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Figure 1: Signaling model in a HeLa cell with resulting virtual microscope image and detailed visualisation showing the cell, nucleus, an organelle,
and molecules. On the nanoscopic level even the atomic structure of signaling molecules and cytoskeleton can be shown.

ABSTRACT

Systems-oriented research accelerates our understanding of biolog-
ical processes and helps in identifying novel drug candidates. How-
ever, development of good models and our intuition is hampered by
the biological complexity. To be able to see how candidate mod-
els evolve in front of the user in an interactive virtual 3D cell at
various zoom levels, therefore is a crucial aspect and a challenging
problem.

The motivation for creating the ZigCell3D software, is thus a
holistic view ranging from being able to change model parameters,
see how they affect 3D versions of the cell at molecular levels, while
at the same time being able to verify the simulated model against a
real experimental fluorescence microscopy image.

ZigCell3D is a virtual 3D whiteboard approach to chemical re-
action modelling. It aims to provide a realtime interactive environ-
ment, where complex biophysics research is turned into a creative
and game-like 3D environment. The complete system entails mod-
elling, simulation and visualisation as part of a unified framework.

The core visualisation is based on a multi-core parallel C/C++
ray tracing engine, that builds a complete 3D iso-surface model of
the cell, its organelles and molecules down to the atomic level using
PDB files. The simulator itself is based on coarse-grained Brownian
motion of the individual molecules, which is visualised in detail in
a tightly coupled manner. Using a virtual fluorescence microscope
the virtual simulation environment can be benchmarked against real
life experimental data.
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Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.4.10 [Image Processing and
Computer Vision]: Image Representation—Volumetric; I.6.5 [Sim-
ulation and Modeling]: Model Development—Modeling Method-
ologies; J.3 [Life and Medical Sciences]: Biology and Genetics—;

1 INTRODUCTION

Systems biology aims at a quantitative model-based description of
biological processes for instance metabolism or signaling [24]. Cel-
lular signal transduction is required to control the cellular state with
respect to environmental conditions or stimuli, which can be ob-
served in the macroscopic phenotype of a cell. The presence, state
and spatial distribution of signaling proteins determines the cellu-
lar state, therefore we developed an integrated framework to model,
simulate and visualise the molecular interactions and activation dy-
namics in a cell on the level of single molecules.

Several examples from cell polarization for chemotaxis [18] over
long-range signaling [19] to local patterns and clustering [29] show
the importance of localisation and spatial effects in signaling. Si-
multaneously stochastic effects can be significant due to low parti-
cle numbers [32]. Particle-based Brownian dynamics and also sim-
ulations based on the Reaction Diffusion Master Equation (RDME,
with less spatial resolution but better performance) include both ef-
fects and facilitate their integration over the cellular domain such
that spatio-temporal dynamics of signaling can be analysed [21].
The present work describes how the models for these simulations
can be developed and the 3D results can be visualised.

Biological processes are very complex such that a large vari-
ety of modeling strategies has been developed to describe them.
Systems biology graphical notation (SBGN) and markup language
(SBML) [14, 27] aim at formalisation and standardisation of these
models, such that different models and modules can be connected
and exchanged by different modelers. While the formalism should
be as concise as possible, it still has to be flexible enough in order
to describe all biological processes and not to limit the scientific
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creativity of the researchers. Likewise the formalism should be in-
tuitive to learn especially in the interdisciplinary field of systems
biology, where mathematicians, computer scientists and wet lab bi-
ologists work together. Ideally the modeling framework provides
the foundation for the different disciplines to be able to collaborate
efficiently. In addition, the formalism should enforce the biophysi-
cal principles. Biophysical or thermodynamic constraints can limit
the number of possible models and thus help to find the most likely
model for a certain signaling pathway.

While a reaction network as in Figure 1 shows the interactions
that are possible in the system, it tells nothing about the actual state.
Visualising the complete process becomes challenging because the
dynamics cover several orders of magnitudes: single molecules
with sizes of a few nanometers interact when they collide, but
the cell has a size of several micrometers, contains thousands of
molecules, and signaling covers many interactions until the cellular
system has changed or adjusted its state [11, 12]. Therefore a scal-
able visualisation method is needed that can cover several orders of
magnitude and link the nano with the macro scale.

One of the fundamental aspects of visualising the result of simu-
lations is to inspect, debug and refine models. Therefore the simu-
lation outcome has to be compared to reference data. Here we show
how the 3D simulation results can be compared to microscope im-
ages, which are a common means of measuring cellular signaling
dynamics. In addition, the schematic visualisation of ZigCell3D
[36] depicts how the molecules move and interact in the cell. Thus
our system shows how the macroscopic dynamics emerge from the
molecular level.

A joint modeling, simulation and visualisation framework be-
comes an intuition builder as the immediate connection between
the simulation and the visualised result is presented. Interacting,
selecting and moving parts of the simulated 3D particle cloud as
made possible by the application, then also highlights the underly-
ing rules that created the component or molecule. What is normally
a guessing game for the modeler, becomes a 3D colouring book an-
notated with mathematical expressions. We therefore can help to
bridge the divide between the hard-core quantitative sciences and
math-free wet-lab biology.

ZigCell3D consequently focuses on the mesoscopic particle
level. This level connects the actions resulting from the molecular
state, which can be analysed with molecular dynamics simulations,
to the macroscopic state of the cell, which is normally described by
ordinary or partially differential equations (ODE/PDE) [21]. This
transition is the key step from the genotype to the phenotype of
organisms and therefore justifies that the performance of the de-
tailed simulation is lower than those of ODE models. Here we will
present applications that highlight the applicability and usability of
our system.

2 RELATED WORK AND APPLICATIONS

Only a few mature integrated modeling, simulation and visuali-
sation platforms exist for systems biology applications. CellDe-
signer [14] and TinkerCell [4] so far only cover non-spatial mod-
els and simulations, while VCell includes space [28]. VCell orig-
inally only used PDE simulations, but can now also use the par-
ticle based simulator Smoldyn [1] as simulation engine, to in-
clude spatial and stochastic effects. Smoldyn itself is a C/C++
Smoluchowski/Brownian dynamics simulation package developed
by S. Andrews. It outputs the resulting 3D particle positions us-
ing OpenGL but lacks the integrated aspect where users can enter
the model in a GUI. More simulation methods are reviewed for in-
stance in [21]. The need to have interactive modeling tools also lead
to development of RuleBender (for rule-based models), in contrast
to text-file or command line control of simulations [33]. RuleBen-
der can also present and compare the simulation results, while it
uses existing BioNetGen simulation technology [9].

When it comes to the visualisation, there are quite a few no-
table related projects such as the standalone BioInspire platform
[7], which also serves as underlying architecture of ZigCell3D. It
allows massive 3D models to be loaded and has support for simu-
lations. There is no specialised support for molecular dynamics in
BioInspire as it is a more generic platform, made available to create
different types of scenarios. VMD [34] runs on the same principle
to visualise results of external performant molecular dynamics sim-
ulations. In addition it can export files for rendering in external ray
tracers.

The visualisation systems closest to the proposed one are those
with an integrated interactive and high quality rendering such as
FvNano [5] which uses a GPU accelerated ray caster to visualise
the scene, as well as [10] and [35].

3 ZIGCELL3D OVERVIEW

ZigCell3D shows the spatiotemporal dynamics of a signaling model
that is built/selected in the modeling window and simulated using
a particle-based method. Since it is important to understand what
shall be visualised, we will explain modeling and simulation first.

3.1 GUI and Modeling

The cellular biochemistry comprises a limited set of interac-
tion/reaction types, such that formalisation for graphical represen-
tation of the reaction network requires only a few symbols. SBGN
aims at providing a standardised graphical notation for biochemi-
cal reaction networks. However, it is still challenging to enforce
the usage of the exact symbolic representation in the daily science,
especially the symbol menu of the SBGN design tool CellDesigner
[14] might scare untrained users away. Here we present a method
to cover the formalisation of SBGN with a more intuitively to use
design tool.

In this context it is worth noting, that mathematical models of
signaling often rely on Michaelis-Menten or Hill-kinetics to sim-
plify complex processes. Such higher order or nonlinear kinetics
just provide a black-box model of the actual biochemical process.
In reality for instance a substrate S to product P conversion, which
is catalysed by an enzyme E: S+(E)→ P+(E), includes the for-
mation of an intermediary enzyme substrate complex

E +S � ES→ EP � E +P. (1)

A detailed particle-based simulation requires to break higher or-
der kinetics into the elementary first and second order association,
transformation and dissociation steps. ZigCell3D likewise enforces
this biophysical principle by only supporting elementary reactions
(exceptions are given in the special section).

3.1.1 Reaction Smart Box to Simplify SBGN

ZigCell3D only needs one reaction smart box element plus reaction
arrows. Depending on the connections of the box, the respective
SBGN symbol is chosen by the GUI automatically. Input (output)
arrows can be connected to three connectors on the left (right) side
of the box. In addition, triggers, modifiers or inhibitors can be con-
nected to the top or bottom. Figure 2 gives an overview of the sym-
bols. Note that a reaction can not have more than 2 educts/inputs,
the formation of trimers for instance has to be described by first
forming dimers that then bind another monomer to complete the
trimer molecule.

The reaction box can be rotated if required by the reaction net-
work layout. The reaction network can be printed without showing
the reaction box in order to obtain the SBGN look of the reaction
network. Furthermore a grid can be enabled with snap to grid func-
tions to align all symbols.
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SBGN ZigCell3D

Without box and grid

Process Description Glyph

First order reaction: conversion

Second order reaction: association

First order reaction: dissociation

Reaction Smart Box

Second order reaction: general process

Figure 2: Elementary reactions: comparison of symbols in SBGN
and ZigCell3D. The smart reaction box changes the reaction symbol
according to the connections, which can be added to 8 connection
points.

3.1.2 Special Reaction Models

Enzymatic reactions are supported in ZigCell3D by using the al-
gorithm presented by Falk et al. [10] to mimic Michaelis-Menten
reaction kinetics in the simulation. However we recommend to split
it into its elementary reactions as in (1) in order to have a more ac-
curate simulation. Since the enzyme counts as an educt (basically
it appears both on the right and left hand side of the reaction), an
enzymatic catalysis box can only have one regular input (Figure 3).
Inhibitions of a reaction, however, are not supported because the
elementary process is undefined. Instead the user has to implement
the exact inhibition or chose one of the templates, e.g. those in
Figure 3.

3.1.3 Transporters and Association with Cellular Structures

The reaction box can also be placed in a compartment boundary.
Then it obviously becomes a (reversible) transport reaction (see
Figure 4). The input of the transport reaction is defined as the
molecule species outside of the compartment, while the output is
inside.

Likewise the reaction box can be used to define binding interac-
tions between mobile molecules and fixed cellular structures. Bind-
ing reactions do not change the molecular species but only affect
the mobility state: instead of diffusing through the compartment the
molecule stops moving and stays bound to the structure. If bound to

SBGN ZigCell3D
Catalytic activation or necessary stimulus:

Inhibition:

undefined (black-box) reaction

(i) = catalysis of reverse reaction?

(ii) = inactivation of forward 
reaction enzyme?

Figure 3: Non elementary reactions: while catalysis is well defined,
inhibition could mean several possible reactions. In any case it has
to be broken into the elementary reactions. Inactivation of the for-
ward reaction enzyme can occur either in an enzymatic reaction or
by complexation.

a cytoskeleton filament, it can also move along the structure (mim-
icking motor protein transport in 1D) as suggested in [11]. If bound
to a compartment surface, it can diffuse on the respective side of
the surface in 2D, only receptors reach through the surface (cf. Fig-
ure 4).

Note that the binding rate constants for structural association re-
actions depend on the compartment/structure. While non-spatial
models often use transport or binding rate constants with units s−1,
in the ZigCell3D spatial simulation molecules will bind to the struc-
ture if they are closer than a critical distance. Therefore the binding
rate of the simulation will be proportional to the surface of the ob-
ject, and the GUI has to scale the rate constants accordingly (cf.
Table 1).

Figure 4: (Left window) Interactions with structures of the reaction
volume, e.g. transport through surfaces or association to cytoskele-
ton filaments. Note that the structure acts like a modifier in the reac-
tion. Molecules can snap to the surface/boundary of a compartment
and become surface bound, moving in 2D along the surface. (Right
window) Selecting a molecule in the 3D visualisation also highlights
its species in the network. Double-clicking an object in either window
opens the properties dialog for the species (pop-up window).
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3.1.4 Compartments, Molecules, Properties
Molecule species of the reaction model are represented by a glyph,
e.g. a rectangle (see Figure 4). The properties of each species in-
clude the initial number and initial spatial distribution, radius r and
diffusion coefficient D, as well as the colour for visualisation. For
a super-detailed visualisation also the corresponding PDB-file with
the atomic structure of the molecule can be specified.
Compartments, for instance the cell, nucleus, or other sub-cellular
organelles, can be organised on the canvas to contain the molecules
and sub-compartments that reside inside of them. Besides geomet-
ric shapes like spheres, ellipsoids, cylindrical or cubic volumes also
arbitrary shapes are supported in ZigCell3D, such that for instance
a HeLa Cell model from CellOrganizer [31] can be used as reaction
compartment (cf. Figure 1). For sub-compartments with several
instances like vesicles or for obstacles like cytoskeleton filaments
the spatial distribution in the parent compartment can be selected
as well. Semi-transparent compartments enable to see through the
outmost compartments in the visualisation.

3.1.5 Model Consistency Check before Simulation
Whenever a model shall be executed, ZigCell3D checks whether
all reactions obey the biophysical limits. Of special importance is
the diffusion limit of reactions: no pair of molecules i and j can re-
act without being in contact. Coming into contact is limited by the
speed of the molecules, hence diffusion D, and the collision cross-
section, hence the molecular radii r, which are both defined in a spa-
tial model. For 3D reactions the limit is given by the collision pro-
cess, namely the rate constant kD(i, j) = 4π(ri + r j)(Di +D j). All
macroscopic reaction rate constants of the model must be smaller
than the respective kD(i, j). Furthermore all reactants (inputs and
outputs) of a reaction must be in the same reaction compartment
(except for transporters). And of course for nested geometries
(molecules in the nucleus that is inside of a cell, which is inside of
a test tube compartment) each sub-element has to be smaller than
its parent such that it fits inside.

3.1.6 Interactive Simulation and Visualisation Control
Once a simulation is started, it returns updated particle positions for
visualisation at a user specified frame-rate. The current number of
molecules of selected species as well as further properties can also
be displayed in an online plot window. For publications or post-
processing, however, the numbers can also be exported in several
formats.

Colours of molecules and compartments can be changed during
the simulation and are immediately changed also in the 3D visu-
alisation window as well as the plot window. Selecting an object
in the visualisation window also highlights its counterpart in the
abstract reaction network, and its properties can be updated (see
Figure 4). In addition, the user can specify perturbations to reac-
tions (change rate constant at a specified time or immediately) or
molecule species (add N molecules or remove all molecules) to ex-
cite the system such that its dynamics can be probed. Fluorescence
tags can be added to each species (even while the simulation is run-
ning), in order to visualise their instantiations in the simulation us-
ing the virtual microscope (cf. Section 3.4).

3.2 Simulation
The particle-based simulation of the biochemical reaction-diffusion
process in 3D space is described in detail in [22]. The key features
are a discrete time continuous space random walk of the molecules
and the implementation of reactions based on the lambda-rho model
[8]. In the physiological range of signaling, the parameters of
molecule radii are r = 2− 10nm, diffusion coefficients are D =
0.1− 10µm2/s and rate constants k < 1× 109M−1s−1. Then the
simulator step length has to be in the range of ∆t = 10−3− 10−8s
in order to have reaction probabilities smaller than 0.2 [22]. The

spatial step ∆x =
√

2D∆t is then in the range of several nm. Thus
the step length determines both the spatial/temporal resolution and
the computational costs [21]. In order to improve the performance
also a two-regime method [13] is available, which switches to a
Monte Carlo simulation of the reaction-diffusion master equation
(RDME) for those regions of the cell that are not in the field of
view of the visualisation [20].

The ZigCell3D simulation (dll/dylib) is implemented in C/C++
and parallelised using pthreads. It can be replaced in principle by
any other simulation with the same interfaces defined by BioInspire.
Especially the simulation has to be able to return/provide updated
particle positions and numbers every ∆tCPU ms in order to enable a
smooth visualisation and recognise modified parameters from the
GUI.

3.3 3D Cell Visualisation

The visualisation component in ZigCell3D software is running the
BioInspire parallel ray tracing core which is a pure CPU implemen-
tation on top of C/C++. The ray tracer is responsible for populating
a 3D world with a one-to-one correspondence to the input simula-
tion components such as molecules, cell cytoskeleton and the cell
membrane. All surfaces in the ray tracer are mathematical descrip-
tions of the underlying geometry, using iso surfaces [30] and a force
tension model for all components, even down to atomic level for the
molecular surfaces using PDB files. The reasons behind using iso
surfaces are many but most importantly: reduction of memory us-
age by only storing a position, radial extension or force for each
emitter in the molecules for example; for the cytoskeleton it al-
lows the merging of several actin filaments, connected one after the
other, using the elastic surface property of the iso surface; it gives
a more biological and life-like visualisation as the surfaces have no
hard edges such as is usual in meshed geometry; there is no need
for levels of detail as the surface is sampled per ray and not per sur-
face discrete element as is done in rasterisation; the ability to reflect
the simulation properties immediately without having to rebuild the
geometry as the ray automatically builds the surface on a per pixel
basis; the possibility of making distance queries in the vicinity of
the molecule with a high precision and many more important ad-
vantages.

At the base of the BioInspire ray tracer is a bounding volume
hierarchy (BVH [25]) that is created using a modified median cut
algorithm. By first radix sorting the elements in the tree by the three
dimensions x, y and z jointly in a parallel fashion, the CPU has
to jump around less in memory thus reducing the memory latency
cost. This is done by creating nodes that keep the three floating
point values inside and the three next pointers (as 32 bit integer in-
dices) for the list nodes. The parallel sort itself is done using 16 bit
key values, giving rise to 65536 long tables (one for each thread)
that are counted and spread on the second step of the radix algo-
rithm. Thus sorting is reduced to a two part radix that is parallelised
and memory access conservative.

Once the sorting is done the top down building is started such
that elements that are too large are kept at a higher node so that
they don’t enlarge the following child nodes of the BVH. At each
node the largest axis is approximately chosen dependent on the pre-
sorted order of the elements (min and max center points) to avoid
having to update the min and max values on each node splitting,
who also depend on the radius and not necessarily exclusively on
the center points. The building itself at the moment is only paral-
lelised after the second step of the algorithm, once four sub-trees
are present.

This BVH consists of entities or instances of underlying iso sur-
face elements, that are themselves either direct surface emitters, sub
trees of surface emitters or algorithmic generators of surfaces or
other instances.

The root solver that is making up the base of the intersection
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algorithm is based on polynomial formulations of the primitives,
that are solved with a Bezier clipping approach [35], as opposed to
the recently very popular re-surfaced ray marching approach [15],
notably in the 3D demo graphics scene. Using a partial analytic
solver, removes many trouble spots such as floating point accuracy.
It is also easier to allow transparency as the solver does not stop
merely when finding the first intersection.

The main reason for not using the GPU to accelerate the ray
tracer is the amount of extra development necessary, the great diver-
sity of drivers and bugs in graphics hardware, the limited memory
support and the constraint on having to equip each computer with
a specialized high performance graphics card. Yet another reason
is that performance is easier to predict on a multi-core CPU imple-
mentation, especially for random access memory algorithms such
as ray tracing.

3.4 Virtual Microscope Visualisation and Reaction
Fluxes

The virtual fluorescence microscope rasters the simulated domain
and bins the fluorescence intensity of all labeled objects into voxels
like a confocal fluorescence microscope. In the present examples a
Gaussian point spread function is used to determine the distance de-
pendent contribution of each fluorescent object to each voxel. Ras-
terisation is done on the molecular positions of a given time-point
for all voxels simultaneously, while real microscopes need time for
scanning through the volume and obtain the last voxel only with
significant delay.

The GUI enables the selection of a certain 2D image from the
3D intensity map (z-stack), a certain range from the z-stack or the
whole 3D intensity pattern in the BioInspire window (cf. Figure 5).
Different colour/label channels can be (de-)selected as well.

Labeling of reactions enables visualisation of spatiotemporal dy-
namics of reaction-fluxes. Each time a reaction is executed, a fluo-
rophore is created at the position of the event. The lifetime of the
reaction label fluorophore determines how long a past reaction is
visible. Figure 5a and b compares constant versus exponentially
distributed reaction label lifetimes, showing only marginal differ-
ences. The undirected diffusion of the source molecules of the re-
action in any case leads to an unstructured cloud of reaction labels.

A virtual fluorescence microscope was already suggested by
Falk et al. [11], but without binning the intensity to a rather
low-resolution microscope image. The present virtual microscope
model thus is closer to reality. It could also produce training
datasets for image deconvolution methods, e.g. [16]: the virtual
microscope can produce arbitrary noise levels, such that the influ-
ence of noise on image segmentation as well as segmentation for
3D objects from 2D image layers can be tested.

4 APPLICATIONS

The following applications highlight the importance of space and
stochasticity in biochemical reaction networks, as well as the con-
tribution of visualisation for the appreciation of the results.

4.1 Spatial Gene Expression and Protein Interaction
First we exemplify the principle steps of signaling, namely the tran-
scription and translation step from genes via mRNA to proteins.
Figure 5 shows how mRNA distribute around a gene and the result-
ing proteins distribute around the mRNA [6]. Figure 5 furthermore
presents different visualisation methods. The detailed particle visu-
alisation actually hides the global information about protein distri-
butions in space, which can be better seen in the blurry microscope
images. Especially we can also use fluorescence labels for reactions
in ZigCell3D (see Section 3.4). Thus not only molecules but also
reaction-fluxes can be visualised in the image.

The limited number of genes (actually 1) and mRNA (a few)
gives rise to bursting kinetics and strong noise in protein numbers.

Figure 5: Virtual fluorescence microscope images: (a) and (b) show
proteins in red and the events where they are created in green/yellow.
(a) fixed lifetime of the reaction label, (b) exponentially distributed
lifetime of the reaction label. (c) 3D representation of the microscope
data. (d) and (e) show interacting proteins from 2 genes (at the cyan
spot) that are exactly 1 micrometer apart in a spatial gene expression
model. While the 3D particle based visualisation of (d) lets the user
focus on single molecules, the virtual microscope image highlights
the spatial distribution, it directly shows the local density.

If the lifetime of all molecules is limited, protein distributions are
localised around the gene [6]. Signaling molecules can only inter-
act with each other if they live long enough to meet in space or
if they are created close enough, i.e. if their spatial distributions
are overlapping [3]. Figure 5d and e also highlights the interac-
tive region between two signaling molecule species, where green
molecules are created by fusion of red and blue molecules, which
are created by two different genes in the presented example.

4.2 FCS in in-vivo like environments
The application of a virtual fluorescence microscope is not lim-
ited to visualisation but can also be used to probe local physical
properties of the medium. In Figure 6 we show the autocorrelation
curve obtained from a simulated Fluorescence Correlation Spec-
troscopy (FCS) experiment. This example shows how the mobility
of molecules – which eventually also determines collisions between
molecules and thus reaction rates – depends on the microscopic
structure of the medium. In the presented example we compare the
influence (i) of a dense actin cytoskeleton as reported by Medalia
et al. [26] and visualised in Figure 6a/b and (ii) a ER-like structure
as reported by Hiroi et al. [17], visualised in Figure 6c/d to a refer-
ence simulation without any obstacles. Compared to the reference
simulation without obstacles with τD = 0.16ms and 〈N〉= 2.05 the
crowded environment (i) leads to a reduced diffusion and corre-
sponding larger τD = 0.24ms, while 〈N〉 = 2.00 stays similar in
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Figure 6: (a) Intracellular environment as reported by Medalia et al.
[26]. (b) ZigCell3D model of (a). (c) Intracellular environment as
reported by Hiroi et al. [17]. (d) ZigCell3D model of (c) with small
test molecules in red. (e) Simulated Fluorescence Correlation Spec-
troscopy (FCS) in empty space, the crowded environment of (a), and
in the structured environment of (c). τ is scaled relative to the refer-
ence τD of the empty space simulation.

(see Figure 6e). The structured environment (ii) however leads to
shorter residence times τD = 0.13ms and the relatively large ob-
stacles redistribute the test molecules into the focal volume in the
presented example such that 〈N〉 = 2.40. Possibly, crowding leads
to anomalous diffusion [2], a fact that is represented here in the
deviation between the fitted FCS especially for the structured en-
vironment (Figure 6c, d), which can be further investigated using
more simulations.

Thus ZigCell3D helps to connect spatial properties with dy-
namics, in the presented example with the diffusion coefficient of
molecules. The advantage of the combined simulation and visual-
isation framework is that the spatial structures of the environment
can be readily seen by the user.

4.3 Receptor clustering and its effect on signaling

Clusters, i.e. non-uniform spatial distributions of receptors are
a prominent example where spatial modeling becomes important.
Here we combine the density and feedback dependent clustering
model of Jilkine et al. [18] with a proposed signaling mechanism
from Mugler et al. [29]. The two step activation process with
very unstable intermediary state of the signaling molecule proceeds
more likely if the activator density is (locally) high. Therefore the
clustered receptors activate the signal stronger, and eventually more
active signaling molecules enter the nucleus (see Figure 7). It is
worth noting, that although the number of molecules in the nucleus
is small, their concentration therein is bigger than in the cytoplasm.
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Figure 7: Clustering of receptors and signaling towards the nucleus.
(a) 3D view, the insert shows a virtual microscope image with the
accumulation of receptors in a cluster in green and accumulation of
signaling molecules in the nucleus in yellow. (b) Dynamics of the pro-
cess. (c) Reaction network for clustered and uniformly distributed re-
ceptors. Note the fluorescence labels on the active receptors (green)
and signaling molecules (yellow/cyan).

Table 1: Parameters of the clustering model. ∗(Conversion of the trans-
port rate constants based on the surface to volume ratio of the nuclear surface.)

Species Location N0 Reaction; Parameters
C PM (2D) 1 C+CRi→C+CRa; k = 1.0×105M−1s−1

CRi Cyt. (3D) 2000 CRa+CRi→2 CRa; k = 1.0×105M−1s−1

CRa PM (2D) 0 CRa→CRi; k = 5.0×10−2s−1

URi PM (2D) 2000 URi→URa; k = 4.0×10−3s−1

URa PM (2D) 0 URa→URi; k = 3.7×10−3s−1

S0 Cyt. (3D) 2000 Ra+S0→Ra+S1; kcat=10s−1; kM=10−4M
S1 Cyt. (3D) 0 Ra+S1→Ra+S2; kcat=10s−1; kM=3×10−5M
S2 Cyt. (3D) 0 S1/2→S0/1; k1→0 = 50s−1; k2→1 = 0.01s−1

S2,N Ncl. (3D) 0 S2↔S2,N ; kin = 0.05µms−1; kout = 0.01µms−1

∗ S2↔S2,N ; kin = 0.0135s−1; kout = 0.1s−1
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Figure 8: Rule-based MAPK signaling simulation example, where the
signaling molecules can co-localise along the scaffold Ste5 in yeast.
The image shows a snapshot of different complexes that formed in
the simulation [23]. Each complex is enclosed in a bigger sphere to
highlight the content of different complexes.

Here the nucleus has 1/3 of the diameter of the cell, i.e. about 1/27
of the volume only! The example also shows, how two modules
or components of signaling can be easily combined in ZigCell3D
in order to test their joint properties. The network also shows, that
two different signaling models can be tested in the same cell and
thus in the same simulation in order to compare them.

4.3.1 Performance
The clustering model containing 8000 molecules (D ≤ 0.1µm2/s)
was integrated with ∆t = 1.67ms. The simulation proceeded with
≈ 2000 steps per second, i.e. about 2 s per second of CPU time
on a standard desktop machine. Visualisation reached interactive
frame rates for this model, enabling a smooth exploration of the 3D
particle cloud.

4.4 Visual Inspection of a Spatial Rule-Based Model
ZigCell3D can load position data of previous/other simulations to
replay them. This ‘sideloading’ feature is used here to visualise
particle positions from a spatial rule-based simulation of Mitogen
activated protein kinase (MAPK) signaling in yeast from [23] (see
Figure 8). Thus also spatiotemporal dynamics of other particle-
based simulations can be analysed with ZigCell3D, which is es-
pecially useful if the source simulation package does not include
visualisation, but outputs particle positions and numbers.

5 USER FEEDBACK

Steven Andrews acknowledged that a GUI to enter the model and
an interactive visualisation is still missing in Smoldyn [1], espe-
cially in order to promote it as a tool for wet-lab biologists and was
excited about the ZigCell3D user interface and the 3D visualisation.
We discussed the use case where simulations are executed in real-
istic cellular geometries, e.g. from CellOrganizer [31] with Robert
Murphy. While he enjoyed to see interactive navigation through
the cell models, he questioned the informative value of simulations
in such models, given the higher computation time required and as
long as only one instance of a cell is simulated. We agree in this
issue, because it touches the question how abstract a model has to
be or can be in order to be a good model.

We used ZigCell3D with several students, mostly with biology
background. They liked the fact that abstract models (‘a box for a
cell?’) become realistic geometries in the simulation/visualisation,
which helps the conception of modeling. Since they are familiar
with microscope images, they could directly link their experience
and expectation to the outcome of ZigCell3D, and appreciated that
they could dive into the simulated scene with the schematic 3D vi-
sualisation. Since ZigCell3D does not require Nvidia/Cuda GPUs

or other specialised hardware, it could be tested by everybody in-
terested. For some domain experts, e.g. in non-spatial stochastic
modeling, ZigCell3D acted as a reminder that there are more as-
pects, especially space and crowding, that have to be considered in
biology. Thus we conclude that ZigCell3D can bridge the divide
between the different disciplines working together in systems biol-
ogy.

6 DISCUSSION

The applications have shown various aspects were visualisation is
crucial to understand the interplay of spatial and dynamic compo-
nents of the system, highlighting the importance of space for the
dynamics of biochemical reactions. The gene expression example
and Figure 5 highlighted the localization of molecules around their
source. The distribution is better seen in a less detailed virtual mi-
croscope image, while a detailed visualisation focusing on individ-
ual molecules misses the context. The distribution and interactivity
of molecules is driven by diffusion, which is hampered by all the
obstacles in the cell. Figure 6 showed different 3D obstacle config-
urations and the resulting diffusion properties such that users can
better understand the influence of the in vivo environment. Inter-
active rotation and navigation through the environment furthermore
allows exploration of the spatial properties.

In contrast, Figure 8 focuses on complex formation, showing var-
ious states of the possible configurations. In that case, focusing on
single complexes is necessary to see their configuration. Still, dif-
ferent complexes can have specific sub-cellular locations. Figure 7
shows how clustering of receptors along the membrane can lead to
signal activation, while uniformly distributed receptors only lead to
significantly lower signal transmission into the nucleus. The clus-
tering example also shows the modularity of signaling models. In
ZigCell3D modules developed by different groups can be combined
into a larger model. Eventually complete signaling pathways could
be simulated.

However we admit, that ZigCell3D aims at small modules rather
than complete signaling pathways due to its detailed simulation
method. Large-scale signaling networks require immense CPU
times, and if possible should therefore be simulated using less de-
tailed and less costly methods. Still ZigCell3D can for example
compute effective rate constants for ODE models in order to in-
clude spatial effects implicitly in the non-spatial model.

In the current version, the system does not support rule-based
modeling, which significantly simplifies modeling of components
that have many states. Still, simulations of such models can be
loaded and visualised as exemplified in Section 4.4. In general,
modeling in ZigCell3D is less flexible because more biophysical
constraints have to be considered. This might look like a limita-
tion in the first place, especially when creating nonlinear phenom-
ena for signaling transfer functions. But after all it just reflects
the fact that also in the cell complex dynamics have to be created
bottom-up in several steps by interactions that only together create
the desired behaviour. Understanding how the non-linear response
of cells emerges from simple mass-action reaction schemes is one
of the key challenges to understand why in-vivo signaling networks
are wired the way they are.

7 CONCLUSIONS AND OUTLOOK

We have shown a system that enables understanding of biophysi-
cal reaction models on various levels. Especially it enables linking
of the particle level (random motion and stochastic reactions) with
deterministic reaction networks, including the spatial component of
the system from the nano-scale to the scale and structure of a cell.
Users are able to navigate through the 2D reaction graph or the
3D particle cloud and can interactively select molecules, highlight-
ing them simultaneously in all different windows. By this develop-
ment we envision a stronger connect between models and results,
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but also between 2D microscopical images and further batches of
experimental data. Future work aims at improving the usability of
perturbations in the system, i.e. virtual experiments, which provide
direct feedback to the users action. Every perturbation requires to
run a different simulation for comparison, which could be executed
in parallel on several nodes of a cluster. Future improvements are
expected by further decoupling of simulation and visualisation into
different processes to improve speed by a better distribution of the
workload. The challenge lies in maintaining the connection for user
feedback from visualised data back to the simulation.
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