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Coded Speech Quality Measurement
by a Non-Intrusive PESQ-DNN
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Abstract—Wideband codecs such as AMR-WB or EVS are
widely used in (mobile) speech communication. Evaluation of
coded speech quality is often performed subjectively by an ab-
solute category rating (ACR) listening test. However, the ACR
test is impractical for online monitoring of speech communica-
tion networks. Perceptual evaluation of speech quality (PESQ)
is one of the widely used metrics instrumentally predicting the
results of an ACR test. However, the PESQ algorithm requires an
original reference signal, which is usually unavailable in network
monitoring, thus limiting its applicability. NISQA is a new non-
intrusive neural-network-based speech quality measure, focusing
on super-wideband speech signals. In this work, however, we aim
at predicting the well-known PESQ metric using a non-intrusive
PESQ-DNN model. We illustrate the potential of this model by
predicting the PESQ scores of wideband-coded speech obtained
from AMR-WB or EVS codecs operating at different bitrates in
noisy, tandeming, and error-prone transmission conditions. We
compare our methods with the state-of-the-art network topologies
of QualityNet, WaweNet, and DNSMOS—all applied to PESQ
prediction—by measuring the mean absolute error (MAE) and
the linear correlation coefficient (LCC). The proposed PESQ-DNN
offers the best total MAE and LCC of 0.11 and 0.92, respectively, in
conditions without frame loss, and still is best when including frame
loss. Note that our model could be similarly used to non-intrusively
predict POLQA or other (intrusive) metrics.

Index Terms—Objective speech quality measure, PESQ,
POLQA, speech codecs, speech communication.

I. INTRODUCTION

S PEECH signals being processed by speech encoder, trans-
mission system, and speech decoder are called coded

speech. The speech encoder and decoder forming a speech
codec aim to represent the speech signal in digital form with the
smallest bitrate. However, the coded speech quality is typically
impaired by far-end additive background noise, quantization
noise, and transmission errors. Modern transmission systems,
e.g., videoconferencing systems, digital cellular communication
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networks, and voice over internet protocol (VoIP), support wide-
band (WB) speech sampled at 16 kHz or even higher sampling
rates.

ITU-T G.722 [1] was the first standardized wideband speech
codec, operating at 64 kbps (or lower) and widely used in
videoconferencing systems and cordless telephony. The adaptive
multi-rate wideband (AMR-WB) codec [2] is one of the most
widely used mobile telephony speech codecs, offering nine
operation modes with bitrates from 6.6 to 23.85 kbps. Since
the introduction of AMR-WB to digital cellular services such
as third-generation (3G) communication systems and beyond,
superior speech quality and voice naturalness have pushed the
expectation towards speech communication systems to a higher
level [3]. Compared to G.722 and AMR-WB, which only focus
on speech signals, enhanced voice services (EVS) [4] is a modern
audio codec that enables high-definition (HD) quality for speech
and music signals. EVS supports audio signals from narrowband
(NB) to full-band (FB) and is implemented in the voice over LTE
(VoLTE) services of the fourth-generation (4G) communication
system and beyond. EVS offers 11 operation modes for WB
speech signals with bitrates ranging from 5.9 to 96 kbps.

In the design phase of communication systems, evaluation of
the quality of coded speech is usually performed by a subjective
absolute category rating (ACR) listening test, in which naive
human listeners (subjects) give their opinion about the perceived
quality of each speech utterance with a score range from 1 (bad)
to 5 (excellent). The averaged ACR scores over all subjects
for an utterance or test condition is known as mean opinion
score (MOS). This type of ACR test is typically performed in
a laboratory environment to control the external influences on
subjects’ judgments following ITU-T P.800 [5]. However, this
controlled ACR test is time-consuming to prepare and conduct,
and it is also costly to recruit naive subjects.

For online monitoring of speech communication networks,
e.g., to dynamically adjust the bitrate modes of the codecs
based on the coded speech quality during operation, a subjec-
tive ACR test is impractical. Perceptual evaluation of speech
quality (PESQ) [6], perceptual objective listening quality as-
sessment (POLQA) [7], and virtual speech quality objective
listener (ViSQOL) [8] are well-known instrumental metrics for
evaluating (coded) speech quality. PESQ is designed to predict
ACR listening test results and is widely used. PESQ, POLQA,
and ViSQOL algorithms, however, require an original reference
signal (intrusive approaches), which is used to estimate the
perceived coded speech quality by measuring the perceptually
weighted distance to the corresponding coded speech signal.
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However, such a reference signal is unavailable for network
monitoring, thus limiting the applicability of PESQ, POLQA,
and ViSQOL. Please note that as intrusive approaches, PESQ
and POLQA may have a poor correlation to human ACR lis-
tening test results depending on the reference speech signal
quality: Comparing PESQ [6] and POLQA [7] scores across
different datasets may not correctly reflect human perceptions,
as illustrated in [9].

In recent years, data-driven approaches have attracted much
attention in approximating highly non-linear functions even for
estimating human perception. Abel et al. trained a support-
vector-machine-based MOS predictor to intrusively predict
subjective MOS scores for narrowband-to-wideband artificial
speech bandwidth extension [10]. The development of deep
neural networks (DNNs) pushes the performance even further
and enables end-to-end training of speech quality DNNs to
predict instrumental metrics or subjective listening test results
even in a non-intrusive way, without the need for a reference
signal [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29]. Soni et al. [11]
use a simple autoencoder to extract features from the speech
signal, which are used to train a single-layer neural network
to predict the subjective quality scores for narrowband (NB)
speech signals of fixed length. Fu et al. [12] proposed a so-called
QualityNet, based on a bidirectional long short-term mem-
ory (BLSTM) structure, to predict PESQ scores from the ampli-
tude spectrogram of the WB speech signal. Due to the BLSTM
recurrent structure, QualityNet can predict PESQ scores for
speech signals with variable lengths. Focusing on predicting the
subjective quality scores for transmitted super-wideband (SWB)
speech signals, Mittag and Möller proposed a BLSTM-based
DNN dubbed as NISQA in [14], [19]. An advanced version of
NISQA, which predicts three orthogonal qualities (noisiness,
coloration, and discontinuity) for fullband (FB) speech signals,
is proposed in [19]. Most non-intrusive speech quality prediction
DNNs use the time-frequency (TF) domain representation of the
speech signal as an input. However, Catellier and Voran [17]
propose to directly predict PESQ scores from the waveform of
the wideband speech signal with a convolutional neural network
(CNN) called WaweNet. Due to the lack of recurrent structures,
WaweNet can only deal with speech signals with a fixed length
of three seconds. A long speech signal is cut first into several
3-second segments, and then the final estimation for this long
speech signal is the averaged estimated PESQ scores across all
the segments.

Except for using TF-domain or time-domain features, Zezario
et al. [25] proposed to use a large self-supervised-learned (SSL)
model, named Wav2vec [30], to extract features for predicting
human ACR listening test scores. Please note the proposed
method from [25] has a different scope, as we propose to
mimic an existing intrusive instrumental quality metric by a
non-intrusive DNN. Furthermore, compared to the model used
in [25], our proposed model has fewer trainable parameters
requiring less computational power, which makes it easy to
implement to monitor a speech communication system. Similar
approaches employing the SSL model for generalized feature
extraction are proposed in [26], [27], while a multi-task learning
strategy is used in [28], [29] to further improve the performance.

However, all the aforementioned approaches focus on predicting
human ACR listening test scores.

In the Microsoft Deep Noise Suppression (DNS) Chal-
lenges [31], [32], Reddy et al. provided a DNN-based speech
quality measure calledDNSMOS [20]. TheDNSMOSDNN model
is specifically trained to predict subjective rating scores follow-
ing ITU-T P.808 [33] for enhanced speech signals from DNS
tasks. To offer a better overview of the perceived quality of
the enhanced speech signal, the authors proposed an advanced
version of DNSMOS [23], which separately estimates the qual-
ities of speech component, background noise, and the overall
enhanced speech following ITU-T P.835 [34]. Both versions of
DNSMOS require the input speech signals having a fixed length of
nine seconds. In our recent works [21], [22], [24], we proposed
an end-to-end PESQNet for DNS applications, adapted from a
BLSTM-based speech emotion recognition DNN [35], to predict
PESQ scores of the enhanced speech signal. In these works,
the trained PESQNet is employed as a mediator to provide a
differentiable PESQ loss during a speech enhancement DNN
training, aiming at maximizing the PESQ score of the enhanced
speech signal. This method, however, works only if the DNS
DNN and the PESQNet speech quality predictor follow an
alternating learning protocol, which is prohibitive in our current
work: Here, we require a readily trained DNN for non-intrusive
quality prediction of speech signals that have been transcoded
by various different speech codecs and modes.

Most speech quality prediction DNNs focus on estimating
the perceptual quality for speech signals degraded by additive
noise or enhanced signals obtained from different DNS methods.
Only a few works, e.g., WaweNet [17] and both versions of
NISQA [14], [19], estimate the perceived quality for coded
speech signals, while the latter one explicitly focuses on coded
super-wideband (SWB) speech signals.

In this work, we propose an end-to-end non-intrusive DNN
model, which we call PESQ-DNN, to explicitly estimate the
PESQ scores for coded speech signals obtained from various
WB codecs. We also consider the influence from different trans-
mission conditions, including packet losses in error-prone trans-
mission, far-end additive noise, and tandeming transmission,
where two WB codecs are serially concatenated. To the best
of our knowledge, such a non-intrusive PESQ estimation DNN
explicitly developed for coded speech considering a wide range
of realistic conditions has not yet been proposed. Furthermore,
unlikeWaweNet or theDNSMOS network, our proposedPESQ-
DNN is capable of estimating PESQ scores for coded speech
signals of varying lengths. As most other scientific works, we
do not follow the assessment procedure for machine learning
models on speech quality estimation, standardized in ITU-T
P.565 [36] and P.565.1 [37]. One reason for this is that these
ITU-T recommendations do not regard the residual background
noise condition, but we see it as very important. Furthermore, the
models defined in the recommendations expect side information
as input to the speech quality prediction model, such as a
packet loss flag, which is, however, contradictory to our goal of
predicting speech quality just on the basis of the measurement
speech signal. We note that particularly in error-prone transmis-
sion conditions, we obviously aim at an even more challenging
goal.
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Please note, since we illustrate the potential of our proposed
PESQ-DNN for PESQ score estimation, it may have the same
limitations as the original PESQ algorithm [6], e.g., it cannot
reliably reflect human ACR test results in an experiment across
different datasets, as mentioned before. However, this limitation
can be mitigated by adapting the speech quality estimation model
to non-intrusively predict human rating scores, as illustrated
in [9].

As concerns topology, we build upon [22], but many changes
are required for the DNN to serve the speech communica-
tion monitoring needs targeted in this work: (1) Compared to
PESQNet, the novel PESQ-DNN employs a complex spectro-
gram as input to explicitly consider phase influences in the per-
ceived speech quality. Except for a few works, e.g., WaweNet,
most speech quality prediction DNNs employ amplitude or
power spectrogram input, leading to the problem that speech
quality degradations caused by phase distortions cannot be
measured. (2) Inspired by [19], we introduce a self-attention
pooling layer instead of the statistics pooling (average, standard
deviation, minimum, and maximum) used in PESQNet. The
attention layer is inserted following the BLSTM layer, allowing
the PESQ-DNN to change focus dynamically on features ob-
tained from different time instances, which is helpful to stabilize
the training process and improve the inference performance.
(3) Different to PESQNet, we investigate different training
losses, adapted from [12], to give physical meanings to the
intermediate embeddings inside the PESQ-DNN. Subsequently,
the values of the intermediate embeddings are controlled in the
investigated loss formulation and are supposed to stabilize the
training progress. Except for introducing these modifications,
a comprehensive ablation study illustrates the influence and
value of the introduced modifications, thereby being another
core contribution of this work.

The rest of the article is structured as follows: In Section II, we
introduce the signal model and our mathematical notations. We
describe our proposed non-intrusive PESQ-DNN in Section III.
Then we explain the experimental setup including the database,
training, validation, and test conditions, baselines, and perfor-
mance metrics in Section IV. Comprehensive ablation studies
and discussions on results are given in Section V and our work
is concluded in Section VI.

II. SIGNAL MODEL AND NOTATIONS

We assume the transmitter-sided speech encoder input signal
y(n) to comprise the original speech signal s(n) and potentially
residual1 noise d(n) as:

y(n) = s(n) + d(n), (1)

with n being the discrete-time sample index. Afterwards, the
signal y(n) is processed by some speech encoder to obtain the
bitstream, which is then passed through a transmission system
and processed by the corresponding speech decoder. Finally, the
coded speech obtained on the receiver side is denoted as ŷ(n).

1As y(n) does not denote the microphone signal, but the speech encoder
input signal, d(n) models the residual noise after a potential noise suppression
algorithm along with some slight speech distortions.

The proposed non-intrusive PESQ-DNN estimates the PESQ
scores of the coded speech signal ŷ(n) based on its discrete
Fourier transform (DFT) spectrogram Ŷ�(k), with frame index
�, frequency bin index k∈K = {0, 1, . . . ,K−1}, and K being
the DFT size. This transformation is always performed via the
fast Fourier transform (FFT), and successive FFT frames overlap
in time.

III. PROPOSED NON-INTRUSIVE PESQ-DNN

In this work, we propose a single end-to-end non-intrusive
PESQ-DNN, modeling ITU-T P862.2 PESQ but without ref-
erence input, to estimate PESQ scores of coded WB speech
utterances in (wireless) speech communication systems.

A. PESQ-DNN Topology

Our proposed end-to-end non-intrusive PESQ-DNN is shown
in Fig. 1. The dimensions of the input and the output feature maps
for each layer are depicted as number of features × number of
time frames × number of feature maps (if applicable). Firstly,
we investigate two types of PESQ-DNN employing either the
amplitude or the complex spectrogram as input. For the first type
ofPESQ-DNN, the input of the network is the amplitude spectro-
gram of the coded speech |S�(k)|, with �∈Lu={1, 2, . . . , Lu},
andLu being the number of frames in the utterance with index u.
Correspondingly, the number of input channels is set to C = 1
in Fig. 1. On the other hand, the motivation for complex-valued
input is straightforward: An algorithm employing the amplitude
spectrogram as input cannot measure speech quality degradation
caused by phase distortions. However, the original ITU-T P862.2
PESQ function considers phase influences in PESQ estimation
to some extent, e.g., by estimating temporal delay between the
samples of the degraded speech signal and its corresponding
reference. The complex-valued input PESQ-DNN employs the
real and imaginary parts of the coded speech spectrogram, de-
noted as Re{Ŷ�(k)} and Im{Ŷ�(k)}, respectively, as two separate
input channels, resulting in C = 2 in Fig. 1. For both types of
PESQ-DNN, the input is grouped into several feature blocks
(feature matrices) indexed with b ∈ Bu = {1, 2 . . . , Bu}, with
Bu being the total number of blocks for utteranceu. Each feature
block has the same dimension Kin×W×C, with Kin and W
being the number of input frequency bins and time frames per
block, respectively.

Afterwards, the feature blocks are processed in paral-
lel by identical subnetworks: A CNN-based encoder is em-
ployed to extract quality-related features from the input feature
blocks. The 2D convolutional layers are denoted by Conv(h×
w, f), with f and (h× w × number of input feature maps) rep-
resenting the number of filter kernels and the correspond-
ing kernel size, respectively. In this CNN encoder, we use
maxpooling layers with two different kernel sizes repre-
sented by (2× 1× number of input feature maps) and (2× 2×
number of input feature maps). The extracted features are pro-
cessed by a multi-width convolutional structure employing ker-
nel widths ofw1,w2,w3, andw4 to extract features with different
time resolutions. The wide filters can capture long-term informa-
tion, while the narrow ones focus on short-term information. The
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Fig. 1. Topology of the proposed PESQ-DNN. The number of input channels
is set to either C = 1 or C = 2 for the PESQ-DNN employing the amplitude
or complex spectrogram as input, respectively. The “Embedding Processing”
model used in the baseline PESQNet [22] is recapitulated in Fig. 2, while
the employed model for our proposed PESQ-DNN containing frame-level or
block-level embeddings is illustrated in Fig. 3.

max-pooling-over-time layer chooses the highest activity along
the time axis for each feature map. The subsequent concatenation
delivers a feature vector with a fixed dimension to the BLSTM
layer, which contains 128 neurons and is used to model temporal
dependencies. Afterwards, we investigate various “Embedding
Processing” models (Fig. 1) to convert the per-utterance varying
number of output embeddings of the BLSTM layer into a fixed
length representation.

The first investigated “Embedding Processing” model from
the original PESQNet is shown in Fig. 2, where four statistics
(average, standard deviation, minimum, and maximum) over
blocks b are applied to the BLSTM outputs. Afterwards, the
obtained feature vector has a fixed dimension of 4 · 256× 1
and is processed by two fully connected (FC) layers denoted as
FC(N), withN being the number of output nodes. However, the
baselinePESQNet offers poor performance in PESQ estimation
for coded speech utterances due to serious training instability

Fig. 2. Employed “Embedding Processing” model in Fig. 1 for the PESQNet
proposed in [22]. Four statistics (average, standard deviation, minimum, and
maximum) over blocks b are applied to the BLSTM outputs to deliver a feature
vector with a fixed length.

Fig. 3. Employed “Embedding Processing” model in Fig. 1 for our proposed
PESQ-DNN. The “Pooling” function is realized by either an average pooling or
the attention pooling as illustrated in Fig. 4.

issues. One can imagine that, e.g., packet losses will sparsely
occur in some of the input blocks, which may dramatically
change the value ranges of the BLSTM output belonging to these
blocks. In consequence, there is a high dynamic range of the
BLSTM outputs, even within the same utterance. Accordingly,
the four statistics calculated from these BLSTM outputs are also
highly unstable regarding the value range, finally resulting in
training stability problems.

Another cause of the training stability problem could be that
without direct control or guidance, the BLSTM outputs have
no physical meaning, thus, leading to a high dynamic value
range. To mitigate this issue, we employ a modified “Embedding
Processing” model as shown in Fig. 3, which is inspired by
QualityNet [12]. The idea is to assign physical meanings
to the intermediate embeddings, e.g., frame-level embeddings
(FLE) PESQ scores or block-level embeddings (BLE) PESQ
scores, even though the training target PESQ scores are still
prepared utterance-wise. This intermediate FLE or BLE PESQ
score is represented by qb, with b ∈ Bu={1, 2, . . ., Bu}. To
estimate the FLE PESQ scores, we set N = W , representing
that the number N of neurons in the second FC layer equals
the number W of time frames in each block. Accordingly,
we estimate the PESQ scores for each frame belonging to the
corresponding input block. For the BLE PESQ scores, we set
N = 1 to output a single PESQ value for each block. The outputs
of the FC layer are then processed by a gate function

σ(x) = 3.6 · sigmoid(x) + 1.04 (2)
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Fig. 4. Employed “Pooling” shown in Fig. 3, here: attention pooling. We set
N = W and N = 1 for the frame-level embeddings (FLE) and the block-level
embeddings (BLE), respectively.

to limit the range of the estimated FLE or BLE PESQ scores
between 1.04 and 4.64, as it is with PESQ, determined by ITU-T
P.862.2 [6]. Accordingly, if packet losses or noise occurs in
one input block, its corresponding FLE or BLE PESQ scores
will decrease within a limited range. A pooling layer is then
employed to map the blocks’ FLE or BLE PESQ scores to
a single value, as shown in Fig. 3. For the pooling layer, we
investigate average and attention poolings, dubbed as “AV” and
“AT”, respectively, where the employed attention pooling is
shown in Fig. 4.

The idea of attention pooling is inspired by [19], [38], to
explicitly consider the contributions of the FLE or BLE PESQ
scores obtained from input blocks with poor speech quality or
even speech pauses in the final PESQ estimation. As shown in
Fig. 4, the attention score denoted as ab, with ab ∈ [0, 1] and
b ∈ Bu, is estimated for each block by the FC layers employing
softmax as the output activation function. Subsequently, each
block’s FLE or BLE PESQ scores are multiplied by the estimated
attention score and are summed over blocks, as shown in Fig. 4.

As shown in Fig. 1, the outputs obtained from either the
embedding processing model in Fig. 2 or the proposed one
in Fig. 3 are processed by the FC output layer with a single
output node followed by the gate function (2) to estimate the
final utterance-related PESQ score.

B. Training Loss Options

The estimated PESQ score for the coded speech utterance
should be as close as possible to its groundtruth PESQ score
measured by ITU-T P.862.2 [6]. Accordingly, one option for
training our proposed PESQ-DNN is to employ the so-called
PESQ loss defined as:

JPESQ
u =

(
̂PESQu − PESQu

)2

, (3)

with ̂PESQu and PESQu being the estimated and the correspond-
ing ground truth PESQ scores measured by ITU-T P.862.2 [6],
respectively, and u denoting the utterance index.

For training the PESQ-DNN employing intermediate FLE
PESQ scores, we introduce an additional constraint into the loss
function (3) as:

JPESQ
u =

(
̂PESQu−PESQu

)2

+ αu

Bu·Lb

∑
b∈Bu

∑
�∈Lb

(qb(�)−PESQu)
2 , (4)

with qb(�) being the predicted intermediate frame-level PESQ
scores for the block indexed with b, and frame index �∈Lb=
{1, 2, . . . ,W}. Parameters Bu = |Bu| and Lb= |Lb|=W rep-
resent the total number of blocks for an utterance indexed with
u and the number of frames in each block, respectively. The
utterance-wise weighting factor is represented by

αu = 0.9|PESQu−PESQmax|, (5)

with PESQmax = 4.64 being the maximum PESQ score defined
in ITU-T P.862.2 [6]. The idea is that in loss function (4), the
constraint reflected by the value of αu should be higher for
speech utterances with better quality: The intermediate FLE or
BLE PESQ scores are then all encouraged to be equal to the
utterance-wise PESQ. One can imagine that a speech utterance
with a perfect overall perceptual quality should be annotated
with the same good quality everywhere, i.e., the same high PESQ
score in each block. Please note when αu = 0, loss function (4)
reduces to the utterance-wise PESQ loss (3).

For the PESQ-DNN employing intermediate BLE PESQ
scores, the loss function (4) is simplified to:

JPESQ
u =

(
̂PESQu−PESQu

)2

+
αu

Bu

∑
b∈Bu

(qb−PESQu)
2 , (6)

with qb being the intermediate block-level PESQ score for block
indexed with b, see Fig. 3.

For both loss functions (4) and (6), the utterance-wise weight-
ing factor αu is calculated by (5).

IV. EXPERIMENTAL SETUP AND DATABASES

A. Databases and Preprocessing

In this work, the speech signals used for training, develop-
ment, and test have a sampling rate of 16 kHz and are obtained
from the NTT wideband speech database [39], which contains
21 languages represented by four female and four male speakers
per language. Each speaker offers 12 speech utterances of 8 s
duration each. All the speech utterances in American English
and German are used in our test set. Our training set is con-
structed with all speech utterances from the first three female
and male speakers in all 19 other languages. Meanwhile, the
development set uses all speech utterances from the remaining
female and male speakers marked with “f4” and “m4” in the
same 19 languages. Accordingly, the test performed in this work
is completely speaker-independent and even partly language-
independent: British English is one of 19 languages used for
training and development, while American English is used in
the test.
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Fig. 5. Training, validation, and test data processing for the proposed PESQ-
DNN employing various codecs under clean, noisy, error-prone transmission, or
tandeming conditions. The functions “ENC” and “DEC” represent the investi-
gated codecs’ encoder and decoder, respectively.

The data preprocessing procedure is illustrated in Fig. 5. In
this work, the training, development, and test data is prepro-
cessed based on the quality assessment plans for evaluating
coded speech signals [40], [41], [42], [43]. The employed func-
tions in Fig. 5 are taken from the ITU-T G.191 software tool
library [44].

For our proposed PESQ-DNN, we apply a periodic Hann
window with a frame length of 512 with a 50% overlap in the
“Windowing and FFT” function shown in Fig. 5. The obtained
DFT spectrogram Ŷ�(k) is saved as the input for thePESQ-DNN.
The corresponding ground truth PESQ targets for training are
obtained from ITU-T P.862.2 [6], employing the coded speech
signal and its original reference speech signal as input, as shown
in Fig. 5.

1) Training and Development Conditions: The speech utter-
ances are firstly processed by an MSIN high-pass filter [44].
Afterwards, the active speech level of the filtered speech ut-
terances measured by the root mean square (RMS) level is
adjusted following ITU-T P.56 [45]. We target at three RMS
levels for each speech utterance s(n), namely −36, −26, and
−16 dBov. Please note that the original PESQ algorithm [6]
implicitly normalizes the speech levels for a pair of reference and
degraded speech signals, offering a speech-level-independent
result. However, our proposed non-intrusive PESQ-DNN em-
ploys the spectrum-based features as input: Different speech
levels will lead to different PESQ-DNN input and may influ-
ence the final PESQ score estimation. Therefore, it is essential
to perform multi-speech-level training to mimic the original
PESQ algorithm [6]. To explicitly consider coded speech quality
degradation under noisy conditions, the codec input signal y(n)
contains additive noise d(n), see (1). The noise signals are taken
from DEMAND [46] and QUT [47], comprising 35 different
noise files shared in training and development. The additive
noise signal is processed by the same MSIN high-pass filter
used for the speech utterances, and the noise signal’s RMS level

is adjusted according to the desired signal-to-noise ratio (SNR).
For each active speech level, we simulate 10%, 10%, and 80% of
the speech utterances with the SNR levels of 15, 20, and ∞ dB,
respectively, where the SNR of ∞ dB represents the clean con-
dition without additive noise. These relatively high SNR values
take into account that in practice, the microphone-path signal
processing employs a noise suppressor before speech encoding,
typically achieving already a 10...20 dB SNR improvement.

After adjusting the active speech level of the speech utter-
ances and mixing them with additive noises (if considered), the
obtained transmitter-sided speech encoder input signal y(n) is
subject to coding. In Fig. 5, the functions “ENC” and “DEC”
represent the investigated codecs’ encoder and decoder, respec-
tively, comprising delay compensation for time alignment. In
this work, we consider coded speech obtained from AMR-
WB [2] and EVS [4] codecs operating at different bitrates in
training and development. We employ the AMR-WB codec
at seven bitrates (modes), including 6.6, 8.85, 14.25, 15.85,
18.25, 19.85, and 23.05 kbps, in the fixed-point implementation
without DTX [48]. For the EVS codec, we employ its fixed-point
implementation [49] at five bitrates, including 5.9, 8.0, 9.6,
16.4, and 24.4 kbps. Please note that EVS operating at 5.9 kbps
requires DTX to be switched on, while the other modes are
implemented without DTX.

The error insertion device (EID) in Fig. 5 is employed to
insert frame losses into the bitstream obtained from “ENC”,
simulating the error-prone transmission condition. In this work,
we implement frame losses with EVS on clean speech utter-
ances. We consider two types of frame losses, random and burst
frame erasures. The random frame erasure is based on a Gilbert
model [50], while the burst frame erasure employs the Bellcore
model [51]. Both types of frame erasures are measured by the
frame error rate (FER), reflecting the ratio between the number
of distorted frames and the number of all transmitted frames.
For training and development, we employ FERs of 3% and 10%,
equally distributed among the two types of frame erasures, on
10% of the clean speech utterances in each active speech level.
Note that in case of a frame loss, the speech decoder (“DEC”)
provides means for error concealment and still outputs some
estimated speech ŷ(n).

In tandeming (TDM) transmission condition, the “EID” is
replaced by “DEC” and the subsequent “ENC,” resulting in
a serial concatenation of two WB codecs. Please note that
in this work, additive noise and error-prone transmission are
not considered in TDM evaluation, simply to keep the total
number of experiments tractable. For training and development,
speech utterances are firstly processed by G.722 [1] and then by
EVS [4], operating at 9.6 and 24.4 kbps. The function “16to14”
in Fig. 5 is employed for bit conversion from 16 bits to 14 bits
as required by AMR-WB and G.722 (in TDM condition).

In this work, the training and development datasets are de-
noted as Dtrain and Ddev, respectively. As explained above, the
development set contains the same conditions as in training
but with speech utterances from different speakers. We employ
the development set Ddev not only for learning rate scheduling
and early stopping during training. We also select the best
PESQ-DNN schemes based on the performance measured on the
development set shown in Table I, which we will discuss later.
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Fig. 6. Overall distribution of the ground truth PESQ scores measured by
ITU-T P.862.2 [6] on the training set Dtrain.

In Fig. 6, we show the distribution of the ground truth PESQ
scores measured by ITU-T P.862.2 [6] on the training set. One
can see that most of the coded speech utterances have PESQ
scores higher than 3.8, while few (less than 23%) have lower
PESQ scores, which are mostly from the coded speech signals
in the noisy or error-prone transmission conditions.

2) Test Conditions: The speech utterances used for the test
are preprocessed in the same way as used for training, including
MSIN filtering and RMS level adjustment. The active speech
level of each test speech utterance is normalized to −36, −26,
and −16 dBov. We explicitly consider the performance of our
PESQ-DNN on the coded speech obtained under clean, noisy,
error-prone, and TDM transmission conditions.

In the clean condition, the signal path for the additive noise
and the “EID” function in Fig. 5 are deactivated and bypassed,
respectively. We select 80% of the test utterances in each active
speech level for this clean test condition. The remaining 20% of
the test utterances will be used to prepare noisy speech utterances
for the test in the noisy condition. For the clean test condition, we
investigate coded speech utterances obtained from AMR-WB
operating at 12.65 and 23.85 kbps and EVS operating at 7.2,
13.2, and 48 kbps. Please note that the employed operation
modes for AMR-WB and EVS are unseen during training and
development, enabling us to illustrate the codec mode general-
ization ability of the trained PESQ-DNN. The performance of
our PESQ-DNN in the clean condition is shown in Table II and
will be discussed later.

In the noisy condition, the signal path for the additive noise
is activated while the “EID” function in Fig. 5 is bypassed. We
exclude the error-prone transmission condition and explicitly
investigate the influence of additive noise on PESQ estimation
for the coded speech. Please note that we report the noisy
test condition for the EVS codec operating at 13.2 kbps. We
take three unseen types of noise from the ETSI background
noise database [52], which differ from the used noise databases
during training and development. The used unseen noise types
include cafeteria noise, car noise with a speed of 100 km/h, and
traffic road noise. To prepare the speech utterances in noisy test
condition, we use the remaining 20% of the test utterances in
each active speech level and mix them with the unseen types of
noise signals to simulate an SNR of 15 dB. We will discuss the
performance of our PESQ-DNN in the noisy condition shown in
Table III later.

In the error-prone transmission condition, the “EID” function
in Fig. 5 is switched on, while the noise signal path is deactivated,
so we perform investigation in the clean condition. Furthermore,
to keep the overall number of experiments tractable, we report
the influence of the EID with the EVS codec operating at 13.2
and 48 kbps. To prepare the coded speech utterances impaired
by the EID, we select 50% of the test utterances in each active
speech level and simulate an FER of 3% and 6% equally dis-
tributed among random and burst frame erasures. Please note
that the FER of 6% is unseen during training and development.

In the tandeming (TDM) transmission condition, we employ
two TDM cases on all test speech utterances: For the seen TDM
case, the two codecs are concatenated in the same order as used
in the training and development, where the speech utterances
are firstly processed by G.722 and then by EVS at 13.2 kbps.
For the unseen TDM case, we flip the order of the two codecs
by firstly employing EVS at 13.2 kbps, followed by G.722. For
both TDM transmission cases, we exclude the influences from
additive noise and error-prone transmission.

Except for the performance measures in different transmission
conditions, we also perform a simple cross-dataset experiment to
illustrate the limitation of mimicking an intrusive speech quality
metric employing a non-intrusive DNN. We use the German and
English test speech signals from ITU-T P.50 [53] and report the
performance of our proposed methods and the baselines on clean
EVS-coded speech at 13.2 kbps.

In the following discussion, the employed test set will be
denoted as Dtest. We report the performance of our PESQ-DNN
in each condition of Dtest separately, as shown in Tables II, III,
IV, V, and VI. We will give a detailed analysis of these tables in
Section V.

B. Baselines

Among prior art, two approaches [12], [17] directly pre-
dict PESQ, and another one can be easily adapted to predict
PESQ [20]. These three methods will serve as baselines in
our work after retraining with our datasets, thereby allowing
direct performance comparison of the actual network topologies
being used. The three approaches will be briefly sketched in the
following.

1) QualityNet DNN: Fu et al. [12] introduced the so-called
QualityNet to predict PESQ scores for speech signals de-
graded by additive noise or for enhanced speech signals obtained
from a specific DNS model. The input of QualityNet is the
speech amplitude spectrogram. As one of the baselines in this
work, we adopt the QualityNet DNN topology to predict
PESQ scores for coded speech by replacing the inputs and the
corresponding targets during training. Accordingly, the topology
of the QualityNet baseline DNN is exactly the same as
proposed in [12].

Similar to our proposedPESQ-DNN, theQualityNet base-
line DNN employs a BLSTM layer as recurrent structure to deal
with coded input speech signals of variable length. Please note
that the loss functions (4) and (6), which explicitly control the
intermediate FLE and BLE PESQ scores during the PESQ-DNN
training, are inspired by the loss function used in QualityNet
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training [12]. Accordingly, by comparing to this baseline, we
intend to make visible the benefits obtained merely from the
network structure of the proposed PESQ-DNN. This baseline is
denoted as “QualityNet Baseline DNN [12]” in the results
tables.

2) WaweNet DNN: As another baseline, we adopt the topol-
ogy of WaweNet as proposed in [17] to directly predict PESQ
scores from the waveform of the coded speech signal. Similar
to this work, the original WaweNet proposed in [17] predicts
PESQ scores for coded speech signals from WB codecs but only
considers the influence from additive background noise. Note
that inverting the waveform of the speech signal by multiplying
the original waveform with −1 will not influence perceptual
quality or measured PESQ scores. This inverting invariance can
be one of the training goals. For this purpose, we follow the
authors of [17] and perform inverse phase augmentation (IPA)
to all the training and development data used for WaweNet.
Furthermore, due to the lack of a recurrent layer, WaweNet
can only deal with speech signals of a fixed length of three
seconds. In this work, a longer speech utterance is cut into
several three-second segments without overlapping, and the
remainder shorter than three seconds is discarded. The final
estimated PESQ score for this long speech utterance equals
the averaged estimations across all the segments. We call this
baseline “WaweNet Baseline DNN [17]” in this work.

3) DNSMOS DNN: Reddy et al. proposed a DNN-based
measure called DNSMOS [20] to predict human subjective rating
scores following ITU-T P.808 [33] for enhanced speech signals
obtained from DNS models. Its advanced version proposed
in [23] offers separate estimations of human rating scores for
the speech component, the background noise, and the overall
enhanced speech qualities following ITU-T P.835 [34]. Since we
do not predict DNSMOS in this work, and also noise suppression
algorithms are not in our focus, we adapt the DNSMOS DNN
topology proposed in [20] as a further baseline, but replace the
input and the corresponding target during training. Please note
that the adapted DNSMOS DNN employs a log power spectro-
gram as input, with an FFT size of K = 320. The DNSMOS
DNN proposed in [20] has a CNN-based structure and predicts
human rating scores for input speech utterances with a fixed
length of nine seconds. In this work, the used speech utterances
having a length of eight seconds. Accordingly, for the training,
development, and test of the adapted DNSMOS baseline, all the
speech utterances are zero-padded to nine seconds. This baseline
is presented as “DNSMOS Baseline DNN [20]” in the following
discussions.

C. Performance Metrics

Following [10], [12] and [20], the performance of the PESQ-
DNN and baseline models is measured by the mean absolute error
(MAE)

MAE =
1

Utest

∑
u∈Utest

∣∣∣̂PESQu−PESQu

∣∣∣ (7)

and the linear correlation coefficient (LCC)

LCC =

∑
u∈Utest

(
̂PESQu−μ̂

)
·(PESQu−μ)√∑

u∈Utest

(
̂PESQu−μ̂

)2

·
√∑

u∈Utest
(PESQu−μ)2

(8)
with ̂PESQu and PESQu being the estimated and the correspond-
ing ground truth PESQ scores for speech utterance indexed with
u, and u ∈ Utest. In (7), the total number of speech utterances
in set Utest is denoted as Utest = |Utest|. The mean values of
the estimated and ground truth PESQ scores over set Utest are
represented by μ̂ and μ, respectively. Both MAE and LCC
are calculated with the estimated PESQ score obtained from
the PESQ-DNN and its corresponding ground truth measured
according to ITU-T P.862.2 PESQ [6]. An accurately estimated
PESQ score is reflected by a low MAE (ideally 0) and a high LCC
(ideally 1.0). These metrics reported in the following Tables. II,
III, IV, V, and VI are averaged across the three RMS levels (−36,
−26, and −16 dBov) of the test speech signals to limit the total
number of experiments. In some preparational research, we also
find that most of the investigated methods perform consistently
(some with slight performance degradations) as the RMS level
of the coded speech signal decreases.

Please note that selecting the best model based on the LCC
performance may be misleading, especially when the values of
the compared LCCs are small or very close, as shown in [54]:
Kolossa et al. proposed a sophisticated Bayesian model selection
(BMS) method showing by example that a model with an LCC
of 0.89 can be statistically significantly better than a model
with an LCC of 0.90. In another case, the model with an LCC
of 0.31 is — by BMS — only very weakly preferred to the
one with a much lower LCC of 0.24, considering statistical
evidence. However, the models selected by statistical evidence
(BMS) always offer lower distance values measured between
the predictions and their corresponding ground truth. Therefore,
instead of employing the sophisticated BMS methods in our
case, we decided to report the 95% confidence interval for
the MAE measurement, but refrained from further analysis of
variance or confidence intervals with the LCC - for the nontrivial
reasons and observations in [54]. We entered 95% confidence
intervals for MAE wherever space allowed into Tables II to VII,
and where space was limited, we focused on the ‘total’ columns.
If the MAE confidence intervals between the two methods do
not overlap, their differences are statistically significant.

D. Training Setup

For our proposedPESQ-DNN and theQualityNet baseline
DNNs the inputs of the networks are normalized to zero-mean
and unit-variance with statistics collected on the training dataset,
as recommended by the proponents of QualityNet in [55].
Meanwhile, for theWaweNet baseline DNN andDNSMOS base-
line DNN, the corresponding waveform and log-power inputs
are not normalized, thereby following [17], [20].

The number of input and output frequency bins in Fig. 1
is set to Kin = 260. The last 3 frequency bins are redundant
for compatibility with the two maxpooling operations in the
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TABLE I
ABLATION STUDY ON THE PROPOSED PESQ-DNN PERFORMED ON THE

DEVELOPMENT SET DDEV

employed PESQ-DNN shown in Fig. 1. The widths of the
convolutional kernels used in the PESQ-DNN shown in Fig. 1
are set towi = 2i−1, i ∈ {1, 2, 3, 4}. The number of time frames
in each feature block shown in Fig. 1 is set to W = 16. Except
for the layers before the softmax (Fig. 4) or the gate function (2)
(Figs. 1 and 3), which employ a linear activation function, the
rest of the layers in the PESQ-DNN use the leaky rectified linear
unit (ReLU) [56] as the activation function.

During PESQ-DNN training, we employ the loss function (3),
but alternatively (4) and (6) to explicitly control the intermediate
FLE and BLE PESQ scores, respectively. The utterance-wise
weighting factor αu in loss functions (4) and (6) is calculated
from (5). Please note that (4) and (6) are adapted from the
loss used for the QualityNet baseline training, in which the
second loss term weighted by αu is calculated by averaging
over all frames belonging to the current input utterance without
grouping them into blocks. The other baseline models are trained
with the loss function (3), as it was proposed in their original
works [17], [20].

For the PESQ-DNN training, we employ a truncated
backpropagation-through-time (BPTT) training scheme with a
sequence length (unrolling depth of BPTT) equal to the total
number of feature blocks Bu belonging to the current input
utterance with indexu. A similar truncated BPTT scheme is used
for training the QualityNet baseline, but with a sequence
length being the number of time frames belonging to the current
input utterance. For all the trainings in this work, we employ
the Adam optimizer with the initial learning rate of 10−4. The
learning rate is multiplied by a factor of 0.6 once the development
loss measured on Ddev does not improve for two consecutive
epochs. We stop the training after the development loss does not
improve for six consecutive epochs, and the model providing
the lowest development loss is saved.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Ablation Studies for the New PESQ-DNN

In this section, we explicitly investigate which modifications
introduced in our novel proposed PESQ-DNN contribute most
to stabilize the training process and to improve performance.
Accordingly, reported in Table I, we perform a comprehensive
ablation study on the trained variants of PESQ-DNN by analyz-
ing their performance measured on the development set Ddev.
Meanwhile, we will select the best two PESQ-DNN variants
as our proposed models based on their development set perfor-
mance and use them for later comparison to the baselines on the
test set Dtest. For each trained PESQ-DNN variant, we report the
averaged performance over the corresponding employed bitrates
on the coded speech obtained from EVS, AMR-WB (AWB), and
seen tandeming (TDM) condition (G.722 first, then EVS). As
in the training set, EVS-coded speech from the development set
considers influences from noisy and error-prone transmission
conditions. PESQNet [22] and the complex-input PESQNet
employ loss function (3). PESQ-DNN variants employing FLE
and BLE shown in Fig. 3 are trained with either loss func-
tions (3), (4), or (6). Models marked by “AV” employ average
pooling, while “AT” represents attention pooling as illustrated
in Fig. 4.

First, we investigate the influence of different input represen-
tations, amplitude or complex spectrograms, on the reference
PESQNet [22] and on our proposed PESQ-DNN, see also
Fig. 1 for C = 1 or C = 2. Concerning MAE (7), in the upper
half of Table I (amplitude spectra), there is no clear advan-
tage visible of our new PESQ-DNN variants vs. the reference
PESQNet [22]. On LCC (8), however, the novel PESQ-DNN
shows some improvement (in total: about 0.40 vs. 0.08). Still,
LCC results of below 0.50 are not good enough for a convincing
solution. In the lower half of Table I, we see that the original
PESQNet adapted to complex-valued input shows actually the
same poor performance as with the amplitude-input reference
PESQNet [22] (total MAE = 0.38, total LCC = 0.08). This
observation confirms that employing statistics pooling to the
high-dynamic range outputs of the BLSTM layer will lead to
a training stability issue, thus limiting the performance of the
PESQNet reference. Interestingly, however, our novel PESQ-
DNN takes a lot of profit from using complex spectrogram input,
as can be easily seen by significantly lower MAE results (≈ 0.14)
and higher LCC results (≈ 0.88). Among the six PESQ-DNN
variants, on the other hand, we see no significant differences,
neither w.r.t. BLE or FLE, nor w.r.t. the loss or pooling method.
Accordingly, for the following experiments, we keep the two
best methods (seven 1st ranks and one 2nd rank, and six 1st
ranks and two 2nd ranks) marked by a green symbol, both
employing complex spectral input. Note that the large step ahead
in performance of our proposed PESQ-DNN vs. the reference
PESQNet [22] can be dedicated to the intermediate embeddings
qb in Fig. 3 before pooling, which seems to be advantageous,
independently whether the intermediate embeddings qb in Fig. 3
are explicitly controlled in training (losses (4), (6)) or not (loss
(3)).
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TABLE II
PERFORMANCE IN CLEAN CONDITIONS

B. New PESQ-DNN in Comparison to Baselines

1) Clean Conditions: First, we evaluate our proposed
PESQ-DNN variants and all baseline DNNs in the clean con-
dition on Dtest, with coded speech signals obtained from EVS
and AWB operating at different bitrates, as shown in Table II. To
offer a better overview, we also report the averaged performance
over all tested bitrates for AWB and EVS separately, as well as
the total performance averaged over all data of tested conditions
(not an average of MAE or LCC values!). Please note that
influences from additive noise, error-prone transmission, and
tandeming (TDM) are excluded in Table II.

Among all methods, we observe that evaluated on MAE,
the DNSMOS baseline DNN is least suitable for predicting
PESQ scores (total MAE = 0.71), while its LCC is almost best
among the baselines. On the other hand, among all methods, the
QualityNet baseline DNN has by far the poorest correlation
(total LCC = 0.43), thereby also not being suitable for PESQ
prediction. In contrast, theWaweNet baseline DNN shows quite
good and balanced performance with a total MAE of 0.16 and
a total LCC of 0.82, clearly on 1st rank among the baselines.
Please note, however, that our two new PESQ-DNNs show an
even better total performance than the baselines both in MAE
and LCC metrics. They have equal or by far better performance
than the baselines in each single condition, except one: for the 48
kbps EVS, our methods stay behind the (otherwise unbalanced)
QualityNet performance of LCC = 0.67, but clearly excel
at low EVS bitrate of 7.2 kbps (LCC = 0.70/0.73 vs. 0.52).
In summary, reaching an MAE = 0.09 vs. 0.16, our methods
almost halve the MAE vs. the best of the baselines, WaweNet.
Concerning LCC, both of our methods reach values above 0.90,
which we consider an encouraging result in comparison to the
baselines. Note that since we adopted from QualityNet [12]
the FLE-based intermediate embeddings qb, accordingly, our
strong correlation performance in this experiment cannot be
deducted from the embeddings, but rather from the rest of our
obviously advantageous PESQ-DNN network structure. More
specifically, the performance improvement can be attributed to
the input of the complex spectrum and the CNN-based encoder,
which further extracts quality-related features for the BLSTM
layer with a multi-width convolutional structure. Especially,
employing a CNN to extract features for the BLSTM layer is
proven to effectively increase performance for speech quality
estimation in [25].

In Table II, we observe that individual codec mode LCC met-
rics ofPESQ-DNN are below 0.90, but the average is above 0.90.

Fig. 7. Scatter plot for the predicted PESQ scores P̂ESQu obtained from the
strongestPESQ-DNN variant and from theQualityNet baseline DNN trained
to predict PESQ, measured on EVS-coded speech (7.2, 13.2, and 48 kbps) from
Dtest in clean conditions. The markers + and × represent the mean values

µ̂
QualityNet
j and µ̂PESQ−DNN

j for P̂ESQu for a single-condition LCCj (8) with
EVS mode j ∈ {7.2, 13.2, 48} kbps, respectively (from left to right).

In contrary, for QualityNet all codec-mode-individual LCC
values are above the respective average. To analyze this observa-
tion, in Fig. 7 we present a scatter plot with the predicted PESQ
scores ̂PESQu obtained from the strongest PESQ-DNN variant
employing FLE (blue) and the QualityNet baseline (green)
for EVS-coded speech, with its ground truth PESQu measured
by ITU-T P.862.2 [6]. Based on (8), wee see that if changes of
the ground truth PESQu after subtracting its mean value μ are
reflected by similar value changes of the predicted PESQ scores
̂PESQu after subtracting μ̂, we will obtain a high LCC score.
Accordingly, this is reflected by the markers distributed along
the diagonal line. To offer a better overview of the distributions,
we plotted the mean values of μ̂

QualityNet
j and μ̂PESQ−DNN

j at
each individual EVS mode j ∈ {7.2, 13.2, 48} kbps using the
markers + and ×, respectively, as shown in Fig. 7. For both
PESQ-DNN and QualityNet, the distribution of the markers
belonging to individual EVS mode has a similar tendency to



3414 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

TABLE III
PERFORMANCE IN CLEAN AND UNSEEN NOISY CONDITIONS

the diagonal line, reflected by all codec-mode-individual LCC
values above 0.6 in Table II. Meanwhile, the overall distribution
could be reflected by the virtual line connected through the
corresponding mean values of each EVS mode. Surprisingly,
the codec-mode-individual mean values (+) for QualityNet
are almost horizontally distributed, while the ones belonging
to the proposed PESQ-DNN variant (×) are scattered almost
along the diagonal line. This explains why the average LCC
for QualityNet baseline measured on EVS-coded speech is
much lower than its codec-mode-individual LCC value shown
in Table II. The blue points are obviously distributed much
closer to the diagonal, even though some outliers exist, while
the green ones are scattered further away. This confirms that our
proposed PESQ-DNN offers a lower averaged MAE than the
QualityNet baseline in Table II (0.09 vs. 0.25).

Regarding the statistical significance measured on MAE,
our proposed PESQ-DNN variants have equivalent performance
with highly overlapping 95% confidence intervals. Among all
the baseline methods, WaweNet baseline DNN performs the
best in the total measurement with statistical evidence. However,
our proposed PESQ-DNN variants show even much better per-
formance than WaweNet baseline DNN with clearly separated
confidence intervals.

2) Noisy Conditions: We measure the performance of all
the investigated methods in unseen noisy conditions on EVS-
coded speech at 13.2 kbps from the test set Dtest. We report
the performance separately on coded speech without and with
additive noise, denoted as clean and noisy conditions in Table III,
respectively. As we explore the influence of additive noise on
PESQ estimation, we excluded TDM and error-prone transmis-
sion conditions in this experiment.

Among the baseline DNNs, the results give a mixed picture
in the sense that the QualityNet DNN is best in clean MAE
and LCC, but worst in the noisy condition for both metrics. The
DNSMOSDNN, on the other hand, is best in noisy conditions, and
w.r.t. MAE it performs even better in the noisy condition (0.28)
than in the clean condition (0.73). However, compared to all
other models, it performs by far poorest in MAE in the clean con-
dition. Our proposed PESQ-DNN variants, in contrast, show top
performance in the clean condition, and in the noisy condition
a balanced performance being only insignificantly behind top
results, reflected by the overlapping 95% confidence intervals
of the WaweNet baseline (0.26± 0.034) and our PESQ-DNN
variants (around 0.30± 0.030). Concerning means, our FLE
variant with J(4) and average pooling (AV) turns out to be best.

TABLE IV
PERFORMANCE IN SEEN AND UNSEEN TANDEMING (TDM) CONDITIONS

3) Tandeming Conditions: In Table IV, we illustrate the
performance of all investigated models in TDM conditions,
where two WB codecs are serially concatenated. We exclude
the influence from additive noise and error-prone transmission
in this experiment. In the seen TDM condition, the order of the
two concatenated codecs is the same as used in training and
development, where G.722 at 64 kbps is followed by EVS at
13.2 kbps. In the unseen TDM condition, we flip the order of
the two codecs by first employing EVS at 13.2 kbps, followed
by G.722 operating at 64 kbps.

The DNSMOS and the QualityNet baseline DNNs perform
worse than both proposed PESQ-DNN variants in any of the
conditions and metrics. Interestingly, the WaweNet baseline
DNN shows decent quality both in seen and unseen TDM for
both metrics, in the latter case it is even the strongest method
w.r.t. MAE (0.14), which is statistically significantly better than
the second-best PESQ-DNN variant. Our proposed PESQ-DNN
variants, on the other hand, are by far strongest in seen TDM
(both metrics), confirmed by the non-overlapping confidence
intervals of MAE and also for LCC in unseen TDM condition.
Note that the MAE in unseen TDM condition is strong (but not
top-performing), and particularly note that both of our proposed
methods again show a balanced performance.

4) Error-Prone Transmission Conditions: We present the
performance of all investigated models concerning frame loss
in error-prone transmission conditions in Table V. To better
investigate the influence of frame losses on PESQ estimation, we
exclude the noisy and TDM transmission conditions in this ex-
periment. We report the performance separately on EVS-coded
speech at 13.2 and 48 kbps with FERs of 0%, 3%, and 6%,
as shown in Table V. Among the employed FERs, an FER of
6% is unseen during training and development, and an FER of
0% represents error-free transmission conditions, thus offering
the same performance as in clean conditions shown in Table II.
Furthermore, each simulated FER contains equally distributed
random and burst frame erasures. To offer a better overview of
all investigated models in error-prone transmission conditions,
we present the total performance averaged over all the employed
bitrates only with FERs of 3% and 6%, as shown in Table V.

The results show that the error-prone transmission condition
was a tough case for all investigated models. For most of them,
the MAE results under frame errors are much higher than for
FER = 0%. Surprisingly, the DNSMOS baseline DNN has lower
MAE in error-prone condition as it has in the FER = 0% case.
This is a similar observation to Table III, where we observed
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TABLE V
PERFORMANCE IN ERROR-PRONE CONDITIONS WITH DIFFERENT FRAME ERROR RATES (FER)

Fig. 8. Scatter plot for the predicted PESQ scores P̂ESQu obtained from the
strongest PESQ-DNN variant and from the DNSMOS baseline DNN, measured
on EVS-coded speech (13.2 and 48 kbps) from Dtest in error-prone condi-
tions (FER > 0). The markers + and × represent the mean values µ̂PESQ−DNN

j

and µ̂DNSMOS
j for P̂ESQu for a single-condition LCCj (8) with EVS mode

j ∈ {13.2, 48} kbps, respectively (from left to right).

a better noisy condition MAE as a clean condition MAE for
the DNSMOS network. We can conclude that it has topological
strengths in harsh conditions (only). Note that our proposed
methods fall a bit behind the baselines w.r.t. total MAE. How-
ever, the performance differences are insignificant considering
the slightly overlapping confidence intervals compared to the
DNSMOS baseline (0.33± 0.062vs.0.45± 0.060). Both of our
PESQ-DNN variants are well ahead when it comes to correlation
(LCC): Overall, our proposed methods are 1st and 2nd ranked
as concerns LCC, while having decent MAE performance.

In Fig. 8, we present a scatter plot with the predictions ̂PESQu

from the PESQ-DNN variant employing FLE and the DNS-
MOS baseline for EVS-coded speech in error-prone conditions
(FER > 0), with its ground truth PESQu measured by ITU-T
P.862.2 [6]. We can see that the error-prone conditions are
more challenging, reflected by the distribution of the markers
being more dispersive and farther away from the diagonal when

TABLE VI
OVERALL PERFORMANCE AVERAGED OVER ALL TESTED CONDITIONS

(“TOTAL”) AND OVER ALL CONDITIONS BUT WITHOUT THE ERROR-PRONE

TRANSMISSION CONDITION (“TOTAL WITHOUT EID”)

compared to the ones in Fig. 7. The overall distribution for each
approach is reflected by the virtual line connected through the
corresponding mean values of each EVS mode. We can see that
the virtual line through both (+) markers (our PESQ-DNN) is
more parallel to the diagonal as the virtual line through the two
(×) markers (DNSMOS), which confirms the higher total LCC
(0.75 vs. 0.61) from Table V.

5) Overall Performance: Finally, we report the overall test
performance of the investigated methods in Table VI. The mea-
surements are calculated on the coded speech signals obtained
from both EVS and AWB codecs operating at different bitrates
and considering all the tested conditions illustrated in Tables II,
III, IV, and V. Since most of the investigated models show a bit
limited performance in the error-prone condition in Table V, we
also report the overall performance excluding the error-prone
condition.

In total, taking the data (not the MAE or LCC) over all
conditions, both of our proposed methods take on the 1st
and the 2nd ranks, respectively. Leaving out the data for the
error-prone transmission condition, again both of our methods
are 1st and 2nd ranked. In this case, the top-performing method
“PESQ-DNN (FLE) J(4), AV�” achieves a strong correlation
of 0.92 and an MAE of only 0.11, thereby marking our final
proposed method for non-intrusive PESQ prediction by a DNN.
Please note that while our proposed PESQ-DNN variants are
very similar considering the confidence intervals, they are
statistically much better than other baselines on the overall
performance with and without considering the EID conditions.

6) Cross-Dataset Test: We present a simple cross-dataset
experiment on clean EVS-coded speech at 13.2 kbps in Ta-
ble VII. Except for the QualityNet baseline DNN, the other
investigated methods perform much worse on MAE and LCC
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TABLE VII
CROSS-DATASET PERFORMANCE MEAURED ON CLEAN EVS-CODED SPEECH

AT 13.2 KBPS

than the corresponding performance shown in Table II, with
the test data extracted from NTT as used in training. The
QualityNet baseline shows better generalization supposed
due to its simpler structure. Please note this cross-dataset perfor-
mance degradation also illustrated the challenge of mimicking
the original PESQ algorithm while considering the influence
of the reference signal quality during ground truth PESQ score
calculation. To mitigate this issue, one can include cross-dataset
training materials or adapt the speech quality estimation model
to non-intrusively predict human rating scores.

VI. CONCLUSION

This work proposed an end-to-end non-intrusive PESQ-DNN
to evaluate coded speech quality in speech communication sys-
tems. We illustrated the potential of our proposedPESQ-DNN by
non-intrusively estimating the perceptual evaluation of speech
quality (PESQ) scores of the wideband coded speech obtained
from AMR-WB or EVS codecs operating at different bitrates
in noisy, tandeming, and error-prone transmission conditions.
We compare our methods with the state-of-the-art networks of
QualityNet, WaweNet, and the DNSMOS DNN applied to
PESQ estimation by measuring the mean absolute error (MAE)
and the linear correlation coefficients (LCC). As a core con-
tribution of this work, we performed a comprehensive ablation
study illustrating the influence and value of the introduced mod-
ifications to the proposed PESQ-DNN, including the input types
of the neural network, variations of the PESQ-DNN topology
in terms of different embedding processing models and loss
functions employed during training. Averaged over all tested
conditions, the proposed PESQ-DNN offers the best total MAE
and LCC of 0.11 and 0.92, respectively, without considering
frame losses. Also under frame loss, its LCC is ahead of any of
the baselines. Note that our network could be similarly used to
non-intrusively predict POLQA or other intrusive metrics.
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