Array programming

with NumPy,” Nature, vol. 585, no. 7825, pp.
357–362, 2020. doi: 10.1038/s41586-020-2649-2.

[2] F. Perez and B. E. Granger, “IPython: A system
for interactive scientific computing,” Comput. Sci.
Eng., vol. 9, no. 3, pp. 21–29, 2007. doi: 10.1109/
MCSE.2007.53.

0 1 2 3 4 5
Frequency (GHz)

0

0.2

0.4

0.6

0.8

1
M

ag
ni

tu
de

S1,1
S2,1 S3,1 S4,1

(a)

0 1 2 3 4 5
Frequency (GHz)

10−6

10−5

10−4

10−3

10−2

A
bs

ol
ut

e
E

rr
or

S1,1 S2,1 S3,1 S4,1

(b)

0 5e8 1e9 1.5e9 2e9 2.5e9 3e9 3.5e9 4e9 4.5e9 5e9
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

ng
sp

ic
e/

ac
.s

11
ng

sp
ic

e/
ac

.s
21

ng
sp

ic
e/

ac
.s

31
ng

sp
ic

e/
ac

.s
41

(c)

Figure 7. Selected scattering parameter responses of a vector-fitted noisy four-port
example network. (a) The magnitudes in a linear scale with markers for the samples and
solid lines for the fit. (b) The absolute error magnitudes of the respective fits: absolute

.error S S, , , ,i i1 1fit sample= - (c) A simulation of the scattering parameters with ngspice
using the exported SPICE subcircuit.

January 2022 105

[3] B. E. Granger and F. Pérez, “Jupyter: Thinking
and storytelling with code and data,” Com-
put. Sci. Eng., vol. 23, no. 2, pp. 7–14, 2021. doi:
10.1109/MCSE.2021.3059263.

[4] J. D. Hunter, “Matplotlib: A 2D graphics en-
vironment,” Comput. Sci. Eng., vol. 9, no. 3, pp.
90–95, 2007. doi: 10.1109/MCSE.2007.55.

[5] D. Williams, “Traveling waves and power waves:
Building a solid foundation for microwave cir-
cuit theory,” IEEE Microw. Mag., vol. 14, no. 7, pp.
38–45, 2013. doi: 10.1109/MMM.2013.2279494.

[6] G. F. Engen and C. A. Hoer, “Thru-reflect-line:
An improved technique for calibrating the dual
six-port automatic network analyzer,” IEEE
Trans. Microw. Theory Techn., vol. 27, no. 12, pp.
987–993, 1979. doi: 10.1109/TMTT.1979.1129778.

[7] R. B. Marks, “Formulations of the basic vec-
tor network analyzer error model including
switch-terms,” in Proc. 50th ARFTG Conf.
Dig., 1997, vol. 32, pp. 115–126. doi: 10.1109/
ARFTG.1997.327265.

[8] K. J. Silvonen, “Calibration of 16-term error
model,” Electron. Lett., vol. 29, no. 17, pp. 1544–
1545, 1993. doi: 10.1049/el:19931029.

[9] R. Speciale, “A generalization of the TSD
network-analyzer calibration procedure, cov-
ering n-port scattering-parameter measure-
ments, affected by leakage errors,” IEEE Trans.
Microw. Theory Techn., vol. 25, no. 12, pp. 1100–
1115, 1977. doi: 10.1109/TMTT.1977.1129282.

[10] W. Kruppa and K. F. Sodomsky, “An explicit
solution for the scattering parameters of a
linear two-port measured with an imperfect
test set (correspondence),” IEEE Trans. Microw.

Theory Techn., vol. 19, no. 1, pp. 122–123, 1971.
doi: 10.1109/TMTT.1971.1127466.

[11] R. F. Bauer and P. Penfield, “De-embedding
and unterminating,” IEEE Trans. Microw. The-
ory Techn., vol. 22, no. 3, pp. 282–288, 1974. doi:
10.1109/TMTT.1974.1128212.

[12] A. Ferrero and U. Pisani, “Two-port net-
work analyzer calibration using an unknown
‘thru’,” IEEE Microw. Guided Wave Lett., vol. 2,
no. 12, pp. 505–507, 1992. doi: 10.1109/75.173410.

[13] Z. Liu and R. Weikle, “A reflectometer cali-
bration method resistant to waveguide flange
misalignment,” IEEE Trans. Microw. Theory
Techn., vol. 54, no. 6, pp. 2447–2452, 2006. doi:
10.1109/TMTT.2006.875795.

[14] J. Ou and M. Caggiano, “Determine two-port
S-parameters from one-port measurements us-
ing calibration substrate standards,” in Proc.
2005 Electron. Compon. Techn. (ECTC), vol. 2, pp.
1765–1768. doi: 10.1109/ECTC.2005.1442034.

[15] R. B. Marks, “A multiline method of network
analyzer calibration,” IEEE Trans. Microw.
Theory Techn., vol. 39, no. 7, pp. 1205–1215, 1991.
doi: 10.1109/22.85388.

[16] A. Davidson, K. Jones, and E. Strid, “LRM
and LRRM calibrations with automatic de-
termination of load inductance,” in Proc. 36th
ARFTG Conf. Dig., 1990, vol. 18, pp. 57–63. doi:
10.1109/ARFTG.1990.323996.

[17] H. M. Cronson and P. G. Mitchell, “Time-
domain measurements of microwave com-
ponents,” IEEE Trans. Instrum. Meas., vol. 22,
no. 4, pp. 320–325, 1973. doi: 10.1109/TIM.1973.
4314181.

[18] C. L. Bennett and G. F. Ross, “Time-domain
electromagnetics and its applications,” Proc.
IEEE, vol. 66, no. 3, pp. 299–318, 1978. doi:
10.1109/PROC.1978.10902.

[19] P. Hallbjörner, “Method for calculating the
scattering matrix of arbitrary microwave
networks giving both internal and exter-
nal scattering,” Microw. Opt. Technol. Lett.,
vol. 38, no. 2, pp. 99–102, 2003. doi: 10.1002/
mop.10983.

[20] B. Gustavsen and A. Semlyen, “Rational
approximation of frequency domain re-
sponses by vector fitting,” IEEE Trans. Power
Del., vol. 14, no. 3, pp. 1052–1061, 1999. doi:
10.1109/61.772353.

[21] G. Antonini, “SPICE equivalent circuits
of frequency-domain responses,” IEEE
Trans. Electromagn. Compat., vol. 45, no. 3,
pp. 502–512, 2003. doi: 10.1109/TEMC.2003.
815528.

[22] B. Gustavsen, “Improving the pole relocat-
ing properties of vector fitting,” IEEE Trans.
Power Del., vol. 21, no. 3, pp. 1587–1592, 2006.
doi: 10.1109/TPWRD.2005.860281.

[23] D. Deschrijver, M. Mrozowski, T. Dhaene,
and D. De Zutter, “Macromodeling of multi-
port systems using a fast implementation of
the vector fitting method,” IEEE Microw. Wire-
less Compon. Lett., vol. 18, no. 6, pp. 383–385,
2008. doi: 10.1109/LMWC.2008.922585.

[24] “ngspice – Open source spice simulator,”
NGSPICE. Accessed: Oct. 2021. [Online]. Avail-
able: http://ngspice.sourceforge.net/

In addition to their algebraic expres-
sions, some of them are demonstrated
in plane geometry, providing clearer
vistas. We hope that the presented
matrices and graphics stimulate stu-
dents and young professionals to get
into the wonderful world of nonlinear
RF electronics.

Acknowledgment
This work was supported in part by the
Cross-Ministerial Strategic Innovation
Promotion Program and the Aichi
Prefecture Knowledge Hub Priority
Research Project.

References
[1] A. Grebennikov and F. H. Raab, “A history of

switching-mode class-E techniques,” IEEE Mi-
crow. Mag., vol. 19, no. 5, pp. 26–41, July-Aug.
2018. doi: 10.1109/MMM.2018.2821062.

[2] T. Ohira, “Switching transistor circuit,” IEEE
Microw. Mag., vol. 22, no. 1, pp. 97–98, Jan. 2021.
doi: 10.1109/MMM.2020.3027944.

[3] R. E. Zulinski and K. J. Grady, “Load-inde-
pendent class-E power inverters,” IEEE Trans.
Circuits Syst., vol. 37, no. 8, pp. 1010–1018, Aug.
1990. doi: 10.1109/31.56074.

[4] T. Nagashima, X. Wei, T. Suetsugu, M. K. Kazim-
ierczuk, and H. Sekiya, “Waveform equations,
output power, and power conversion efficiency
for class-E inverter outside nominal operation,”
IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1799–
1810, Apr. 2014. doi: 10.1109/TIE.2013.2267693.

[5] T. Ohira, “Load impedance perturbation for-
mulas for class-E power amplifiers,” IEICE
Commun. Express, vol. 9, no. 10, pp. 482–488,
Oct. 2020. doi: 10.1587/comex.2020XBL0085.

[6] M. Mizutani, S. Koyama, S. Abe, and T. Ohira,
“Geodesic theory of zero-voltage-switching
RF power inverters for constant-voltage or
-current output operation,” in Proc. IEEE
Int. Conf. Power Energy, Penang, Dec. 2020,
pp. 83–88.

[7] T. Ohira, “Geometric view to class-E power in-
verters (invited),” in Proc. JSAE Int. Electr. Veh.
Tech. Conf., Yokohama, May 2021.

[8] T. Ohira, “A radio engineer’s voyage to dou-
ble-century-old plane geometry,” IEEE Mi-
crow. Mag., vol. 21, no. 11, pp. 60–67, Nov. 2020.
doi: 10.1109/MMM.2020.3015136.

Educator’s Corner (continued from page 90)

