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Anomaly Detection and Segmentation for Wafer
Defect Patterns Using Deep Convolutional
Encoder—Decoder Neural Network Architectures
in Semiconductor Manufacturing

Takeshi Nakazawa

Abstract—Abnormal defect pattern detection plays a key role
in preventing yield loss excursion events for the semiconductor
manufacturing. We present a method for detecting and segment-
ing abnormal wafer map defect patterns using deep convolutional
encoder—decoder neural network architectures. Using a defect
pattern generation model, we create synthetic wafer maps for
8 basis defect patterns, which are used as training, validation,
and test datasets. One of the key capabilities for any anomaly
detection system is to detect unseen patterns. We demonstrate
that by using only synthetic wafer maps with the basis patterns
for network training, the models can detect unseen defect patterns
from real wafer maps.

Index Terms—Deep learning, encoder, decoder, convolutional
neural networks, anomaly detection, segmentation, semiconduc-
tor defects.

I. INTRODUCTION

N THE semiconductor manufacturing, engineers use wafer

defect maps to visualize defect patterns and identify poten-
tial process and tool issues. There are different use cases for
wafer maps and depending on the process maturity, the way
wafer maps is used could be different. Two main use cases are:
1) finding out the existence of common defect patterns among
different wafers for commonality analysis and root cause iden-
tification, 2) detecting unknown patterns that never exist before
for excursion prevention. First, understanding common defect
patterns helps to segment problems and quantify an occurrence
rate, and eventually each unique pattern will be connected to
root cause(s) of the problem so that a correct response flow is
associated with the defect pattern and its solution. For exam-
ple, line scratch pattern is associated with wafer handling at
a certain process tool. To identify similar defect pattern groups,
one can use unsupervised learning such as clustering methods.
If the purpose is to classify patterns into predefined pattern cat-
egories or classes, one can use supervised learning. Secondly,
detecting unknown pattern, or anomaly detection, is another
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important aspect because it could be an early signal of poten-
tial yield loss events. A system needs to detect anomaly signals
first, which is the object detection problem, and then compares
against the existing defect pattern library if the detected signal
shows any known pattern or not.

The wafer map pattern recognition can be divided into two
approaches: 1) model-based pattern recognition, 2) feature
extraction-based pattern recognition [1]-[5]. For model-based
pattern recognition, a predefined probability distribution func-
tion is used for each pattern and the best model is determined
by comparing models using information criterion. For feature
extraction-based pattern recognition, unique defective pattern
features are extracted first and then different pattern classifi-
cation algorithms are applied to classify these patterns. The
feature extraction can be performed using different algorithms
such as nearest neighbor method, correlogram and Radon
transform etc.

Deep learning has been huge success lately in many differ-
ent areas, particularly in computer vision. The main problem in
computer vision is object recognition, which can be divided
into three groups: object classification, object detection and
semantic segmentation [6]. The object classification is a task
of predicting presence or absence of a class in a test image.
The object detection requires to find a minimum bounding box
and assign a class label for each object. The semantic segmen-
tation requires to assign pixel-wise class label, which is one of
the active research areas. In autonomous driving applications,
for example, semantic pixel-wise labelling is required to map
video (image) captured by a camera to scene categories such as
road, buildings, cars, pedestrians etc. Datasets used for training
these models are input image and corresponding segmentation
map pairs with pixel-wise labels. There are a number of differ-
ent deep learning architectures for semantic segmentation such
as Fully Convolutional Networks (FCN) [7], Deconvolution
Network [8], SegNet [9], U-Net [10] and DeepLab [11].

In our previous literature, we demonstrated that deep con-
volutional neural networks (DCNN) can be used to classify
defect patterns and to retrieve similar defect patterns from
the library, given a query defect pattern [12]. In this paper,
we focus on the defect pattern detection and segmentation
problem and choose FCN, SegNet and U-Net as the base
architectures for comparing anomaly defect detection per-
formances. The difference from our previous study is as
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follows. Since DCNNs are the end-to-end training model, it
does not require any intermediate pattern extraction steps.
Inputs are wafer map images and outputs are correspond-
ing defect classes. This type of architecture is appropriate
if the primary interest is to know the defect classes. For
some cases, the engineers need to understand more detail
information from the defect cluster such as its location, size,
major and minor axis length, orientation etc. These detail
information help for further analysis in addition to the defect
cluster classes, especially during initial technology develop-
ment phase when the engineers do not have full understanding
about the defective patterns. To extract these information, the
defect cluster(s) should be identified and segmented first to
perform subsequent data extraction steps and thus different
neural network architectures are required. This paper discusses
about defect cluster pattern detection/segmentation using the
different type of CNN models.

FCN is the first work to train FCN end-to-end for pixel-
wise prediction. The key idea of FCN is to replace the fully
connected layers of typical classification neural networks with
convolutional layers so that a network output can be a two
dimensional heat map, rather than class probability prediction.
FCN implements “skip architecture”, meaning that shallow
layer’s outputs are merged to deeper layers so that the network
can maintain both local and coarse information. SegNet con-
sists of an encoder network, a corresponding decoder network
followed by a pixel-wise classification layer. The encoder
network has 13 convolutional layers which correspond to
the first 13 convolutional layers in the VGG16 network [13].
Each encoder layer has a corresponding decoder layer, namely
13 corresponding convolutional layers in the decoder network.
The decoder uses pooling indices computed in a max pooling
step of the corresponding encoder to perform non-linear up-
sampling. Since positional or boundary information are lost
during the max pooling operations in the encoder network,
maintaining positional information for each up-sampling oper-
ation in the decoder network is critical for accurate pixel-wise
segmentation. U-net is originally proposed for a biomedi-
cal image segmentation application and has encoder-decoder
architecture. Instead of using the pooling indices in the max
pooling step, U-net copies and crops a feature map in each
encoder layer to the corresponding decoder layer to maintain
local positional information. For the segmentation problem,
maintaining local information is the key so that each architec-
ture has its own way to transfer local details from shallower
layers to deeper layers.

As datasets, we use synthetic wafer maps using a pat-
tern generation model and real wafer maps. For the network
training, validation and testing, we only use the synthetic
wafer maps. The real wafer map data is used only for model
testing because one of the main objectives is to train the
models without using the real wafer maps and yet achieve
the practical performance. As input datasets, we generate
abnormal defect patterns with random defects whereas tar-
get output datasets contain only the abnormal defect patterns
without random defects. Using this pair dataset, the goal is
to train the neural network models such that only abnormal
defect patterns can be extracted. To verify the performance

of the proposed method, we generated two different synthetic
datasets, 1) basis defect patterns used for training, validation
and testing, and 2) unseen defect patterns used only for test-
ing. In addition, data from 1,191 real wafers are also used to
evaluate qualitative performance of the trained neural network
model.

The remainder of the paper is organized as follows. In
Section II, methods for wafer map pattern generation and sev-
eral convolutional encoder-decoder neural network architec-
tures are descried. In Section III, we evaluate the performance
on synthetic test and real wafer datasets. We also discuss
the pattern detection capability for unseen defect patterns,
which is an important element in real production scenario
since preventing excursion is the key for any defect pattern
detection tool. The conclusion is given in Section IV.

II. METHOD
A. Wafer Map Pattern Generation

For wafer map pattern generation, we follow the same
method described in our previous literature [12], [14]. The
only difference is that we use binary wafer maps instead of
density wafer maps since our primary interest is to isolate
defect cluster(s). The wafer maps with random and non-
random defect clusters are generated using Poisson point
process, which is given by

k
Pk, A) = %e‘A (1)

where A is often called the rate parameter that defines the
average number of events in an interval. The number of events
is defined by k. Once all points are generated for a single wafer
map, a binary map is created by checking presence or absence
of defects on a particular die.

B. Deep Convolutional Encoder-Decoder Neural Network
Architecture

Fig. 1 shows the schematics of the first convolutional
encoder-decoder architecture based on SegNet. The network
has the encoder and decoder with the sigmoid activation layer
for pixel-wise classification at the last layer. The inputs to
the network are wafer maps with defect cluster(s) and random
defects. The target outputs have only the defect cluster(s) as
illustrated in Fig. 1. There are two convolutional layers, fol-
lowed by a batch normalization, and then a rectified linear
activation (ReLU) is applied at each layer. 2 x 2 max-pooling
is performed after each 2-convolutional layer. For the decoder,
we have 2 x 2 up-sampling followed by 2-convolutional layer.
The receptive field size is 3 x 3 for all convolutional layers
and the channel sizes are 128, 64 and 32, indicated by the size
of rectangle boxes. We use a binary cross entropy as a loss
function. The input wafer map size is 344 x 480.

Fig. 2 illustrates the schematics of the second convolu-
tional encoder-decoder architecture based on U-Net. In this
architecture, we have the two convolutional layers with 32,
64, 128 channel sizes similar to the previous architecture.
The difference is the merge layer illustrated in yellow boxes.
The local information from the shallow layers are merged
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Fig. 1. Deep convolutional encoder-decoder neural network schematics based

on SegNet.
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Fig. 2. Deep convolutional encoder-decoder neural network schematics based

on U-Net.
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Fig. 3. Deep convolutional neural network schematics based on FCN.

to the deeper layers. The receptive field size is 3 x 3 for
all convolutional layers except the last layer whose field size
is 1 x 1 with the sigmoid activation.

The third architecture is shown in Fig. 3 based on FCN. We
have the two convolutional layers with 32, 64, 128 channel
sizes with the receptive field size of 3 x 3 and the stride
of 2 x 2. Then two convolutional layers with 256 are added
with the stride of 7 x 7 and 1 x 1 respectively. The next lay-
ers are the combination of two transpose convolutional layers
and convolutional layers whose input comes from the shallow
layers’ pooling layers.

Fig. 4 shows examples of input and target pattern pairs used
for the neural network training and validation. The images
left show the wafer map pattern with the random defects
and abnormal defect cluster. The images right illustrate the
abnormal defect cluster only, which is our target detection.

III. RESULT
A. Wafer Map Pattern Generation

We define two different groups of synthetic patterns to
test our model. The first dataset is the basis defect patterns
used for the model training, validation and test. The second
dataset is used only for testing our model capability to detect
unseen defect patterns. They are either the combination of

Input pattern Target pattern

IL. 1
[dghyyl

e

Fig. 4. Input and target wafer map pattern pairs.
TABLE I
LI1ST OF BASIS PATTERN
Class label Wafer map defect class name
C1 Random defect
C2 Wafer edge ring defect
C3 Wafer right side edge defect
C4 Wafer left side edge defect
C5 Line scratch defect
Coé Non-random cluster defect
C7 Gross defect at left half of wafer
C8 Gross defect at right half of wafer
TABLE II
LIST OF PATTERN TO TEST UNSEEN DEFECTS
Class label Wafer map defect class name

c9 Gross edge damage defect
C10 Curved scratch defect
C11 Line scratch with non-random cluster defect

basis defect patterns or new patterns. Table I is the list of the
basis defect patterns and Fig. 5 shows the corresponding wafer
map examples.

Table II is the list of the unseen defect patterns and
Fig. 6 shows the corresponding wafer map examples. To check
the performance of detecting multiple defect patterns in a sin-
gle wafer, line scratch with non-random cluster defect pattern
is added.

B. Model Training and Test Result

We have 17,000 total dataset and split them into 70%
training and 30% validation dataset. In addition, 3,300 test
dataset is used for testing the model performance, which is
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7. Gross defect at left half of wafer

8. Gross defect at right half of
wafer

Fig. 5. The examples of the synthetic wafer maps used for model training
and validation.

not used during training and validation phases. Fig. 7 illus-
trates the training accuracy for each model. Among these
models, SegNet and U-net based architectures show similar
training accuracy. FCN based architecture shows the lower
performance as compared with these two models. The mean
training accuracy between epoch 5 and 9 is 0.989, 0.990,
0.978 for U-Net, SegNet and FCN based architecture respec-
tively. After around 5 epochs, there is no significant increase
in accuracy performance for all models.

Table III describes the average training time in minutes per
epoch.

In order to determine object detection performance, we
use intersection over union (IoU), which is defined as fol-
lows, per each image. For class level evaluation, we use mean
intersection over union (mloU).

[ANB|
J(A,B) = AU B] 2)
where A and B are a set. The intersection of the sets A and B
in the numerator is the set that contains all elements of A that
also belong to B. The union in the denominator is the set of
all elements in the sets A and B.

10. Curved scratch defect

11. Line scratch with non-random
cluster defect

Fig. 6. The example of the synthetic wafer maps used for unseen defect
pattern detection test.
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Fig. 7. Training accuracy versus epoch for each model.
TABLE III
TRAINING TIME IN MINUTES FOR EACH ARCHITECTURE
Architecture SegNet U-Net FCN
Avg. time/epoch [min] 19.9 10.0 4.2

Table IV shows the mean +/— one standard deviation mloU
results for the basis pattern test dataset and Fig. 8 illustrates
inference results with relatively high (0.94) and low (0.71) IoU
examples. For all 7 basis defect patterns, mloU are greater than
0.5, which in general is considered as a successful detection.

C. Test Results for Unseen Defect and Real Wafer Defect
Patterns

Table V shows the mean +/— one standard deviation mloU
results for the unseen defect patterns. Fig. 9 is the object detec-
tion result. IoU for the image top is 0.94 whereas it is 0.68 for
the image bottom. The system can capture the defect clus-
ter at bottom right but it also captures some random defects.
SegNet and U-Net based architectures have better performance
as compared with FCN based architecture.
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TABLE IV
MIOU RESULT FOR BASIS PATTERN TEST SET

Pattern\Architecture SegNet U-Net FCN

Wafer edge ring 0.655+/-0.12 0.728+/-0.08 0.428+/-0.08
Right side edge 0.879+/-0.07 0.850+/-0.11 0.804+/-0.09
Left side edge 0.883+/-0.11 0.794+/-0.19  0.330+/-0.26
Line scratch 0.649+/-0.25 0.663+/-0.23  0.538+/-0.23
Non-random cluster 0.815+/-0.09 0.817+/-0.09 0.646+/-0.11
Gross defect at left 0.753+/-0.10  0.799+/-0.06  0.459+/-0.08
Gross defect at right 0.876+/-0.04 0.877+/-0.05 0.640+/-0.04

Fig. 8. The example detection results for relatively high IoU (top) and low
ToU (bottom).

TABLE V
MIOU RESULT FOR UNSEEN DEFECT PATTERNS

Pattern\Architecture SegNet U-Net FCN
Gross edge damage 0.912+/-0.05 0.894+/-0.07 0.776+/-0.08
Curved scratch 0.824+/-0.10 0.808+/-0.12 0.769+/-0.10
Line scratch with

non-random cluster 0.743+/-0.08 0.771+/-0.09 0.610+/-0.09

To understand defect detection performance based on the
defect density differences, Figs. 10-12 show the relationship
between IoU and the defect density (each data point represents
a single wafer). The defect density is calculated by the number
of bad units divided by the total number of units in the wafer.

Tables VI and VII show a slope of linear fit and R square
metric to understand the correlation between IoU and defect
density. The first observation is that although FCN based archi-
tecture gives the lower mloU result, IoU does not decrease as
the defect density increases as compared with the other two
architectures. The second observation is that between SegNet
and U-Net based architectures, IoU from SegNet does not
decrease as much, compared with that from U-Net based archi-
tecture, as the defect density increases. The performance for
the defect density less than 0.1 is comparable between the two
architectures.

Fig. 9. The example detection results for relatively high IoU (top) and low
IoU (bottom).
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Fig. 10. IoU versus defect density correlation for unseen defect gross edge
damage.
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Fig. 11. IoU versus defect density correlation for unseen defect curved
scratch.

Finally, we test the defect pattern detection capability using
the dataset from 1,191 real wafers. For this real wafer dataset,
we use the SegNet based architecture. Among 1,191 wafers,
22.9% is the real defects and 77.1% of wafers show only ran-
dom defects. Table VIII shows the result. The model detects
all the real defect, so detectability is 100%. For the random
defects, if the output is zero across the entire wafer map field,
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Fig. 12. IoU versus defect density correlation for unseen defect line scratch
with non-random cluster.
TABLE VI
SLOPE OF LINEAR FIT FOR UNSEEN DEFECT PATTERNS
Pattern\Architecture SegNet U-Net FCN
Gross edge damage -0.7 -1.2 -0.3
Curved scratch -1.0 -2.2 -0.9
Line scratch with
non-random cluster -0.8 -1.2 0.03
TABLE VII
R SQUARE FOR UNSEEN DEFECT PATTERNS
Pattern\Architecture SegNet U-Net FCN
Gross edge damage 0.5 0.65 0.06
Curved scratch 0.3 0.74 0.21
Line scratch with
non-random cluster 0.16 0.43 0.0002

we call it as the correct detection. If, on the other hands, some
units remain in the output, we call it as the wrong detection.

Fig. 13 shows some qualitative examples for the defec-
tive wafer maps. The images left show the original real
wafer maps and the images right are the inference results.
Some real wafers show unique patterns that are not similar to
any training patterns including wafer maps showing multiple
defects, yet the SegNet based model can detect these patterns
successfully.

Fig. 14 shows the random wafer examples for the cor-
rect detection (top) and wrong detection (bottom). Some
units are not removed well from the wafer maps. For most
of the cases, these remaining unit areas are small and
localized, so additional filtering algorithms, such as remov-
ing small cluster areas, could be implemented for further
improvements.

D. Scalability Consideration

Although our primary intent of this paper is to demonstrate
the methodology of using synthetic dataset for network train-
ing and perform acceptable defect detection tasks for the real
wafers, it is also important to consider the scalability of this
method. To demonstrate this, we increase our total synthetic

TABLE VIII
DEFECT DETECTION PERCENTAGE

Defect type Defect Random
Correct Detection 100% 94.3%
Wrong Detection 0% 5.7%

Fig. 13. The defect pattern examples from real wafer maps. The patterns
from the real wafers (left) and inference results (right).

wafer dataset size from 17,000 to 26,000 and compare the
training time and the overall mIoU for the same test dataset in
Table IX. In this study, we use the SegNet based architecture.
The training time and overall mloU increase from 19 minutes
to 30 minutes, 0.796 to 0.828 respectively. We believe this is
reasonable since the total training time is about a few hours
to achieve reasonable performance.
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Fig. 14. The random pattern examples from real wafer maps. The patterns
from real wafers (left) and inference results (right). The first example show
correct detection and the second image show the wrong detection.

TABLE IX
TRAINING TIME IN MINUTES AND MIOU COMPARISON

Architecture 17,000 dataset 26,000 dataset
Avg. time/epoch [min] 19.9 30.5
Overall mloU 0.796 0.828

IV. CONCLUSION

In this paper, we present a method for abnormal defect
pattern detection and segmentation using deep convolutional
encoder-decoder neural network architectures. Anomaly detec-
tion from wafer maps plays a key role in the semiconductor
manufacturing to prevent any excursion events and to under-
stand process and tool issues. We demonstrate that by training
the models with only synthetic wafer maps, the models can
successfully detect unseen defect patterns from the real wafer
maps. This capability of detecting abnormal signals without
using training dataset from the real wafers is useful since
excursion events happen rarely, which means that we don’t
have the enough number of training dataset initially. During
technology development phase, the engineers need to under-
stand defective cluster characteristics more than just knowing

the defect cluster classes. Our proposed solution can be used as
the initial step to extract the pattern and subsequent data anal-
ysis can be performed, for example, using standard image
processing methods and machine learning techniques to obtain
relevant information such as locations, size, orientation etc.
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