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Abstract—In this paper, we focus on yield analysis task where
engineers identify the cause of failure from wafer failure map
patterns and manufacturing histories. We organize yield analysis
task into the following three stages, namely, failure map pattern
monitoring, failure cause identification, and failure recurrence
monitoring, and incorporate machine learning and data mining
technologies into each stage to support engineers’ work. The
important point is that big data analysis enables comprehen-
sive and long-term monitoring automation. We make use of fast
and scalable methods of clustering and pattern mining and real-
ize daily comprehensive monitoring with massive manufacturing
data. We also apply deep learning, which has been an innovative
core technology of machine learning in recent years, to classifica-
tion of wafer failure map patterns, and explore its performance
in detail. Finally, these machine learning and data mining
techniques are integrated into an automated monitoring sys-
tem with interfaces familiar to engineers to attain large yield
enhancement.

Index Terms—Data mining, pattern recognition, machine
learning, deep learning, semiconductor defects.

I. INTRODUCTION

COMPETITVE strength in semiconductor field depends
on lean manufacturing. In a modern semiconductor fab-

rication plant, owing to rapid advancement of computers and
information technology, a large amount of data is collected
and used for yield enhancement. But as manufacturing pro-
cesses today are too complex and data is too big to handle, it
is still difficult for engineers to attain rapid yield enhancement
by manually finding informative patterns in raw data.

Figure 1 represents a problem with yield analysis. In a large
fabrication, there are dozens of product lines, and there are
dozens of failure tests for each line, and dozens of failure
patterns for each failure test. There are many manufactur-
ing devices, and among them engineers must find a few
devices that are responsible for the failure pattern. Obviously,
even skilled engineers could not watch all of failures and
find responsible process and device of every failure pattern
constantly.
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Fig. 1. An Illustration of Difficulty in Comprehensive Monitoring (Red points
in wafer map represents failure chips).

In this work, we focus on yield analysis task that engineers
identify the cause of failure from wafer failure map patterns
and manufacturing histories. We organize yield analysis task
into the following three stages, namely, failure map pattern
monitoring, failure cause identification and failure recurrence
monitoring. We incorporate machine learning and data min-
ing techniques into each stage to support engineers’ work.
Specially, we make a detailed investigation of deep learn-
ing, highly important technique of recent machine learning,
for the failure recurrence monitoring stage. We integrate all
techniques into a monitoring system to enable comprehensive
and long-term monitoring automation.

II. FAILURE MAP PATTERN MONITORING

BY CLUSTERING

Firstly, in order to monitor failure map patterns, we intro-
duce a clustering method. Clustering is one of unsupervised
learning approaches which classify objects into groups (clus-
ters) based on their similarities or distances. One of the
simplest and most popular clustering methods is K-Means
clustering [1]. Clustering approach including K-Means has
been used to group wafers with similar failure map patterns
(e.g., [2] and [3]). The size of each cluster directly indi-
cates the number of wafers with the failure map pattern, and
engineers can understand failure occurrence without checking
every wafer by sight.
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Fig. 2. Runtime of Parallel Distributed Clustering. Standalone represents
calculation time on single computational resource, and Distributed represents
calculation time on distributed computational resources by K-Means++.

In this work, we adapt a distributed clustering method scal-
able K-Means++ [4]. As stated in Section I, the problem is
that there are many wafers, production lines, failure tests and
patterns. Since in real-world system clustering should be done
by the start of the work, computation time of clustering algo-
rithm is also important. One solution to a large data problem is
to parallelize computation on distributed computers. Scalable
K-Means++ algorithm distributes dataset to calculation units
and provides faster clustering solutions.

By introducing scalable K-Means++, we reduce runtime of
clustering for wafers 72.5 times faster with 32 processing units
(Fig. 2). Decrease in clustering time enables timely monitoring
of all failure tests of all product lines.

III. CAUSE IDENTIFICATION

Secondly, we utilize a pattern mining method to identify
responsible devices of the failure patterns. Usually, engineers
investigate huge amount of manufacturing history data, that
is, which device have wafers gone through at each process.
Intuitively, the more failed wafers are processed in the device,
the more it is likely to be the cause of the failure. Engineers
focus attention on the processes that are logically or empiri-
cally related to the failure type, and investigate devices of the
processes through manual works.

Figure 3 represents an example of utilization of pattern min-
ing. Pattern mining algorithms such as Apriori are designed to
discover frequent patterns in transactions [19]. One of its most
successful applications is to extract frequent patterns of pur-
chase from transactions made by customers in stores. When it
is applied to the semiconductor manufacturing, manufacturing
history can be viewed as a transaction, and it extracts frequent
patterns of devices. In Fig. 3, frequent patterns of devices that
are related to the results of tests are extracted.

In order to deal with a large amount of history data, we
adopt a pattern mining method FPGrowth ([8], [9]). FPGrowth
is an improvement of Apriori and much more efficient for
finding complete sets of frequent patterns in a large dataset.
FPGrowth is fast and scalable, and its runtime increases lin-
early with the number of transactions and items while runtime
of Apriori increases exponentially. FPGrowth is expected to
extract frequent patterns of devices from large datasets of all

Fig. 3. An Example of Utilization of Pattern Mining. Manufacturing history
of each wafer is viewed as a transaction, and pattern mining algorithms extract
frequent patterns that appear in histories.

Fig. 4. An Illustration of Cause Identification Utilizing Pattern Mining
Techniques. Frequent device patterns are extracted both from all and failed
wafer histories, and are ranked in order of p-value of chi-squared test.

products and tests in a short time, especially when it is used
on distributed computational resources.

Figure 4 is an illustration of cause identification utilizing
the pattern mining techniques. In Fig. 4, frequent device pat-
terns are extracted both from all and failed wafer histories. By
applying chi-squared test on frequent patterns of failed wafers
and arranging the patterns in order of p-value, the method can
present major candidates of the causes in ranking form. We
have confirmed that our method ranks true responsible devices
in the top three for real failure examples.

IV. FAILURE RECURRENCE MONITORING

Thirdly, we introduce Deep Learning approach to mon-
itor recurrences of failures. Deep Learning actually means
the modeling with neural networks with many hidden layers.
Machine learning methods such as deep neural networks or
Support Vector Machine have been introduced to classifica-
tion of failure map patterns in recent works ([5]–[7]). In this
work, we follow a standard supervised learning approach. By
learning classification models with engineers’ supervision on
patterns, the models can automatically classify new wafers and
indicate long-term trend of failure occurrence.

Although deep neural networks are known as the most
successful machine learning method in many research and
industrial fields, networks has a large amount of important
hyper-parameters to be determined, including network struc-
ture itself, and it is not easy to make networks to exhibit
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a certain classification performance. We make detailed exper-
iments on neural networks for classification of failure map
patterns with real-world dataset.

A. Dataset

In order to adopt deep learning approach to classification of
failure map pattern classification, we use complete 2 month’s
wafer map data collected in real fabrications. In real data,
various map patterns could happen. In this paper, we intro-
duce a concrete example of radial pattern in Fig. 1, where
failed chip appears in 4 radial directions. In this case, deep
learning algorithm learns two-class classification models to
distinguish radial map patterns from the others. To simulate
the real situation, we divide whole dataset into two halves. We
train classification models with the first month data, and eval-
uate the accuracy of classification with the second month data.
Since failed wafers are much fewer than normal wafers in real
production line, learning classification models of high perfor-
mance is harder than in experimental settings where all labels
are included equally, as known as class imbalance problems
in machine learning.

B. Network Structure

The first thing to do for utilizing neural networks is to
determine network structure. Many complex networks have
been reported in recent researches (e.g., [14] and many
other reviews on deep learning). Recently, owing to improve-
ment of performance of computers or Graphical Processing
Units (GPUs), a complex network such as GoogLeNet [16]
can be learned with feasible computational resources even in
industrial fields.

In this paper, however, we make use of relatively simple
Convolutional Neural Network (CNN) structures. CNNs are
designed to treat 2D array data and show high performances in
image recognition fields (e.g., [15]). Since wafer map patterns
can be regarded as simple 2D images, CNNs are promising
for their classification.

Table I shows an example of network structure of 5-layer
CNN. A 5-layer CNN consists of Input, Convolutional layer,
Pooling layer, Full Connection Layer, and Output Layer. In
addition to 5-layer CNN, 7-layer CNN is made by adding
a set of Convolutional and Pooling layer to 5-layer CNN, and
9-layer is made by adding two sets. As the activation func-
tion, we use Rectangle Linear Unit (ReLU) which is known to
avoid gradient vanishing problem and make training of deep
networks efficient [18].

Table II shows the performance of networks of differ-
ent size. The performance is evaluated with metrics of
F-Measure, Precision, and Recall. Here, Precision is calcu-
lated by TP/(TP+FP), Recall is TP/(TP+FN), and F-Measure
is the harmonic mean of Precision and Recall, that is,

fmeasure = 2 × precision × recall

precision + recall

TP represents True Positive, the number of radial pattern sam-
ples rightly classified, FP represents False Positive, the number
of non-radial pattern samples misclassified as radial pattern,

TABLE I
AN EXAMPLE OF NETWORK STRUCTURE (5-LAYERS)

TABLE II
PERFORMANCE OF NETWORKS OF DIFFERENT SIZE

and FN represents False Negative, the number of radial pattern
samples misclassified as non-radial patterns.

In Table II, CNN outperforms Support Vector
Machine (SVM) which is one of the most competitive
methods other than deep learning. Generally, deeper neural
networks are expected to exhibit better performance. But in
Table II, shallower 5-layer CNN provides better performance
than 7, 9-layer CNNs. This is because failure map patterns
are simpler than general image of object recognition tasks,
and it can be considered that deeper CNNs are too complex
and have too many parameters for wafer map patterns. From
this experiment, a deep but simple neural network structure
is considered as one of the most powerful options for wafer
map pattern classification.

C. Learning Rate Settings

Neural networks has a large amount of hyper parameters to
affect performances of resultant models, and learning rate is
considered as one of the most influential [17]. Learning rate
is a value to determine how quickly parameters of a model
are adjusted at each stage of learning and is known to have
a huge effect on the performance and convergence speed of
learning.

In standard algorithms for neural networks, learning can
be considered as an optimization of network parameters to
training dataset. Gradient descent is one of the most popu-
lar algorithms to perform optimization. Especially, Stochastic
Gradient Descent (SGD) which performs a parameter update
for every small group (called mini-batch) of training samples
is widely used because it is efficient and can avoid trap to
local optimum by randomly choosing samples.

SGD needs a constant learning rate which represents how
largely an update change the parameters. Learning rate is often
determined arbitrarily and difficult to find appropriate settings.
In this experiment, we set learning rate to 0.1, 0.01, 0.001, and
call them SGD-0.1, SGD-0.01, SGD-0.001.

In addition to using constant learning rate of SGD-0.1,
SGD-0.01, SGD-0.001, we evaluate multiple methods to of
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Fig. 5. The Relation between epoch (the number of learning) and test error.
Each line represents the method to determine learning rate.

AdaGrad [10], RMSProp [11], AdaDelta [12], and Adam [13]
which algorithmically adjust learning rate in the course of
learning.

AdaGrad [10] and RMSProp [11] are methods that auto-
matically decrease initial learning rate as learning advances.
AdaGrad modifies learning rate based on the past gradient,
and performs smaller update for parameters that have been
largely updated. RMSProp attempts to fix shortcomings of
AdaGrad that learning rate sometime diminish rapidly to 0 in
the course of learning. RMSProp has a term to take prior-
ity to last gradient update, and prevent learning rate from
diminishing.

AdaDelta [12] and Adam [13] are methods that not only
decrease but also increase learning rate according to the past
update. AdaDelta decreases learning rate as AdaGrad, and in
addition modifies learning rate with respect to approximated
second order differential of the gradients. With Adadelta, we
also do not need to set an initial learning rate, as it has been
eliminated from the update rule. Adam updates parameters
based on estimation of first and second moment of historical
gradients, and takes an idea that learning rate become large in
initial steps of learning.

Figure 5 shows the relation between epoch (the number of
learning) and error of classification. In machine learning, the
performance of model is expected to be improved as optimiza-
tion as learning advances. But often a model learns detail or
noise too much from training data, and the performance to new
testing data declines seriously. This phenomenon is known as
overfitting. In Fig. 5, it is obvious that learning rate largely
affect learning speed and how the model suffers overfitting. All
of AdaGrad, RMSProp, AdaDelta, and Adam make learning
fast, and learning converges within 100 epochs in all methods,
and become largely overfit from then on.

Table III shows the performance of each learning rate and
method. We use 5-layer CNN for this experiment. A constant
value of learning rate SGD-0.1 is the highest performance, and
AdaGrad, AdaDelta, and Adam also works well. When we take
both performance and learning speed, AdaGrad, AdaDelta, and

TABLE III
PERFORMANCE OF DIFFERENT LEARNING RATE

TABLE IV
EFFECTS OF DROPOUT

Adam is competitive candidate for a practical use. AdaDelta is
also advantageous because it does not need initial constant
learning rate which is hard to determine.

D. Dropout Technique

Dropout is a technique to improve generalization
performance [20]. Dropout randomly inactivate some
parts of network and forcibly avoid overfitting of models to
detailed or noise of dataset. Generally, dropout works better
for complex networks because they tend to learn too much
from training data.

Table IV shows effects of dropout. Compared with the
results in Table II, the performance is significantly lower even
for the most complex 9-layer CNN, and dropout does not
work. It is considered that failure map patterns that occur in
real production lines are more or less similar each other dur-
ing a few months and generalization by dropout might not be
always necessary for wafer map pattern classification.

E. Model Averaging

Model averaging is a technique that learns multiple models
and combines them to classify samples. It is known that an
ensemble of models performs better than individual model. In
process of investigating hyper-parameters, we have made sev-
eral competitive classification models. By combining models,
we attempt to improve final classification performance.

Table V shows the performance of ensemble models. We
ensemble 2 models of 5/9-layer, 4 models of 5/7/9-layer and
7-layer-dropout, and 6 models of 5/7/9-layer and all their
dropout models. Ensemble of 2 competitive models performs
best. It is interesting that ensemble of 6 models including less
competitive 5-layer-dropout and 9-layer-dropout outperforms
ensemble of 4 better models. This result implies that ensemble
of models of various performance is effective to improve final
classification performance.
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TABLE V
EFFECTS OF MODEL AVERAGING

Fig. 6. A Procedure of Learning Failure Patterns User only needs to make
a list of failed wafers, which is much easier than labeling all data. The sys-
tem automatically selects the negative samples (normal wafers) and learns
classification models.

F. Learning Procedures

In addition to making high performance classification mod-
els with deep learning, we attempt to reduce engineers’ labor
in a real-world system. Figure 6 shows the procedure of learn-
ing, where engineers are assumed to only make a list of failed
wafers. Given a list, our system automatically selects normal
wafers and starts a learning algorithm. In general supervised
learning, users have to give data labels for machine learn-
ing algorithms to have them learn from data. But labeling is
a painful task and it is not realistic for yield enhancement engi-
neers to label all data as their daily operations. The procedure
in Fig. 6 is expected to reduce engineers’ labor of labeling
for supervised learning since they only need to pick up failed
wafers.

In practice, we also have to run many learning processes for
many settings of parameters and many kinds of map patterns to
make high performance classification models. For this reason,
it is necessary for deep learning algorithms to finish calculation
of learning models within a practically short time.

It is known that Graphical Processing Units (GPUs) largely
accelerate speed of learning in deep learning applications,
because deep learning involves a large amount of matrix and
vector multiplication that can be parallelized on GPUs. In this
work, we reasonably make use of GPUs for learning. Table VI
shows the calculation time of CNN calculated with a high per-
formance Central Processing Unit (CPU), and with a GPU. We
have confirmed that learning with a large amount of wafers
finishes in 4 minutes by utilizing a GPU. This calculation time
is short enough for practical use of deep learning.

TABLE VI
CALCULATION TIME OF LEARNING

Fig. 7. An Example of Failure Map Pattern Monitoring / Cause Identification
Interface. Engineers can see a summary of failures and its responsible
candidates in one view.

Fig. 8. An Example of Recurrence Monitoring Interface. Models automat-
ically classify failed wafer. Engineers can easily watch long-term trend and
identify recurrence of failures as soon as it happens.

V. INTEGRATED SYSTEM

Finally, we integrate all techniques above-mentioned into
an automated monitoring system with interfaces familiar to
engineers. Figure 7 shows an example of integration of fail-
ure map pattern monitoring and cause identification. In Fig. 7,
engineers can see a summary of failures and its responsible
candidates in one view. If they discover new failure map pat-
terns in the screen, they can start an investigation from the
candidates of causes, and if first candidate is actually a cause,
they can start taking measures to the device in a very short
time. The fast machine learning and data mining algorithms
enables daily comprehensive monitoring over all product lines
and tests.

Figure 8 shows an example of failure recurrence monitoring.
In Fig. 8, engineers trained a classification model with wafers
in the period enclosed by dotted line based on the procedure in
Fig. 6. Red points represent the number of wafers classified as
the failure by the model. Engineers can easily watch long-term
trend and identify recurrence of failures as soon as it happens.
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Once classification model is learned, new wafers are classified
and recurrence is notified automatically for years. Supervised
learning approach enables long-term monitoring and reduces
risk of missing recurrence of failures.

VI. CONCLUSION

In this work, we focused on yield analysis task. We incor-
porated machine learning and data mining technologies into
failure map pattern monitoring, failure cause identification and
failure recurrences monitoring to support engineers’ work. We
applied clustering and pattern mining methods of K-Means++
and FPGrowth, and confirmed that these fast and scalable
methods enable failure map monitoring and cause identifi-
cation for real-world massive manufacturing data. We also
applied Deep Learning to the classification of wafer failure
map patterns. We carefully explored structures and hyper-
parameters of Deep Learning and showed it also works well
in a semiconductor manufacturing application. In addition to
applying machine learning and data mining technologies, we
considered operational factors such as learning procedures,
calculation time, and interfaces to support engineers’ work.
Our integrated comprehensive “Big Data Based” monitoring
system is expected to lead to reduction of engineers’ labor and
large yield enhancement.
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