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A CNN-Based Transfer Learning Method for Defect
Classification in Semiconductor Manufacturing

Kazunori Imoto

Abstract—TIn this paper, we focus on a defect analysis task that
requires engineers to identify the causes of yield reduction from
defect classification results. We organize the analysis work into
three phases: defect classification, defect trend monitoring and
detailed classification. To support the first and third engineer’s
analytical work, we use a convolutional neural network based on
the transfer learning method for automatic defect classification.
We evaluated our proposed methods on real semiconductor fab-
rication data sets by performing a defect classification task using
a scanning electron microscope image and thoroughly examin-
ing its performance. We concluded that the proposed method
can classify defect images with high accuracy while lowering
labor costs equivalent to one-third the labor required for manual
inspection work.

Index Terms—Machine learning, deep learning, transfer learn-
ing, defect classification, semiconductor manufacturing.

I. INTRODUCTION

EFECT inspection and detect trend monitoring, which

provide useful information for engineers endeavoring
to identify root causes of process failures, are crucially
important for yield quality control. Inline inspection systems,
usually comprising optical wafer inspection tools and scan-
ning electron microscope (SEM)-based review tools, are
deployed at semiconductor wafer production sites for pro-
cess monitoring [1], [2]. However, as shown in Figure 1,
defects in semiconductor device fabrication have a wide range
of shapes and textures due to the sophistication of man-
ufacturing process and as a consequence, the accuracy of
manual defect classification depends greatly on the exper-
tise of inspectors. Automatic defect classification (ADC) is
a function that automatically classifies defect images into
pre-determined defect classes based on their appearance [3].
Several methods have been proposed for ADC systems: rule-
based classifiers [4], learning-based classifiers [5], [6], and
hybrid-type classifiers [7]. However, poor data, and a decep-
tive environment in the manufacturing process where the
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Fig. 1. Example of Defects.

classification problem itself varies over time, renders the ADC
task difficult to solve.

Recent advances in deep learning technology have achieved

human-level classification performance [8], and provided
advanced analytical tools for analyzing big data from
manufacturing [9]. Deep learning-based techniques typically
require ground-truth labels for a large training data set.
For many tasks, however, the data-labeling process is
expensive, making it difficult to obtain strong supervi-
sion information [10]. Additionally, the given labels are not
always ground-truth due to the sophistication of the pro-
cess. To overcome inconsistent manual classification and
other costly problems, we present a convolutional neural
network(CNN)-based transfer learning method of automatic
defect classification [11]. We evaluated our proposed meth-
ods on real semiconductor fabrication data sets using an
SEM-image classification task.

The remainder of this paper is organized as follows.
In Section II, we examine the defect analysis task. In
Section III, we introduce works related to our method.
In Section IV, a CNN method is adopted for automatic
defect classification. In Section V, we introduce a trans-
fer learning approach to reduce labeled data for training.
In Section VI, we discuss about the acceleration of model
training. Finally, Section VII presents the conclusion of this

paper.
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Fig. 2. Overview of Defect Quality Control.

II. DEFECT ANALYSIS TASK

In this paper, we focus on a defect analysis task that requires
engineers to identify the causes of yield reduction from defect
classification results. During inspection processes of semicon-
ductor manufacturing, defect images are classified according
to types of defects, in order to find process malfunctions and
suppress yield reduction. As shown in Figure 2, the analysis
falls into three phases: defect classification, defect trend moni-
toring and detailed classification. First, defect images captured
by an inspection system using a scanning electron micro-
scope (SEM) are classified into several dozens of defect types.
Using the classification results, the frequency of each defect
type occurring is monitored. If an increase in the frequency
of a certain defect type is detected, images classified as the
detected type will be further classified into more specific
sub-categories in order to identify the root causes of the pro-
cess failure(s). While such trend monitoring can be automated
based on classification results, the first and third phase of the
analysis require costly manual inspection or reconfirmation.
We therefore use deep learning technologies in the first and
third phases of the analysis to assist the engineers’ work.

III. RELATED WORK

Recent advances in deep learning technology (e.g., CNN)
have achieved human-level classification performance [8], and
provided advanced analytical tools for analyzing big data from
manufacturing [9]. Deep learning technologies, such as sur-
face defect classification of steel sheets [12] and fabric defect
classification [13], have been introduced in the manufactur-
ing sector and automatic inspection techniques have been
widely applied in manufacturing processes to ensure the
high quality and performance of products [14]. The semi-
conductor industry has also shown interest in deep learning
applications: Nakazawa and Kulkarni applied a CNN for
wafer-map classification [15] and Nakata et al. applied a CNN
for failure recurrence monitoring by classifying wafer-map
patterns [16]. However, CNN models for wafer-surface SEM
defect classification have not been addressed. Kim et al.
developed a CNN-based defect image classification model
for through-silicon via processes [17]. Cheon et al. proposed
a single CNN model that can extract effective features for
defect classification [18]. Yang et al. proposed a transfer
learning based online Mura defect classification method [19].

TABLE I
CNN CONFIGURATION

CNN Parameters Value
Number of convolution layers 33 layers
Module Inception v2
Activation function ReLU
Regularization method Dropout
Optimizer SGD
Weight decay 0.005
Momentum 0.9
Learning rate 0.001
Batch Size 64
Mini batch iteration ( pre training) 50,000
Mini batch iteration ( fine tuning) 20,000

A drawback of these methods is that they require more than
several thousand training data points with accurate ground-
truth labels.

One approach to lower the cost of data-labeling is the use of
weakly supervised learning. Zhou divide week supervision into
three types incomplete, inexact, and inaccurate they describe as
follow [10]. In incomplete supervision, only a (small) subset
of training data is labeled while the rest of the data remains
unlabeled. In inexact supervision, only coarse-grained labels
are used. In inaccurate supervision, the labels given are not
always ground-truth, due to worker fatigue or the difficulty of
categorizing certain images.

We adopted inaccurate supervision because we already have
a large set of data that was manually and inconsistently
labeled. We also used the transfer learning method to reduce
the required amount of training data with ground-truth labels.
Our inaccurate supervision approach and transfer learning
method is explained in Sections IV and V, respectively.

IV. DEFECT CLASSIFICATION BY DEEP LEARNING
A. Network Structure

Table I shows our CNN configuration. The input SEM
image size was resized to 128 x 128. We adopted the Inception
model developed by Szegedy et al. [20]. Each module is com-
posed of 3 different-sized of filters (1x1, 3x3, 5x5) and
the max pooling and concatenated outputs are sent to the
subsequent inception module. To lower cost, the number of
input channels were limited by adding an extra 1x1 convo-
lution before the 3x3 and 5x5 convolutions. This method,
called “convolution factorization,” decreases the number of
parameters in each inception module in order to reduce the
computational cost. We adopted 10 inception modules com-
prising 33 convolutional layers. Rectified linear activation was
used for each convolutional layer. The fully connected (FC)
layer with a size of 256 was added after the convolutional
layers with sigmoid activation. After dropout [21], another
FC layer with the size of the defect class was added. The
final layer is a softmax layer for outputting class probability
calculation.

B. Learning Strategy

Our proposed method comprises two stages, pre-training
and fine-tuning, as shown in Fig. 3. In the first training
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Fig. 3. Two-Stage Transfer Training Strategy.

TABLE 11
EVALUATION DATASET

Set A Set B Set C Set D
Pre-training data 3¢ 134 35339 16280 13218
(by non-expert)
Fine-ning data 450 5400 5386 1,800
(by expert)
Evaluation dataset 2,400 2,400 5.388 1,800
(by expert)
Defect type 21 21 12 14

stage, parameters of all layers in the CNN model are trained
from tens of thousands stacked image data points that contain
numerous incorrect labels attributable to weakly supervised
training. The ratio of overlap in defect classification labels
between operators is < 0.9. Inconsistent labels can worsen the
performance of the classification model. In the second train-
ing stage, the output layer of the pre-trained CNN model is
extended with randomly initialized weights and a small learn-
ing rate is used to tune all parameters from their original values
to minimize loss on the target task with the few data points that
contain highly reliable labels. The mini-batch stochastic gra-
dient descent method, which was the most used optimization
algorithms for deep learning, was used for CNN parameter
learning. Other training parameters are shown in Table L.

C. Evaluation Setup

Wafer-surface-defect SEM images were sampled from an
actual manufacturing facility to evaluate the performance of
the automatic defect classification (ADC) method and the
proposed method. For the experiment, all defect images were
normalized to a uniform size of 128x128. We prepared four
defect image data sets. The number of image data points and
defect types are summarized in Table II. Each data set has
noisy data labeled by non-experts and pure data labeled by
experts. There is no overlap between noisy data and pure data.
Pure data is used for fine-tuning and evaluation. Each dataset
contains several thousand images composed with several dozen
defect classes. Sample images of these defects are shown in
Fig. 1.
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Fig. 4. Comparison of ADC and the Proposed Method.
TABLE III
DETAILED RESULT OF SET C
Defect  No of samples  Precision(%) Recall(%)
A 7 0.500 0.286
B 49 0.773 0.694
C 7 1.000 0.857
D 684 0.877 0.810
E 895 0.817 0.765
F 20 0.833 0.250
G 226 0.771 0.566
H 7 0.750 0.429
I 60 0.872 0.683
J 95 0.596 0.589
K 3311 0.917 0.982
L 27 0.000 0.000
Total 5388 0.884 0.884
D. Result

Figure 4 shows the classification performance of the com-
mercially available traditional ADC system and our proposed
method, the average accuracies of which were 77.23% and
87.26%, respectively. Our proposed method showed high
performance on all evaluation data sets (from set A to set
D). This result indicates that our proposed method outper-
formed the traditional ADC system. To further our exam-
ination of the proposed method, we analyzed classification
results of set C for each defect type in greater detail. Table III
shows the per-class classification precision (referred to as
“purity”), recall (referred to as “accuracy”) and the num-
ber of samples. For confidentiality, only the defect symbol
name is shown Data set C contains 12 classes. Class K
accounted for a very large portion of the data set (61.45%),
whereas classes A and H accounted for only a small fraction
(0.13%). Class performance generally degrades as the num-
ber of instances becomes small. Accordingly, classes D and
K had very high performance due to their high frequency of
appearance.
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Fig. 5. Performance of the Proposed Method.

V. TRANSFER LEARNING FOR FINE-GRAINED
CLASSIFICATION

A. Learning Strategy

In the third analysis, there were few data points with
highly reliable labels available for training because fine-
grained defects occurred less frequently than expected and
manual classification was more difficult. Such problems can be
addressed via transfer learning. Approaches to transfer learn-
ing can be divided into four types based on what to transfer:
(1) instance-based, (2) feature-representation, (3) parameter
and (4) the relational knowledge [22]. We adopted the feature-
representation transfer approach in order to reuse the “good”
feature representation of the source domain, because the
domain used for fine-grained defect classification in the third
phase is the same as domain one used for rough defect clas-
sification in first phase. In concrete terms, the output layer of
the pre-trained CNN model for the rough defect classification
in the first phase is extended with randomly initialized weights
for the third phase, and a small learning rate is used to tune
all parameters from their original values to minimize loss on
the new task with small number of labeled data points.

B. Evaluation Setup

For the experiment of third phase of the analysis phase,
data set C was prepared by relabeling 5386 fine-grained image-
label sets for fine-tuning training and 5388 image sets for
evaluation; there were 29 classes. To evaluate the relation-
ship between the ratio of fine-grained image and the accuracy,
six conditions were set from 0.01 to 1. (0.01 is equivalent to
54 images for fine-tuning)

C. Results

Figure 5 shows the classification accuracies of fine-grained
defects for data set C, which were obtained by varying the
number of training data points. The classification accuracy ini-
tially increased as the number of training data points increased
and the proposed method with pre-training outperformed the
method without pre-training under all conditions. Notably, the
proposed method had high classification accuracy even when
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Fig. 6. Learning Curve of Mini-Batch Training.

the number of training data points was small. The results indi-
cate that the proposed method has higher robustness against
a lack of labeled data.

VI. ACCELERATION OF MODEL TRAINING

For deep learning technology to be of practical use, it is
necessary to lower computational cost [23]. Early stopping,
in which training is stopped based on a validation loss is
a simple but powerful solution to reduce training time. Figure
6 shows a learning curve derived from plotting model learning
performance during mini-batch training. Monitoring the learn-
ing curves of models during training can be used to diagnose
problems with learning, such as the model being underfit or
overfit. As can be seen in Fig. 6, the model is sufficiently
trained by the 5000the iteration. In this work, we reduced the
runtime of training with hundreds of thousands of images from
40 h to 4 h, increasing the speed tenfold by combining use of
early stopping and GPU parallel computing.

VII. CONCLUSION

In this paper, we focused on a defect analysis task that
requires engineers to identify the causes of yield reduction
from defect classification results. To overcome inconsistent
manual classification and other costly problems, a CNN-based
transfer learning method of automatic defect classification was
presented. Since deep learning requires a large amount of
labeled training data, classification performance sometimes
deteriorates when sufficient reliable labeled data are not avail-
able. We introduced transfer learning which exploits unreliable
labeled data or labeled data of different tasks. From experi-
mental results using real semiconductor fabrication data, we
have confirmed that the proposed method outperforms the con-
ventional system and high classification accuracy is realized
using a limited number of reliable labeled data. At the manu-
facturing site, defect types that exceed a precision standard
of automation are excluded from manual inspection work.
Because our proposed method can classify frequent defect
types with high accuracy, the labor required for manual inspec-
tion work decreases nearly 2/3 compared to commercially
available traditional ADC system.
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