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Sail to the mysterious triangles and 
arcs of supreme elegance.

cademia may approach radio 
engineering through two pos-

sible educational ways. One 
is based on the analysis of formulas 
stemming from electromagnetics and 
circuit theory. Students are required 
to have mastered calculus and linear 
algebra beforehand. Although this 
way is mathematically rigorous, stu-
dents sometimes become exhausted 
by the nabla-manifold vector and 
matrix equations. The other possible 
approach is based on plane geometry. 
The instructor draws an impedance 
locus on a blackboard to illustrate 
the behavior of circuit components, 
such as LCR and transmission lines. 
According to our academic experi-
ence, this friendly way is effective to 
stimulate first-year students to intui-
tively start from the introduction. The 
special geometry that can be exploited 
in radio engineering originated in the 

early 19th century, i.e., long 
before the Smith chart was 
invented. One may then 
ask, what in the world 
took place two centu-
ries ago? To answer 
th is  quest ion,  we 
have in this article 
a t ime-traveling 
vessel. The final 
boarding gong 
i s  now beat-
i ng,  a nd we 
will soon hoist the sails for a mysteri-
ous adventure.

Maiden Voyage
Imagine that we make our maiden 
voyage across the ocean. Every mate 
on duty must be able to use an indis-
pensable item: the navigation chart. 
This idea also applies to voyages in 
radio engineering. Through analogy 
to Mercator, Mollweide, and Lambert’s 
conic projections in cartography, there 
are several different schemes we can 
use to draw a chart of electric imped-
ance on a complex plane. Each scheme 
has pros and cons in accordance with 
the purpose of the chart, as comprehen-
sively overviewed by Harold Wheeler 
in [1]. University lecturers may then 

ponder which one is the best intro-
duction for first-year students to 

trigger their interest in RF theory 
and techniques.

Impedance Plane
We believe that the best way 

to introduce the repre-
sentation of impedance 

is to use a Cartesian 
coordinate system, 

as presented in 
Figure 1. Complex 

impedance is decomposed into its real 
and imaginary parts as .Z R jX= +  This 
is simply called the impedance plane or, 
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Figure 1. The impedance half-plane with 
a mysterious triangle. 
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to be more specific, the impedance 
half-plane, when the load is assumed to 
be passive, i.e., .R 02  The concept of 
such a half-plane was originally pro-
posed by Henri Poincaré as a visible 
model of hyperbolic geometry [2], [3].

This concept is exploited for radio 
engineering by assuming that the 
vertical axis represents a reactance 
X, which physically implies induc-
tors for positive X and capacitors 
for negative X. This R-X system uti-
lizes a linear and orthogonal grid, 
which provides straight-line routes 
to represent the behavior of LCR ele-
ments connected in series to the load. 
Therefore, this simple approach is 
highly recommended for first-semes-
ter young sailors or possibly prospec-
tive captains, rather than trying to 
demonstrate other sophisticated cir-
cular charts abruptly. That is to say, 
simple is beautiful.

Curious Enigma
One stimulating supplement to this 
plane is a mysterious triangle drawn 
on the R-X grid, as shown in Figure 1. 
This is, apparently, distorted in com-
parison to the usual triangle. However, 
in a sense, the three routes shown all 
represent the shortest links between 
two vertices. This may sound like a 
tricky riddle. In spite of this, it is math-
ematically true when a special metric 
or scale intended for the impedance 
half-plane is employed. To address 
this curious enigma in an analytical 
way, let us set out on our voyage by 
first examining the meanings of “dis-
tance” and “length” on a chart. These 
concepts will be clarified in the fol-
lowing sections.

Geometric Distance
Let us consider two points, Z1  and ,Z2  
located anywhere on the half-plane. 
For example, look again at the trian-
gle’s west side in Figure 1. The ques-
tion here is, how should we define 
the distance, hereafter denoted as D, 
between Z1  and ?Z2  In any geometry, 
the distance must be a single, scalar, 
and real function of the relative posi-
tion of two points. More strictly, it 

must exhibit four properties: identity, 
nonnegativity, commutativity, and tri-
angle inequality [2], [3].

Even taking all these requirements 
into account, the definition of distance 
is not unique; rather, it has alternative 
formulations. A quick idea could be 

,D Z Z1 2= -  where the twin vert i-
cal bars mean complex modulus. 
Although this definition is math-
ematically simple, it does not work 
properly in radio engineering, as 
the impeda nce has a d imension 
of ohms. Another idea for the defini-
tion could be / ,D Z Z Zo1 2= -  where 
the denominator, ,Zo  denotes some 
reference impedance, such as 50 X. 
In this definition, the physical dimen-
sion is nullified by the normalization. 
However, universe-strong versatility 
is expected from the general defini-
tion of distance. What we are looking 
for is a dimension-free, purely relative 
quantity that is invariant to any refer-
ence impedance.

Among the possible candidates for 
a valid definition of distance, we single 
out the natural logarithm of voltage 
standing-wave ratio (VSWR) ,t  which 
is simply formulated as

 .lnD t=  (1)

This is because the logarithmic VSWR 
strikes a deep chord with radio engi-
neers, as richly suggested by Madhu 
Gupta in [3]. The aforementioned D is 
called the Poincaré distance in hyper-
bolic geometry, and (1) indicates our 
selection as the starting postulate of 
this exciting voyage.

Reflectance Magnitude
To estimate the distance D between Z1  
and Z2  using (1), we need to recall how 
t  is derived from the two impedances. 
This can be formulated by the wave-
reflectance approach as follows.

Radio engineers, from amateur to 
professional, often use t  to tune a load, 
such as antennas or a wireless coupler 
for RF power transfer. Various mea-
surement instruments are illustrated in 
Figure 2. They all indicate t  to notify 
the radio operator of how much power 
is being reflected from the load. A basic 
and well-known relation is given by

 ,1
1

t
c

c
=
-
+

 (2)

We employ log VSWR as our 
starting postulate.

Figure 2. A variety of VSWR indicators in our vessel’s radio shack. 
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where c  denotes the re -
flectance magnitude. 
This equation tells us 
that the VSWR starts 
from unity at zero reflec-
tion, becomes three at 
half reflection, and goes 
to infinity at full reflec-
tion. Typical numerical 
examples of this behav-
ior are given in Table 1.

In addition to the 
numeric table, a more 
instructive route to the -to-c t  conver-
sion is shown in Figure 3. Let us place a 
perpendicular pole at point (1, 0) up to 
height .c  We draw a straight line (elas-
tic cord) from the pivot point (−1, 1) 
that passes through the pole’s top. This 
cord is extended down to intercept the 
horizon at coordinate ,t  which gives 
us the exact VSWR. An inverse conver-
sion is also available. Slide t  from left 
to right along the horizon while keep-
ing the pivot point fixed. The height c  
at which the pole is truncated by the 
cord gives the reflectance magnitude.

This mechanical model enables us 
to estimate the VSWR even without 
any formula or electronic calculator. 
In fact, such a graphical approach cul-
tivates engineering intuition in stu-
dents’ minds much more fully than 
just starting with the user’s manual for 
fully automated simulation software. 

Our next question is that of how c  
comes from the two impedances. Stating 
the conclusion first, the aforementioned 
reflectance can be formulated as

 ,
Z Z
Z Z

2 1

2 1c =
+
-

)  (3)

where the superscript asterisk )  denotes 
the complex conjugate.

Some undergraduates may be puz-
zled as to why the asterisk stays solely 
in the denominator of (3) and not in the 
numerator. The answer is easy: this for-
mula can be derived by just imposing 

the basic Ohm’s law on 
the RF voltages and 
currents in a simple 
lumped-constant sys-
tem. This can be done 
even without assum-
ing transmission lines 
or wave propagation. 
A full description of 
this elegant theory is 
provided in [4].

We now have a pow-
erful tool to measure 

the Poincaré distance, that is, the three-
step sequence (3)–(2)–(1) displayed 
in Figure 4. This sequence is highly 
versatile because (1), (2), and (3) are 
valid not only for a Cartesian chart; 
they are also valid for any kind of chart, 
regardless of its shape, scale, or coor-
dinate gradation. This wide validity 
can be directly derived from the for-
mulas themselves. Moreover, reference 
impedance Zo  does not affect , ,c t  or 
D at all. Obviously, these quantities are 
functions only of Z1  and .Z2

Triangle Mystery
Charles Berlitz warned travelers never 
to sail into the Bermuda Triangle, but 
we now gather momentum toward 
the triangle shown in Figure 1 with 
full curiosity in mind. Upon reaching 
vertex ,Z1  our first assignment is to 
measure the distance between Z1  and 
Z1  itself. A zero distance may sound 
trivial, but it actually makes sense, as 
it resembles the 0-X calibration of cir-
cuit testers or impedance analyzers. 
By substituting Z Z1 2=  into (1), (2), 
and (3) in Figure 4, we can sequentially 
confirm that ,0c =  and thus ,1t =  
resulting in D 0=  as expected. The 
verification is successful. Our instru-
ments are go!

Next we steer our boat to vertex 
,Z2  where our second assignment is 

to measure the distance between Z1  
and .Z2  Reading out their positions as 

Z 10 20j1 = +  and Z 10 10j2 = -  from 
the grid and inserting these complexes 
into (3), we obtain

 ( ) ( )
( ) ( )

,j j
j j

10 20 10 10
10 20 10 10

13
3

12c = + + +

+ - -
=

 (4)

where the combined subscript 12 denotes 
the corresponding points Z1  and .Z2  
Substituting this result into (2) and (1), 
we obtain

 . .lnD
13 3
13 3 2 412 .=
-

+  (5)

This is the distance between Z1  and 
Z2  observed in the Poincaré metric.

In (5), there is no unit appended 
to the figure. This is quite natural for 
dimension-free quantities. However, 
if units are required, the answer is 
neper (Np) for the quantity stemming 
from the natural logarithm. Another 

Z1 Z2

Z2 – Z1

Z2 + Z1
∗

1 + γ
1 – γ

γ

ρ

In ρ

(3)

(2)

(1)

D

Figure 4. A flowchart to measure the 
Poincaré distance between Z1 and Z2.
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Figure 3. An elastic-cord model to 
explain the c-to-t conversion. 

Radio engineers, 
from amateur 
to professional, 
often use t to 
tune a load such 
as antennas or a 
wireless coupler 
for RF power 
transfer.

TABLE 1. The reflectance-to-VSWR conversion lookup table.

c 0 0.2 0.5 0.6 0.75 0.8 0.9 1

t 1 1.5 3 4 7 9 19 3
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option we have is to convert Np into 
decibel (dB), which is defined as 20 
times the common logarithm and is 
thus familiar to radio engineers. It is 
quite impressive that 20 log10 VSWR 
lives in perfect harmony with M.C. 
Escher’s art work, as pointed out 
by Gupta in [3]. For quick conversion,  
1 . .8 686Np dB.

We finally sail to vertex Z3  of the 
triangle, carrying a twofold mission: 
to measure both D23  and D31  at once. 
Repeating the same calculation pro-
cess as in (4) and (5), we obtain

 ( ) ( )
( ) ( )

,j j
j j

50 10 10 10
50 10 10 10

3
2

23c = - + +

- - -
=  (6)

. ,lnD 3 2
3 2 1 623 .=
-
+  (7)

 ( ) ( )
( ) ( )

,j j
j j

50 10 10 20
50 10 10 20

3
5

31c = - + -

- - +
=  (8)

. .lnD
3 5
3 5 1 931 .=
-

+  (9)

Comparing the three distances, we 
can conclude that .D D D23 31 121 1  This 
inequality apparently disagrees with 
how the triangle looks in Figure  1 
under the lamp of traditional geom-
etry. That is why this plane seems 
so mysterious.

Which route is shorter, the curve 
or the straight line?

Piecewise Segmentation
When we make a long-haul voyage, 
the shortest or geodesic route is not 
always available. Sometimes, a tidal 
current or a jet stream dominates 
our course. This is also true in radio 
engineering. Imagine that we design 
an impedance transformer from Z1  
to .Z2  A wide variety of lumped and 
distributed-constant elements can be 
used. However, these elements seldom 
follow the shortest path to reach the 
target impedance on the plane [5]–[7].  
This is why the length of curved routes 
must be considered apart from the 
direct distance described in the previ-
ous section.

According to differential geometry, 
a smooth curve can be measured by a 

line integral of infinitesimal segments 
along the curve. We begin with a small 
segment truncated at Z1  and ,Z2  as 
shown in Figure 5. The two points are 
denoted as

 ,Z R jX1 = +  (10)

 ,Z R jX Z2 d= + +  (11)

where Zd  implies a sl ight differ-
ence between the two points on the 
R-X plane.

Again, we follow the three-step 
sequence (3)–(2)–(1) depicted in Fig -
ure 4. Substituting (10) and (11) into (3), 
we obtain

 .
Z Z
Z Z

R Z
Z

22 1

2 1c
d

d
=

+
- =

+)  (12)

Then, substituting (12) into (2) and 
expanding the result into its first-
order Maclaurin series with respect to 

,Zd  we obtain

 
,

R Z Z
R Z Z

R
Z

1
1

2
2

1

t
c

c

d d

d d

d

=
-
+
=

+ -
+ +

= +

 
(13)

in which the higher-order terms can 
be omitted because they are negligible. 
Finally, substituting (13) into (1) and 
applying the same expansion men-
tioned previously, we obtain

 ln lnD R
Z

R
Z

1t
d d

= = + =c m  (14)

for the distance between Z1  and .Z2  
See Figure 6 for graphical assistance to 
grasp what (14) means.

The segment length is a small 
increment of VSWR from unity.

Assuming that the curve is smooth 
and the segment sufficiently small, 
the aforementioned distance can be 
equivalently regarded as the segment 
length. The impedance difference is 
decomposed into its real and imagi-
nary parts as

 .Z R j Xd d d= +  (15)

Looking at Figures 5 and 6 together, 
we can rewrite (14) as

 .R
Z

R R X1 2 2d
d

d dK = = +  (16)

This is the Poincaré distance between 
two adjacent impedances. From this 
result, we conclude that the small seg-
ment length is given by the absolute 
difference in impedance normalized 
to its original resistance. Note that the 
original reactance X does not contrib-
ute to the length at all. Finally, above 
dK  is accumulated as

 d
C

K K= #  (17)

to measure the entire curve length 
,K  where the prefix d  is replaced by 

the infinitesimal operator d. Sequence 
(15)–(16)–(17) is summarized as a flow-
chart in Figure 7.

Curve Length
Now let us look back at the mysterious 
triangle presented in Figure 1. We sail 

X

δX

δR

δR2 + δX2δZ  =

0

Z1

Z2

R

Figure 5. A smooth curve and its 
segment on the impedance half-plane.

D

0
1

ρ

δΛ

δZ
1 +

R

D = In ρ 

Figure 6. A small segment length stems 
from the natural logarithm of VSWR. We 
find that /Z Rd dK =  because the curve 
has a 45° slope in the vicinity of unity.



64  November 2020

from vertex Z1  to Z2  once again. This 
time, however, the route is segmented 
into small pieces that are integrated 
in length. For simplicity, we assume 
that this route is a circular arc lying 
along the circle that passes through Z1  
and Z2  and is centered on the x-axis. 
Reading out its location from the grid, 
the circle is formulated as

 ( ) .R X 5 3252 2+ - =  (18)

By differentiation, the curve’s slope is 
calculated as

 .dX
dR

R
X 5=- -  (19)

This slope enables us to eliminate Rd  
from (16), resulting in

 

,

d R dR dX
R

dX

X

X
dX

1 5 13

2
1

5 5 13
1

5 5 13
1

2 2
2K = + =

=
- +

-
- -

 

(20)

where d  reduces to the infinitesimal 
operator d. Integrating this dK  from 
Z2  to ,Z1  the arc is measured as

 

. .

ln

ln

d

X
X

2
1

5 5 13
5 5 13

13 3
13 3 2 4

Z

Z
12

10

20
2

1

.

K K=

=
- -

- +

=
-

+

-

= G

#

 

(21)

Although the ca lculat ion has 
been a lit tle bit tough this t ime, 
the resultant length is identical to 
the distance observed in (5). This 
identity means that the assumed 
arc is the shortest route that links 
the two vertices. This is because, 
in general, the length can never be 
less than the distance. In a simi-
lar way, we can also confirm that 
D23 23K=  and .D31 31K=  Thus, we 
conclude that this shape should 
be called a triangle even though it 
looks distorted.

Pseudotriangle
We now move on to another mysteri-
ous triangle, as seen in Figure 8. We 
find that it resembles the triangle in 
Figure 1; the only difference is that its 
three sides are all straight lines rather 
than curves. Looking at Figures 1 and 
8 in parallel, let us pose the follow-
ing question: Which side is longer, the 
curve or the straight line?

The straight line from Z1  to Z2  is 
read out as R 10=  and .X10 201 1-  
Therefore, ,dR 0=  and, thus, (16) sim-
ply reduces to

 .d dX10
1K =  (22)

Integrating from Z2  to ,Z1  the line 
measures

 
.

d

dX X10
1

10
1 3

Z

Z
12

10
20

10

20

2

1
K K=

= = =-
-

6 @

#

#
 
(23)

This result finds a roughly 25% incre-
ment from (5) or (21). We can there-
fore answer the quiz: the straight 
line is longer than the curve. This 
answer is diametrically opposed to 
common sense, considering usual 
geometry.

Let us see the next line shown 
in Figure 8. The straight line from Z2  
to Z3  is read out as R10 501 1  and 

.X 10=-  Therefore, ,dX 0=  and, thus, 
(16) reduces to

 .d R dR1K =  (24)

Integrating from Z2  to ,Z3  the line 
measures

 
. .ln ln

d

R dR R1 5 1 6

Z

Z
23

10
50

10

50

2

3

.

K K=

= = =6 @

#

# 
(25)

This is identical to the result from (7), 
which is completely natural because 
this route is a straight baseline com-
mon to both triangles.

The final line shown in Figure 8 
runs from Z1  to Z3  at a slant, which is 
formulated as

 X R4
3

2
55=- +  (26)

for .R10 501 1  Therefore, dX = /  ,dR3 4-  
and, thus, (16) reduces to

 .d R dR4
5K =  (27)

Integrating from Z1  to ,Z3  the line 
measures

 

. .

ln

ln

d

R dR R4
5

4
5

4
5 5 2 0

Z

Z
13

10
50

10

50

1

3

.

K K=

= =

=

6 @

#

#  

(28)
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Figure 8. A pseudotriangle on the 
impedance half-plane. 

TABLE 2. The triangle dimensions in 
the Poincaré metric.

Z1−Z2 Z2−Z3 Z3−Z1

Distance D 2.4 1.6 1.9

Length K in 
Figure 1

2.4 1.6 1.9

Length K in 
Figure 8

3 1.6 2

δZ
R

dR dX

dR + jdX

dZ

dΛ

d Λ

Λ

(17)

(16)

(15)

C

Figure 7. A flowchart to measure the 
Poincaré length of a smooth curve.
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By comparing this result with (9), we 
can say again that the straight line 
is longer than the curve. See Table 2 
for an overview of the two triangles 
in dimension.

In summary, the shape in Figure 8 
looks like a triangle, but its sides do 
not always link the corresponding 
vertices with the minimum length. In 
this sense, even having three angles, 
it should be called a pseudotriangle.

Zero and Infinity
Although the adventure on the imped-
ance half-plane is not yet exhausted, 
we leave its further exploration to brave 
future challengers. Let us now steer our 
vessel from the triangular zone toward a 
circular island with full rudder.

The question here is, on what kind 
of plane can we meet both zero (short) 
and infinity (open) (as they cannot 
simultaneously live in a Cartesian 
town)? This is because infinity is too 
far on the aforementioned imped-
ance plane, whereas zero is too far on 
the admittance plane. To overcome 
this antipodal conflict, instead of the 
Cartesian scale, a nonlinear scale for 
the coordinates is required.

One solution to this 
puzzle is to employ the 
reflectance magnitude 
c  as a radial scale. It 
is already known that 
c  ranges from zero to 
unity, never diverging 
even for an open, short, 
or any posit ive real 
impedance. The plane, 
in general, must be a 
2D world. Therefore, 
in addition to the mag-
nitude, the phase i  of the reflection 
must be taken into account. Thus, we 
involve c  and i  in the polar-coordi-
nate complex reflectance

 ,e e1
1j jc

t

t
C = =

+
-i i  (29)

where t  denotes the VSWR once seen 
in (2). Explicitly, c C= , and .+i C=  
The final right-hand side in (29) is 
called the VSWR expression of complex 
reflectance, which will be exploited in 
the final section.

It is also known that the reflectance 
can be calculated from

 R jX
R jX

50
50

C =
+ +

+ -
 (30)

in a 50-X system. For example, 1C =-  
when .R X 0= =  To see how C  behaves 
in response to impedance, we sweep R 

and X from zero to in -
finity and plot C  on a 
complex plane. The 
result is presented in 
Figure 9. We find that 
zero and infinity can 
successfully live to -
gether in one world. 
This elegant projection 
is called a Poincaré disk 
in hyperbolic geometry 
[2], [3], [8] and is also 
known as a Smith chart 

in radio engineering [9], [10].

Power Ratio
The disk shown in Figure 9 was indeed 
an elegant discovery and is even now 
working for us on the visual display of 
electromagnetic field simulators and 
vector network analyzers and on the 
blackboard in microwave engineering 
classrooms. However, at least in geom-
etry, this disk is not the only solution 
for zero and infinity to coexist. Looking 
further forward, let us continue our 
voyage to seek another circular island.

If we accept the concept of the 
power standing-wave ratio (PSWR), 
denoted as ,2t  a favorable wind will 

The route looks straight but is 
curved in a sense.

How can zero and infinity live in 
one world?

j50
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–j100

–j50

–j25

–j10

j10

j25

0
10 25 50 100 250

∞

Figure 9. A Poincaré disk with an impedance grid. 
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Figure 10. A Beltrami–Klein disk with an impedance grid. 

The shape 
in Figure 8 
looks like a 
triangle, but its 
sides do not 
always link the 
corresponding 
vertices with the 
minimum length.
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blow to hoist our sails. This notation, 
,2t  is based on the common circuit 

theorem: voltage ratio squared equals 
power ratio. Now, even though it may 
sound somewhat abrupt, it is quite 
convenient to thrust this PSWR into 
the complex reflectance. By just replac-
ing t  with 2t  on the final right-hand 
side of (29), we define a new complex:

 .e
1
1 j

2

2

t

t
X =

+

- i  (31)

This simple replacement makes 
a difference only in magnitude; the 
phase is kept unchanged from the 
original .C  Because the right-hand 
side in (31) ranges from zero to unity 
in magnitude at any phase, we notice 
that X draws a circular disk on the 
complex plane as well as C  does. In 
other words, this disk meets the prime 
requirement of zero and infinity as 
well as the Smith chart does.

To thoroughly comprehend how 
X behaves on the plane, it is helpful 
to formulate X in terms of .C  By sub-
stituting (2) and (29) into (31), we can 
eliminate t  and i  at the same time, 
resulting in

 .
1

2
*X

CC
C=
+

 (32)

Upon encountering this formula, might  
students feel something come to their 
attention? Yes, this is congruent with 
the double-angle rule of hyperbolic tan-
gent, except for the conjugation on the 
denominator’s final term. In any case, 
using this formula, we can sail directly 
from the familiar C  island to the new 
X island.

With the help of (32), we can convert 
(30) into

 
( )

,
R X

R X j
50
50

2 2 2

2 2

X =
+ +

+ +
 (33)

which projects the R-X grid within 
the disk, as seen in Figure 10. This 
chart is called the Beltrami–Klein disk 
in hyperbolic geometry [2], [11], [12]. 
On this disk, we notice ellipses in the 
north–south symmetry with respect to 
the Equator, commonly contacting the 
East Pole (or West Pole in Australia-
orientated maps). These ellipses are 
called horocycles in hyperbolic geom-
etry. They physically mean constant-R 

contours, along which X ranges from 
negative to positive infinity. Focusing 
on the ellipse’s axial ratio r, we find

 ,R r50 502 2 2 2+ =  (34)

where R is the resistance read out at 
the ellipse’s west-side interception 
across the Equator. This formula is 
so elegant that students can quickly 
grasp it. Those who are better at geom-
etry than at algebra can memorize 
this law via the equivalent right tri-
angle depicted in Figure 11 using the 
Pythagorean proposition. 

We also notice straight lines all 
converging on the East Pole. These 
lines are called geodesics in hyperbolic 
geometry. They physically mean con-
stant-X  contours, along which R 
ranges from zero to infinity. It is a 
remarkable feature of this disk that 
al l the constant-X contours lie in 
straight chords, in contrast with the 
circular arcs on the Smith chart shown 
in Figure 9.

Back to the Future
Now it is almost time to bid goodbye 
to 19th-century geometry and fuel 
our vessel to sail back to the future. 
We have three triangles and two cir-
cular disks to keep in our treasure 
box. On finalizing this fruitful adven-
ture, we sincerely express our full 
respect to Eugenio Beltrami and Henri 
Poincaré by displaying their portraits 
in Fig  ure 12. Imagine if we could 
invite these two great mathemati-
cians to our International Microwave 
Symposium and give them the chance 
to know our technical term SWR: 
they might have presented in a spe-
cial memorial session how to formu-
late their circular disks, as in their 
speech balloons.

Voltage ratio squared equals 
power ratio.

Make geometry great again.

50

R
50 r

Figure 11. A right triangle can be used to 
remember the axial ratio’s elegant law.  

ρ + 1
ρ – 1

ρ2 + 1
ρ2 – 1

Figure 12. Henri Poincaré (left) (1854–1912) and Eugenio Beltrami (1835–1900). 
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