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John Bandler, a Life Fellow of IEEE, 
passed away on 28 September 2023 
at the age of 82. He was married to 

Beth Budd Bandler for 32 years and was 
the devoted son-in-law of Sybil Cohos. 
He was the father of Lydia Bandler 
Martin (Graham) and Zoe Bandler Bel-
vedere (Dan) and the proud granddad 
of Eric, Matthew, and Colin Martin and 
Una and Sam Belvedere. 

John was an engineer; an interna-
tionally renowned teacher, research-
er, and inventor; a world traveler; an 
art and opera enthusiast; an accom-
plished playwright; an avid photogra-
pher; a Ping-Pong- and chess-playing 
granddad, happy to lose a game to the 
younger generation; and a dedicated 
colleague, friend, and mentor to the 
many people whose lives he touched. 

John grew up in Cyprus and en-
tered the Imperial College of Science 
and Technology, University of London 
in 1960, graduating in 1963 with first-
class honors in electrical engineering 
and in 1967 with a Ph.D. degree in  
microwaves. He worked as an engi-

neer at Mullard Research Laboratories 
(later called Philips Research Laborato-
ries) in Redhill, Surrey, 
U.K., from 1966 to 1967.

John came to Can-
ada in 1967 as a post-
doctoral fellow at the 
University of Mani-
toba, joined McMaster 
University as an as-
sociate professor two 
years later, and then 
went on to become the 
dean of the Faculty of 
Engineering. In 1976, 

he received his D.Sc. (Eng.) from the 
University of London in microwaves, 
computer-aided design, and optimi-
zation of circuits and systems. John 
published more than 500 technical 
articles and is known internationally 
for having invented space mapping 
technology and making significant 
contributions to device modeling, 
computer-aided design, microwave 
engineering, mathematical optimiza-
tion, and yield-driven design.

John was the recipient of the 
2023 IEEE Electromagnetics Award 
in recognition of advancing opti-
mization technologies for engineer-
ing modeling and design, including 
modeling and electromagnetic op-
timization of devices, circuits, and 
systems in the RF, wireless, and mi-

crowave arenas. Oth-
er awards include the 
following:

•• Automatic Radio 
Frequency Tech-
n iq u e s  Gr oup 
(ARFTG) Auto-
mated Measure-
m e n t s  C a r e e r 
Award (1994)

•• IEEE MTT-S Mi-
crowave Applica-
tion Award (2004)
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•• IEEE Canada A.G.L. McNaughton  
Gold Medal (2012)
•• Queen Elizabeth II Diamond  
Jubilee Medal (2012)

•• IEEE MTT-S Microwave Career 
Award (2013)

•• McMaster University’s Faculty of 
Engineering Research Achieve-
ment Award (2014)

•• Appointed as an Officer of the 
Order of Canada in 2016

•• McMaster University’s 2018 Life-
time Innovator Award (2018)
•• The OPEA Gold Medal from 
Professional Engineers Ontario 
(PEO) (2018).

John was active with many groups 
within the IEEE Microwave Theory 
and Technology Society (MTT-S) at the 
annual MTT-S International Microwave 
Symposium, such as the Three Minute 
Thesis (3MT®) competition. John will be 
missed by the MTT-S and IEEE.�

Former Dean of Engineering John Bandler lit 
the way for student innovation and success.
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