

Enigmas, etc.

Solution to Last Month's Quiz

■ Takashi Ohira[®]

he rectifier circuit diagram is shown in Figure 1. To achieve the half-wave rectification, the load resistance is given as

$$R_{\rm o} = \pi \omega L \tag{1}$$

from [1]. Under this condition, we recall the RF input voltage and current

$$\begin{bmatrix} V_P \\ V_O \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \pi \\ 2 \end{bmatrix} V_o \tag{2}$$

$$\begin{bmatrix} I_P \\ I_Q \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2\pi \\ 8 - \pi^2 \end{bmatrix} I_o \tag{3}$$

Figure 1. The single-series diode rectifier.

Takashi Ohira (ohira@tut.jp) is with Toyohashi University of Technology, Aichi 441-8580, Japan. He is a Life Fellow of IEEE.

> Digital Object Identifier 10.1109/MMM.2023.3332326 Date of current version: 11 January 2024

from [2]. We also recall the general PQ-to-RX translator

$$\begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} I_P & -I_Q \\ I_Q & I_P \end{bmatrix}^{-1} \begin{bmatrix} V_P \\ V_Q \end{bmatrix} \tag{4}$$

from [3]. Substituting (1), (2), (3), and Ohm's law $V_o = R_o I_o$ into (4), we obtain

$$\begin{bmatrix} R \\ X \end{bmatrix} = \frac{2V_o}{I_o} \begin{bmatrix} 2\pi & \pi^2 - 8 \\ 8 - \pi^2 & 2\pi \end{bmatrix}^{-1} \begin{bmatrix} \pi \\ 2 \end{bmatrix}
= \frac{2R_o}{\pi^4 - 12\pi^2 + 64} \begin{bmatrix} 16 \\ \pi(\pi^2 - 4) \end{bmatrix}
\approx \begin{bmatrix} 0.7446 \\ 0.8582 \end{bmatrix} R_o
\approx \begin{bmatrix} 2.339 \\ 2.696 \end{bmatrix} \omega L.$$
(5)

The bottom row of (5) finds $X > 2\omega L$. Therefore, the correct answer to last month's quiz is (d). The derived formula (5) is indispensable when we apply the rectifier to RF power electronics in good impedance matching.

References

- [1] T. Ohira, "DC load pull [Enigmas, etc.]," IEEE Microw. Mag., vol. 24, no. 7, p. 98, Jul. 2023, doi: 10.1109/MMM.2023.3265538.
- [2] T. Ohira, "RF input current [Enigmas, etc.]," IEEE Microw. Mag., vol. 24, no. 9, p. 80, Sep. 2023, doi: 10.1109/MMM.2023.3284796.
- [3] T. Ohira, "Bridge between R-X and P-Q domains [Enigmas, etc.]," IEEE Microw. Mag., vol. 24, no. 11, p. 98, Nov. 2023, doi: 10.1109/ MMM.2023.3303688.

NN.