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Noisy-to-Noisy Voice Conversion Under
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Abstract—Voiceconversion (VC) refers to the transformation of
the speaker identity of a speech to the target one without altering
the linguistic content. As recent VC techniques have made signif-
icant progress, implementing them in real-world scenarios is also
considered, where speech data have some inevitable interferences,
the most common of which are background sounds. On the other
hand, background sounds are informative and need to be retained
in some applications, such as VC in movies/videos. To address these
issues, we have proposed a noisy-to-noisy (N2N) VC framework
that does not rely on clean VC data and models the noisy speech
directly by using noise as conditions. Previous experimental results
have proven its effectiveness. In this article, we further improve
its performance by introducing the pre-trained noise-conditioned
VC model. Moreover, to further explore the impacts of introducing
noise conditions, the performance in more realistic situations is
evaluated in which the training set possesses speaker-dependent
noisy conditions. The experimental results demonstrate the effec-
tiveness of the pre-training strategy and the degradation of its
performance under strict noisy conditions. We then proposed a
noise augmentation method to overcome the limitation. Further
experiments showed the effectiveness of the augmentation method.

Index Terms—Voice conversion (VC), noisy-to-noisy VC, noise
robustness, noisy speech modeling, data augmentation.

I. INTRODUCTION

VOICE conversion (VC) is a technique of converting the
vocal timbre of a speech from the source speaker to the

target one without changing its linguistic content. VC has been
extensively studied before the advent of deep learning. The early
works were mainly based on statistical modeling of speech
signals with parallel training data and then extended to non-
parallel scenarios. Many approaches, such as exemplar-based
sparse representation [1], vector quantization (VQ) [2], and
Gaussian mixture modeling [3] have been proposed, establishing
the foundation for the present deep-learning-based methods.
With the emergence of deep learning, the components of voice
conversion (VC) have undergone significant advancements, en-
compassing speech analysis, feature mapping, and vocoders.
Neural network-based VC methods consistently push the bound-
aries of naturalness and similarity, as evidenced by the notable
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progress showcased in the recent Voice Conversion Challenge
(VCC) 2020 [4]. Many approaches, such as those based on
generative adversarial networks [5], [6], [7], [8], variational
autoencoders (VAEs) [9], [10], [11], [12], automatic speech
recognition (ASR), and text-to-speech (TTS) [13], [14], [15],
are frequently focused on in the latest VC studies. Recent
developments have witnessed the application of VC in novel
domains, including dubbing [16], audio data augmentation [17],
and other demanding real-world scenarios.

However, in contrast to controlled experimental environments
where high-quality data is prepared in advance for both training
and evaluation, real-world speeches often encounter various
interferences, with background noise being the most preva-
lent. In certain scenarios where training data consists solely of
noisy samples, the performance of VC experiences noticeable
degradation in terms of naturalness and similarity due to the
entangled factors of linguistic content, speaker identity, and
background noise, as demonstrated in [18], [19]. On the other
hand, background sounds are informative and may need to be
preserved in some cases. For instance, VC for singing focuses on
converting the vocals with the accompaniments being removed
beforehand to ensure the quality of the conversion. However,
it is crucial to keep the accompaniments intact during infer-
ence, for they can be optionally layered over the converted
vocals. Similar considerations are required in VC-based data
augmentation [17], where the inherent background noise is also
a resource to enhance a system’s robustness. Nevertheless, most
of the related studies [20], [21], [22], [23], [24], [25] primarily
focus on noise-robust VC, in which the background sounds are
typically discarded as undesirable interference. Furthermore,
most of these studies rely on clean source/target speech data
for training.

To address the above issues, we have proposed a noisy-to-
noisy (N2N) VC framework [18]. For the first “noisy”, our
method does not require clean data: all the source/target training
data can be noisy. For the second “noisy”, the background sound
in the converted sample can either be preserved or removed,
depending on specific scenarios. The proposed framework com-
prises off-the-shelf denoising and VC modules. The denoising
module is utilized to separate the speech and noise signals in the
time domain. The VC module is trained using denoised speech.
During inference, only the estimated speech signal is converted.
The separated noise can then optionally be superimposed, de-
pending on the specific scenario. However, using the denoising
module introduces undesirable distortion that can significantly
impact the performance of the VC downstream. Therefore, the
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framework is improved in [26] by leveraging the noise signal as
a condition within the VC module to model the noisy speech to
alleviate the distortion introduced by the denoising module. The
experimental results show that this modification shortened the
gap in the mean opinion score (MOS) of the naturalness from
the upper bound by up to 65% [26].

In this article, we describe more details of the proposed N2N
VC framework. As the noise-conditioned VC method is novel,
our initial evaluation focuses on its performance in generating
clean converted samples, assessing whether introducing the
noise condition within the VC model affects its VC efficacy and
whether it is comparable to the performance of the original VC
model. To further enhance the robustness of our method in noisy
environments, we adopt the pre-training strategy which has
been proven beneficial in numerous natural language processing
(NLP) and VC studies. In our previous work [26], the training
set has an 8 kHz sampling rate and speaker-independent (SI)
noisy conditions, where the clean corpus is disrupted by various
types of noise clip at several signal-to-noise ratios (SNRs). In
this article, we extend the experimental conditions to a 16 kHz
sampling rate and a more realistic speaker-dependent (SD) noise
environment, where each speaker’s utterances have a fixed type
of background noise and SNR so that the noisy conditions
and speaker information are correlated. However, results show
that the performance of the N2N framework degrades. We
further proposed three data augmentation methods to address
the disentanglement of speaker identity and noisy conditions,
and one of the methods successfully mitigates the performance
degradation, as substantiated by our experimental results.

II. RELATED WORK

In general, most VC methods rely on high-quality training
data and may become fragile when exposed to noisy environ-
ments, which can limit their practical applications. Compared to
conventional VC which has been extensively studied, relatively
fewer research efforts have been dedicated to noise-robust VC.

A. Noise-Robust VC With Statistical Methods

In the realm of statistic-based methods, Takashima et al. [20]
proposed an exemplar-based noise-robust VC method, in which
a noisy speech is represented as a weighted combination of both
speech and noise exemplars using non-negative matrix factoriza-
tion. During inference, the clean target speech is generated with
the target speech exemplars and the weighted source exemplars,
but without the noise ones. Both clean source and target speech
data are needed for training this method.

B. Noise-Robust VC With Speech Enhancement Methods

As a pioneer, Valentini-Botinhao et al. [21] proposed a cascad-
ing method for TTS in noisy environments. A recursive neural
network (RNN)-based speech enhancement (SE) model is used
to denoise a noisy waveform before it is passed onto the TTS
module. Clean references are necessary as the SE and TTS
models are jointly trained. In a similar vein, Chan et al. [22]

adopted a lightweight SE component to preprocess noisy data for
VC downstream, necessitating clean speech data because the SE
and VC components are jointly trained. Miao et al. [23] realized
noise-robust VC by implementing two filtering methods in the
pre- and post-processing stages. Furthermore, the dimensions
of the input feature Mel-cepstral coefficients (MCEPs) are ex-
tended, and only the sub-band cepstrum is converted to alleviate
the interference in high-quefrency components. Choi et al. [27]
proposed a three-module cascading VC framework consisting
of one VC and two SE modules to deal with background noise
and reverberation in real-world scenarios separately. Each SE
module’s preprocessing is designed to control noise and rever-
beration independently in the converted samples. Given that the
two SE modules are pre-trained and fixed, the framework does
not necessitate clean training data for VC.

C. Noise-Robust VC With Training Strategies

Studies on ways to mitigate the impact of noise on VC have
also been conducted in terms of training strategies. Du et al. [24]
presented a noise-robust framework adopting domain adversar-
ial training (DAT). The framework is based on a zero-shot VC
method AdaIN-VC [28] consisting of a speaker encoder, content
encoder, and decoder. It receives clean and noisy data as the input
while only predicting the clean reconstructed data during train-
ing. A gradient reversal layer and a domain classifier are added
after each encoder, and a DAT loss term is introduced, enabling
each encoder to extract noise-invariant speaker and content
representations from both clean and noisy speech. In another
study, Huang et al. [25] explored general degradation-robust VC
via denoising and adversarial training. They considered three
major types of degradation: background noise, reverberation,
and band rejection. Additionally, adversarial samples generated
by embedding attack [29] were adopted to enhance robustness
further. During training, 60% of clean data in a mini-batch are
augmented with randomly chosen degradation, then 50% of the
data in the batch are further applied to generate adversarial ex-
amples. Consequently, the VC model processes clean data, aug-
mented data with distortion, and adversarial examples all in one
mini-batch, whereas the loss is calculated using the correspond-
ing clean data, effectively integrating denoising and adversarial
training.

Generally, most related studies concentrate on noise-robust
VC, where the background noise is suppressed, generating only
clean converted speech. Moreover, in the majority of cases,
clean utterances from source/target speakers are essential. Sig-
nificantly, Hsu et al. [30] proposed a TTS-based VC method
capable of controlling the background noise within the converted
speech. The training dataset is augmented by duplicating the
clean speech and mixing it with additive noise while maintaining
the transcript and speaker label. A VAE is used to factorize the
speaker’s identity and the noise condition from the noisy speech.
The factorization is further improved by domain adversarial
training. Therefore, two latent factors of speaker characteristics
and background noise are controllable. However, the quality of
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Fig. 1. Overall workflow of the proposed N2N VC framework. (a) Baseline
framework. (b) Noise-conditioned VC framework.

the generated noise is subpar, and clean speech data remains
required.

III. PROPOSED NOISY-TO-NOISY VC METHODS

A. Baseline Framework

We have proposed a naive N2N VC in [18], which serves
as the baseline and whose workflow is illustrated in Fig. 1(a).
Given that only noisy training data are available, and recent SE
methods have achieved significant success [31] [32] showing
promising applications in assisting downstream tasks in noisy
scenarios, the baseline follows the cascading design consisting
of off-the-shelf SE and VC modules. The SE module functions
to separate the speech and noise signals in the time domain:

n = y − d, (1)

where y = {y1, . . . , yT } denotes the noisy speech waveform,
d = {d1, . . . , dT } denotes the denoised speech waveform esti-
mated by the SE module, andn = {n1, . . . , nT } is the separated

noise waveform. Note that only background noise is focused on
in this article. We left the consideration of reverberation for
future work.

As a case study, the Deep Complex Convolution Recurrent
Network (DCCRN) [33] and a VQ-VAE-based non-parallel VC
method [34] are chosen as the SE module and VC module,
respectively.

DCCRN is a single-channel denoising model based on the
convolution recurrent network. Complex CNN and RNN struc-
tures are implemented to simulate the complex-valued oper-
ation. More details about DCCRN can be found in [33]. In
our framework, the SE module needs to separate the estimated
speech and noise signals as defined in (1). However, the com-
monly used scale-invariant signal-to-noise ratio (SI-SNR) loss
will result in a power mismatch. Therefore, scale-dependent
signal-to-distortion (SD-SDR) loss [35] is adopted, which has
comparable performance as the SI-SNR while sensitive to the
down-scaling and up-scaling of the estimated speech.

The VC module is implemented using a self-supervised VQ-
VAE-based VC method proposed in [34], which is capable of
non-parallel conversion. Fig. 2(a) illustrates the structure of
VQ-VAE in the baseline. The model comprises an encoder, a
vector quantizer, and a decoder. The encoder is a stack of one-
dimensional convolutional layers, batch normalization layers,
and ReLU activation functions. The vector quantizer manages a
learnable codebook and quantizes the output of the encoder using
the nearest discrete vectors from the codebook. The decoder is
a WaveRNN structured vocoder [36], which predicts the µ-law
decoded denoised waveform d on the basis of the quantized
representation z from the quantizer, speaker code s, and the
previous samples in an autoregressive (AR) manner, which can
be described as a conditional joint probability distribution:

p (d | s, z) =
T∏

t=1

p (dt | d1, . . . , dt−1, s, z) . (2)

The SE module is pre-trained and fixed during the training
stage, providing the VC module with the denoised speech as
input, and the reconstruction loss is also calculated using this
denoised speech. During the inference stage, the VC module
generates the converted speech based on this denoised speech
and the identity od a target speaker. It is an optional step to either
add back the separated noise or discard it.

B. Defects of the Baseline

The performance of the baseline framework has been evalu-
ated in [18]. We found that the common metrics for evaluating
the SE methods did not accurately reflect their contributions
to the VC downstream. Moreover, even a state-of-the-art SE
method could introduce unavoidable distortions when suppress-
ing background noise. While inconspicuous to perceptual lis-
tening, this additional distortion could negatively affect the
quality of the converted speech in terms of naturalness and
similarity. Other factors, such as residual noise in the denoised
speech, also affect the VC performance. Regrettably, the VC
module is trained to reconstruct the distorted speech data, which
further degrades the VC performance. Another limitation is that
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Fig. 2. Detailed structures of the VQ-VAE-based VC module. (a) Original VQ-VAE in Baseline. (b) Noise-conditioned VQ-VAE in N2N VC framework.

converting the noisy target speech is redundant: the converted
speech is generated first, then the separated background noise is
superimposed.

C. Noise-Conditioned VC Framework

Among the three signals from (1), only the noisy speech is
not affected by distortion from the SE module. As a result, we
consider leveraging this noisy speech in our training process.
Specifically, the VC module still receives the denoised data
as inputs but is designed to reconstruct the noisy speech data.
This allows for the loss calculation to be conducted using the
original noisy data, bypassing the distortion introduced by the SE
module. Moreover, modeling the noisy speech enables the VC
module to generate the noisy converted speech directly, thereby
eliminating the unnecessary two-stage generation found in the
baseline.

Modeling noisy speech data is indeed challenging, as affirmed
by the experiments conducted in [18]. To simplify this, we
utilize the separated noise as a condition for the VC module,
as illustrated in Fig. 1(b). During the training stage, the VC
module is given denoised speech as input and separated noise
as a condition for the decoder to reconstruct the noisy speech.
In the conversion stage, sending a noise signal to the condition
results in noisy converted speech generation, whereas replacing
the noise signal with zero sequences leads to a clean converted
speech. Fig. 2(b) shows the modification to the VQ-VAE: An
embedding layer transforming the µ-law decoded noise signal
along the time axis to a sequence of high-dimensional vectors is
added and connected to the Gated Recurrent Unit (GRU) layer.
On the basis of the conditional joint probability distribution of
the baseline described in (2), the noise-conditioned version is

modified as

p (y | n, s, z) =
T∏

t=1

p (yt | y1, . . . , yt−1, n1, . . . , nt, s, z)

s.t. y = d+ n. (3)

By introducing the separated noise signal as a condition, we
enable the decoder to learn the distribution of the background
noise more easily. This significantly simplifies the generation of
noisy speech.

D. Pre-Training Strategies for VC Module

In the pre-training phase for the VC module of the baseline, a
clean dataset is used. The VC module takes the clean speech as
the input and reconstructs the same. The reconstruction loss is
calculated with this clean input speech. As for the pre-training
of the VC module in the noise-conditioned framework, since
the VC module takes noise as a condition to the decoder, it
receives clean speech as the input and the original noise signal
as a condition to reconstruct the noisy speech. The reconstruction
loss is calculated with the noisy speech, which equals the clean
speech superimposed with the original noise signal. Note that
pre-training strategies are used to improve the VC modules’
performance but not prerequisites. As reported in [26], our
framework does not rely on clean training data for the VC.

E. Data Augmentation

In the previous experiments [26], the noisy training dataset
involved mixing utterances from a single speaker with vari-
ous types of background noise at multiple SNRs, which can
be considered SI noisy conditions. Results showed that the
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noise-conditioned method improved the baseline significantly,
reducing the naturalness gap between the baseline and the upper
bound of the framework by up to 65% [26]. However, when
training data are extended to SD noisy conditions where the
noise category and SNR are correlated with the speaker, the VC
performance noticeably degrades, even descending below the
baseline, as shown in Section (V-A-3).

The degradation of the VC performance arises from the as-
sumption that the speaker code s and the noise signal n are
independent in (3). When training under SI noisy conditions,
the decoder of the VQ-VAE has seen various noisy conditions
within each speaker, enabling it to learn the independence of
speaker information and noise condition in a self-supervised
manner without any additional loss term. However, in the case
of SD noisy environments, due to that speaker identity being
inherently linked to the noise conditions, the decoder only
encounters limited and fixed combinations of each speaker code
s and the noise signal n. This limitation impedes its learning to
disentangle speaker information and the noise condition, leading
to the leakage of speaker information into the noise condition.
Consequently, during inference, changing the speaker code s to
the target code only partially transforms speaker characteristics,
as residual characteristic information remains in the separated
noise. This leads to the quality degradation of the converted
sample in terms of both naturalness and similarity.

The most straightforward approach to addressing the lack of
diversity is through data augmentation. Thus, while adhering to
the premise that only noisy data from source/target speakers are
available for VC training, we implemented three augmentation
strategies, namely, Data-Aug, Noise-Aug I, and Noise-Aug II,
as illustrated in Fig. 3.

1) Data-Aug: Fig. 3(a) demonstrates the workflow of Data-
Aug. In this process, the original noisy training data are du-
plicated and mixed with augmented noise at various SNRs to
expand the diversity of the noisy conditions from SD to SI. The
SE module then separates the augmented noisy training data into
estimated speeches and the separated background noise, both of
which are involved in the self-supervised training of the VC
module. The operation of Data-Aug can be formulated as

yaug = d+ n+ naug (4a)

naugsep = yaug − daug, (4b)

where yaug, naug, naugsep and daug represent the augmented
noisy speeches, noise for augmentation, augmented separated
noise and denoised augmented noisy speech, respectively.

However, Data-Aug compromises the quality of the training
set, as the augmented noisy data also undergoes processing
through the SE module. This could result in further distortion in
both the denoised speeches and the separated noise.

2) Noise-Aug I: To mitigate the additional distortion intro-
duced by Data-Aug, Noise-Aug I is proposed, where both the
noisy training data and the separated noise are duplicated and
augmented with additional noise clips, as depicted in Fig. 3(b).
Unlike in Data-Aug, the SE module no longer processes the
augmented noisy data, thus eliminating the additional distortion.
These augmented noisy speeches are only used as the ground

Fig. 3. Illustration of the three data augmentation strategies. (a) Data-Aug.
(b) Noise-Aug I. (c) Noise-Aug II.

truth for loss calculation and the AR process when the noise
condition receives the augmented separated noise. The denoised
speeches are from the original noisy data to avoid further dis-
tortion as in the case of Data-Aug. The operation of Noise-Aug
I can be formulated as

yaug = d+ n+ naug (5a)
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naugsep = yaug − d = n+ naug. (5b)

yaug has the augmented noise part naugsep as n + naug,
which appears to increase the variety of the noisy conditions.
However, we are concerned that since the speaker-dependent
noise n still persists in each utterance within one speaker, the
disentanglement cannot be well learned.

3) Noise-Aug II: To address our concerns about Noise-Aug
I, we implemented another strategy Noise-Aug II demonstrated
in Fig. 3(c). In this approach, the denoised speeches, rather than
the original noisy speeches, are duplicated and superimposed
with the augmented noise clips to compose the augmented noisy
speeches. During training, the noise condition in the decoder re-
ceives either speaker-dependent separated noisen or augmented
noisenaug, depending on whether the current ground truth is the
original noisy speech or augmented noisy speech. Consequently,
the decoder encounters a greater variety of noisy conditions and
a broader combination of noise and speaker identity. The noisy
conditions are extended from SD to SI, and speaker-dependent
separated noise n is absent from the augmented noisy data. The
operation of Noise-Aug II can be formulated as

yaug = d+ naug (6a)

naugsep = naug. (6b)

However, the augmented noisy speech is based on the denoised
speech d, which is already distorted. This implies that Noise-
Aug II compromises the advantage of using undistorted noisy
data. Theoretically, as the volume of augmented training data
increases, the performance of the noise-conditioned method will
degrade to the baseline level. In Section V-A-3 we evaluate the
ideal number of the augmented data samples to use.

IV. EXPERIMENTAL CONDITIONS

A. Dataset for SE Module

The SE module was trained on the DNS Challenge 2020
dataset [31], which provides 500 hours of speeches from 2,150
speakers in multiple languages and 70,000 noise clips across
150 classes. A validation set was prepared by sampling 10,000
clean speeches and 8,000 noise clips. The noisy dataset was con-
structed by mixing the clean speech and noise clips at uniformly
sampled SNRs ranging from 0 to 20 dB.

B. Dataset for VC Module

The VCC 2018 dataset [37] was selected as the clean corpus
for training and testing. VCC 2018 dataset includes 12 speakers
with a balanced gender distribution; eight of these speakers are
designated as sources and the remaining four as targets.

ESC-50 [38] and DEMAND [39] were used for simulating
SI and SD noisy conditions, respectively. ESC-50 is a dataset
for environmental sound classification comprising 2,000 records
across 50 classes. Its high intelligibility is valuable given that
our work also involves the generation and quality evaluation
of background noise. DEMAND is an environmental noise
dataset containing six main categories and 18 subcategories.

Each subcategory has a five-minute, 16-channel recording, from
which we selected ch01 for each subcategory.

For SI noisy conditions, voice activity detection (VAD) was
conducted by WebRTC VAD1 to trim the noise clips of ESC-50.
Nine categories were randomly chosen to mix with the VCC
testing set, and the rest were for the training set. When building
the noisy training set, the clean speech was overlaid with the
randomly chosen noise clips at uniformly sampled SNRs from
0, 5, 10, 15, and 20 dB. The noisy VCC testing set was a parallel
dataset where the same utterance across speakers was mixed with
the same noise clip. Several noisy testing sets were constructed
in parallel at each of the following SNRs: −5, 0, 5, 10, 15, 20,
and 25 dB. All the VC models were evaluated on these noisy
testing datasets with SI noisy conditions, regardless of whether
the training dataset incorporated the SI noisy conditions.

To simulate SD noisy conditions, the corpus from each
speaker in the VCC 2018 dataset was overlaid with a randomly
chosen noise clip from a unique subcategory within the DE-
MAND dataset at an SNR of 5 dB. To investigate the impact
of different SNRs on our proposed method, we constructed
additional noisy conditions, namely, semi-speaker-dependent
(SSD) noisy conditions. For the SSD noisy conditions, we used
the same sampled noise clips as in the SD conditions to create
the noisy training dataset. However, unlike the SD conditions
where only an SNR of 5 dB was considered, the SSD conditions
involved superimposing the corpus with noise at uniformly
sampled SNRs from 0, 5, 10, 15, and 20 dB. This procedure was
performed such that in SSD noisy conditions, speaker identity
correlates with the noise category but not with the SNR, while
in SD noisy conditions, speaker identity correlates with both the
noise category and SNR. Note that both the SD and SSD noisy
conditions were used exclusively for the training dataset.

Another dataset VCTK [40] was used as the pre-training cor-
pus for the VC model. All 110 speakers from VCTK participated
in the training. For validation, we selected 20 utterances from
each speaker. A noisy version of VCTK was built to pre-train
the noise-conditioned VC model. Noise clips from the validation
set used during SE module training were mixed with the VCTK
corpus at uniformly sampled SNRs from 0, 5, 10, 15, and 20 dB.
Thus, the noisy VCTK processed the SI noisy conditions.

As for data augmentation, to control variable factors, we
reused the sampled noise clips for the noisy VCC 2018 with SI
noisy conditions to conduct the proposed augmentation strate-
gies.

C. Methods to Be Evaluated

Given that the methods were similar, we annotated them as
listed in Table I. Generally, two types of VC modules were
involved: the conventional VQ-VAE and the noise-conditioned
one, which were abbreviated as VQ and NC-VQ, respectively.
Three noisy VCC training datasets with speaker-independent,
semi-speaker-dependent, and speaker-dependent noisy condi-
tions were denoted as SI, SSD, and SD, respectively. Lastly,

1[Online]. Available: https://github.com/wiseman/py-webrtcvad

https://github.com/wiseman/py-webrtcvad
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TABLE I
SYSTEMS TO BE EVALUATED

Data-Aug, Noise-Aug I, and Noise-Aug II represent the data
augmentation strategies discussed in Section III-E.

The methods to be evaluated fall into three primary categories:
Upper Bound, Baseline, and N2N. Upper Bound represents
the theoretical best performance of the framework, where the
VC module is trained using the original VCC dataset rather than
the denoised one. Note that there exist two types of Upper Bound
using VQ and NC-VQ, respectively. The Upper Bound using
VQ receives and models the clean speech, whereas the Upper
Bound using NC-VQ takes clean speech as input and the original
noise clip as the condition to model the noisy speech with SI
noisy condition. We will prove in Section V-A-1 that these two
Upper Bounds yield comparable results for clean converted
speech generation. Baseline utilizes VQ as the VC module and
N2N utilizes NC-VQ as the VC module. Both are trained on
the denoised VCC dataset. More specifically, Baseline receives
and models the denoised speech, while N2N receives denoised
speech as input and uses separated noise as the condition to
model the noisy speech. The abbreviation following the names
of Baseline and N2N indicates their corresponding training set.

D. Evaluation Metrics

1) Objective Evaluation: Since the metrics for the SE tasks
cannot well reveal their impacts on the downstream, we focus
on evaluating the performance of VC. Mel cepstral distortion
(MCD) [41] was employed to measure speech quality. Addition-
ally, the word error rate (WER) was used to measure the quality
of linguistic content and calculated using a publicly available
ASR model.2 As for similarity, an open-source speaker verifica-
tion method3 was utilized to compute the score by comparing the
converted sample with its target reference. Since these objective
metrics are exclusively applicable to clean speech data, all the
systems generated clean-converted speeches, and we left the
quality assessment of the generated noise and noisy speech to
the subsequent subjective evaluation.

2) Subjective Evaluation: Although all the speakers from
VCC2018 participated in the training, four source speakers
(VCC2SF3, VCC2SF34, VCC2SM3, and VCC2SM4) and two
target speakers (VCC2TF2 and VCC2TM2) were selected for
the testing set to reduce the total number of converted samples for
subjective evaluation. All the subjective evaluations were carried

2[Online]. Available: https://huggingface.co/facebook/wav2vec2-large-
960h-lv60-self.

3[Online]. Available: https://github.com/resemble-ai/Resemblyzer.

out on Amazon MTurk with 15 participants. The converted
samples can be found at the demo page.4

The preference evaluation between methods with and without
pre-training was conducted to demonstrate the effectiveness of
the pre-training strategies. Two testing sets with SNRs of 5 and
15 dB were prepared, based on which we parallelly sampled 32
converted samples from each set. Listeners were first asked to
compare the naturalness of two converted samples - one from
a method with pre-training and one without pre-training. Sub-
sequently, they compared which sample sounded more similar
to the provided reference from the target speaker. To maintain
consistency with the objective evaluation, all the methods gen-
erated clean converted speeches. As our primary focus is on
the noise-conditioned framework and SSD serves as transitional
noisy conditions compared to SD, we chose Upper Bound,
N2N-SI, and N2N-SD in the preference evaluation, resulting
in 192 pairs for each listener.

To evaluate the data augmentation strategies, We conducted
the Mean Opinion Score (MOS) and Similarity (SIM) tests [37]
to measure the naturalness and similarity of the converted sam-
ples, respectively. Two testing sets with SNRs of 5 and 15 dB
were used.

The MOS test was divided into two groups: clean MOS and
noisy MOS. To better depict and compare the performance of
each method, six systems were evaluated in the two MOS tests:
Upper Bound, Baseline-SI, Baseline-SD, N2N-SI, N2N-SD,
and N2N-Noise-Aug II. Upper Bound represents the theoreti-
cally best performance our framework can attain. N2N-SI paired
with Baseline-SI, and N2N-SD with Baseline-SD constitute two
evaluation pairs trained with different noisy datasets. SSD noisy
conditions were designed to illustrate the impact of SNRs on
the disentanglement of noise conditions and speaker identity.
They serve as transitional conditions in comparison to SD. Con-
sequently, we did not evaluate methods using training sets with
SSD noisy conditions during subjective evaluation. According
to the results of the objective evaluation in Section V-A-3,
N2N-Noise-Aug II outperformed other augmentation strategies,
and thus it was selected for subjective evaluation.

The clean MOS test was carried out in a conventional manner.
The systems generated clean converted speeches, the naturalness
of which was scored by the participants from 1 to 5. For each
method, 64 samples were randomly selected from the converted
samples: 32 with an SNR of 5 dB and 32 with an SNR of

4[Online]. Available: https://chaoxiefs.github.io/Samples-of-Noisy-to-
Noisy-Voice-Conversion/

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self.
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self.
https://github.com/resemble-ai/Resemblyzer.
https://chaoxiefs.github.io/Samples-of-Noisy-to-Noisy-Voice-Conversion/
https://chaoxiefs.github.io/Samples-of-Noisy-to-Noisy-Voice-Conversion/
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15 dB, except for Upper Bound, from which only 32 samples
with an SNR of 5 dB were chosen, because Upper Bound has
been proven in Section V-A-1 as noise-invariant. In general, a
listener would be presented with 364 samples in total, of which
12 samples were from the target speech as the ground truth.

In the noisy MOS test, listeners were asked to evaluate the
noisy converted speech and rate the naturalness of both the
speech and the noise part on a scale from 1 to 5. Since evaluating
the naturalness of background noise is challenging, the original
noise clip was provided as the reference. Similar to the clean
MOS test, 64 samples were randomly selected from each system:
half with an SNR of 5 dB and the remaining half with an SNR
of 15 dB. For each listener, 408 samples were prepared, which
included 24 samples of noisy target speech with SNRs of 5 and
15 dB to serve as the noisy ground truth.

In the SIM test, a listener was presented with a converted
speech and a target speech, then asked to judge whether these
two samples were from the same speaker. The SIM score was
represented as the acceptance rate: The answers in the SIM
test were rated from “Definitely the same”, “Maybe the same”,
“Maybe different”, and “Definitely different”, whereas the sam-
ples deemed “Definitely the same” and “Maybe the same” were
considered as “accepted.” From the results of the MOS tests,
we evaluated five systems in the SIM test: Upper Bound,
Baseline-SD, N2N-SI, N2N-SD, and N2N-Noise-Aug II. The
SIM test had the same sampling pattern as the clean MOS test;
thus, 288 samples were prepared for each listener.

V. EVALUATION RESULTS

A. Results of Objective Evaluation

1) Noise-Conditioned VQ-VAE vs VQ-VAE: Theoretically, if
the noisy training set processes SI noisy conditions, NC-VQ
should function in the same way as the original VQ when
generating clean converted speech because the noise condition,
speaker information, and content representations are indepen-
dent of each other, as indicated by (3). We carried out exper-
iments to substantiate this hypothesis. VQ was initially pre-
trained on VCTK, and then fine-tuned on VCC2018. For a fair
comparison, NC-VQ was also pre-trained on noisy VCTK de-
scribed in Section IV-B and later fine-tuned on noisy VCC2018
with SI noisy conditions.

Fig. 4 presents a comparison of MCD scores between NC-VQ
and VQ on the clean VCC2018 testing set. As VQ is independent
of noise, its MCD remains stable at 7.85 across all SNRs. Since
NC-VQ involves using noise as the condition during training,
it is evaluated using the clean corpora for building their noisy
versions at SNRs from −5 to 25 dB. NC-VQ achieves similar
MCD scores of around 7.85, with an average score of 7.84. This
confirms that introducing noise as conditions into VQ does not
compromise the quality of the clean converted samples when
the training set is under SI noisy conditions. Consequently, we
employ NC-VQ as the VC module of Upper Bound.

2) Pre-Training Strategies: Table II presents the results of
evaluating the methods with/without pre-training strategy, as
measured by MCD, WER, and similarity under SNRs of 5 and
15 dB. The WER of the denoised testing set is also provided as

Fig. 4. Results of MCD as a function of SNRs for NC-VQ and VQ.

TABLE II
RESULTS OF OBJECTIVE EVALUATIONS AMONG METHODS W/ AND W/O

PRE-TRAINING STRATEGIES UNDER SNRS OF 5 AND 15 DB

the reference. In general, pre-training improves the performance
of all methods. The effectiveness is significant in terms of WER,
whereas results for MCD and similarity also achieve minor
improvements, except for N2N-SD with the most strict train-
ing conditions, which also achieves noticeable improvements
in MCD. It can be concluded that pre-training enhances the
robustness of the methods against distortion, particularly those
methods that utilize denoised data as input and are trained on
limited training sets (SSD and SD noisy conditions). Therefore,
all the methods employed the pre-trained VC model in the
subsequent experiments.

3) Data Augmentation Methods: As evidenced in Table II, it
is obvious that the performance of the N2N framework degrades
when the training set possesses SSD noisy conditions. Under SD
noisy conditions where both the type of noise and the SNR are
related to the speaker, the method yields the poorest results in
terms of MCD, WER, and similarity, the reason for which has
been explained in Section III-E.

Fig. 5 shows the results of the objective evaluation of three
augmentation strategies on the noisy VCC2018 testing set with
SI noisy conditions at an SNR of 5 dB. As discussed in Section II-
I-E, N2N-Noise-Aug II carries out the augmentation based on
the distorted data; therefore, we represent N2N-Noise-Aug II
at various degrees of augmentation by using the number of
augmented data for one speaker (80 utterances per speaker)
and their respective percentages relative to the original data,
as depicted in Fig. 5.
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Fig. 5. Result of the objective evaluation of methods with data augmentation
strategy. (a) MCD. (b) WER. (c) Similarity.

Baseline-SD reaches an MCD of 9.06, a WER of 28.89%, and
a similarity score of 0.750, outperforming both N2N-Data-Aug
and N2N-Noise-Aug I. This supports the concerns raised in
Section III-E-2. N2N-Data-Aug reaches an MCD of 9.55, a
WER of 30.58%, and a similarity score of 0.738, which are
worse than those in N2N-Noise-Aug I because N2N-Data-Aug
introduces additional distortions as explained in Section III-E-1.
N2N-Noise-Aug I achieves an MCD of 9.27, a WER of 29.54%,
and a similarity score of 0.741. These are comparable to the
scores of N2N-SD, which are an MCD of 9.27, a WER of
31.63%, and a similarity score of 0.737. This suggests that

Noise-Aug I is not effective in addressing the disentanglement
issues.

For the N2N-Noise-Aug II group, most methods outperform
Baseline-SD in both MCD and WER, while attaining similar
scores in similarity. In terms of MCD, 5 (6.25%) ranks first with
an achievement of 8.91; 10 (12.5%) is in second place with a
score of 8.92; 12 (15%) and 60 (75%) share third place with a
score of 8.95. For similarity, 60 (75%) takes the lead with a score
of 0.757. 5 (6.25%) and 80 (100%) are tied for second place
with a score of 0.751, while 10 (12.5%) takes the third place
with a score of 0.749.In the case of WER, 5 (6.25%) achieves
28.50% only, whereas 10 (12.5%) and 60 (75%) gain 27.05%
and 26.6%, respectively. As discussed in Section III-E, since
Noise-Aug II benefits most from a smaller volume of augmented
data, 5 (6.25%) is chosen as Noise-Aug II.

We summarize the objective evaluation results as a function
of SNRs in Fig. 6. Upper Bound takes the lead in all metrics
across all SNRs. A clear gap exists between Baseline-SI and
Upper Bound, which widens at lower SNRs. N2N-SI signif-
icantly improves upon Baseline-SI when the SNRs are lower
than 20 dB. However, under SD noisy conditions, the N2N
framework cannot achieve the same level of performance as
it does under SI noisy conditions: N2N-SD shows degrada-
tion, while Baseline-SD delivers better results in all metrics.
Moreover, N2N-SSD consistently outperforms N2N-SD in all
metrics, showing that the variations in both SNRs and noise
categories affect the disentanglement of the speaker information
and noise condition in our N2N VC framework. N2N-Noise-Aug
II improves the performance of N2N-SD and achieves better
results in all metrics, and outperforms Baseline-SD in terms of
MCD and similarity across all SNRs. However, Baseline-SD
still holds the advantage in WER at 15 dB by 1.07%. Despite
these improvements, the gap reduction is not as significant
compared to that under SI noisy conditions, indicating potential
room for further enhancement.

B. Experimental Results for Subjective Evaluation

Fig. 7 shows the results of the preference evaluation compar-
ing the methods with and without pre-training. Across all three
N2N frameworks at SNR levels of 5 and 15 dB, the methods
using pre-training take minor advantages over their non-pre-
training counterparts in terms of the naturalness and similarity of
the converted samples from 4.38% to 15.42%. Different from the
results of objective evaluation where pre-training only demon-
strated effectiveness with methods using denoised speech with
distortion as input during training, Upper Bound, which uses
original speech and noise clips, also achieves better results with
pre-training. These findings echo the conclusion observed in the
objective evaluation: Pre-training can enhance the performance
of the N2N framework in terms of the naturalness and similarity
of the clean converted samples.

Fig. 8 presents the results of MOSs for clean converted
samples. As Upper bound and Ground Truth are noise-
independent, their MOSs for SNRs of 5 and 15 dB are identical.
In contrast, the other methods, being noise-related, achieve
higher MOSs at an SNR of 15 dB. Excluding Ground Truth,
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Fig. 6. Objective evaluation results as functions of SNRs. (a) MCD. (b) WER.
(c) Similarity.

Upper Bound secures the highest score of 3.98. N2N-SI
achieves MOSs of 3.56 and 3.82 at SNRs of 5 and 15 dB,
outperforming Baseline-SI, which obtains MOSs of 3.19 and
3.73. Consistent with the results of the objective evaluation,
the performance of the N2N framework deteriorates under SD
noisy conditions. N2N-SD attains MOSs of only 3.20 and 3.35 at
SNRs of 5 and 15 dB, falling short of Baseline-SD, which scores
MOSs of 3.37 and 3.53. With the noise augmentation strategy,
the degradation is alleviated with N2N-Noise-Aug II achieving
MOSs of 3.26 and 3.54 at SNRs of 5 and 15 dB, improving
the performance of N2N-SD by 0.06 and 0.19, respectively.

Fig. 7. Result of the preference evaluation for the clean converted samples by
the N2N frameworks with/without pre-training. Error bars show 95% confidence
intervals. (a) Preference evaluation on naturalness. (b) Preference evaluation on
similarity.

Fig. 8. Result of the subjective evaluation of naturalness for clean converted
speech. Error bars show 95% confidence intervals.

However, it still trails behind Baseline-SD at an SNR of 5 dB
by 0.11.

Fig. 9(a) shows the MOSs for the speech part of the noisy
converted samples. Similar trends as those for MOSs for clean
converted speech are observed. Upper Bound achieves the
highest MOSs of 3.98 and 4.19 at SNRs of 5 and 15 dB.
N2N-SI ranks the second place with MOSs of 3.8 and 3.98,
outperforming Baseline-SI by 0.12 at an SNR of 5 dB, while
Baseline-SI obtains a marginally higher MOS of 4.03 at an SNR
of 15 dB. With the lowest MOSs of 3.6 and 3.83 at SNRs of 5 and
15 dB respectively, N2N-SD falls short of Baseline-SD, which
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Fig. 9. Result of the subjective evaluation of naturalness for noisy converted
speech. Error bars show 95% confidence intervals. (a) MOS for the speech part
of the converted samples. (b) MOS for the noise part of the converted samples.

scores 3.73 and 3.98. However, noise augmentation does not
achieve the same improvements as observed in the results of the
objective evaluation. Compared to N2N-SD, N2N-Noise-Aug
II reaches slightly higher MOSs of 3.65 and 3.87 at SNRs of 5
and 15 dB, which only improves the performance of N2N-SD by
0.05 and 0.04, respectively, and remains marginally lower than
Baseline-SD by 0.08 and 0.02.

Fig. 9(b) shows the MOSs for the noise part of the noisy
converted samples. All the methods achieve similar MOSs,
approximately 3.8 at SNRs of 5 and 15 dB, which is lower than
that of Ground Truth receiving 3.91 at the SNR of 5 dB but
exceeds its score of 3.73 at an SNR of 15 dB. Note that Upper
Bound, N2N-SI, N2N-SD, and N2N-Noise-Aug II generate
the noise part via the neural networks, whereas the remaining
methods superimpose the separated noise.

SIM scores, depicted in Fig. 10, follow similar trends to the
MOS scores for clean converted samples. Upper Bound attains
the highest SIM score of 70.83. N2N-SI achieves SIM scores of
63.54 and 67.71 at SNRs of 5 and 15 dB respectively, outper-
forming N2N-SD which only achieves SIM scores of 49.79 and
58.54. These scores are lower than those of Baseline-SD, which
achieves 55.21 and 63.96. N2N-Noise-Aug II outperforms N2N-
SD by 5.21 at the SNR of 5 dB, while the improvement is less
significant at the SNR of 15 dB by only 0.59. Nevertheless,
Baseline-SD shows better results than N2N-Noise-Aug II.

In general, the results reveal the N2N framework’s substantial
superiority over the baseline in SI noisy conditions. Utilizing the
pre-training strategy can further improve the performance of the

Fig. 10. SIM scores for clean converted speech. Error bars show 95% confi-
dence intervals.

N2N framework. However, under SD noisy conditions, we ob-
serve a degradation in performance concerning both naturalness
and similarity. While noise augmentation does enhance perfor-
mance, it does not surpass the baseline under identical SD noisy
conditions, indicating the potential for further improvements.
As for the noise generation in the noisy converted samples, our
methods achieve comparable scores to the ground truth, proving
the high quality of the generated noise.

VI. CONCLUSION

In this article, we evaluated our N2N VC framework under
extended noisy conditions from SI to stricter SD noisy conditions
where the information of noise and speaker are correlated. The
pre-training strategy was introduced to improve the framework’s
performance, and its benefit was confirmed by our evaluation
results. Further experiments demonstrated the effectiveness of
our framework under SI noisy conditions; however, performance
suffered under SD conditions due to the entanglement of speaker
information and noise conditions. To address these issues, we
proposed three noise augmentation strategies. Objective evalua-
tion results show that the noise augmentation strategy Noise-Aug
II improves the N2N framework and outperforms the baseline,
although the improvement is not as significant as that with the
N2N framework under SI noisy conditions. However, subjective
evaluation results show that there is still room to disentangle the
correlation between speaker identity and noisy conditions. In fu-
ture work, we aim to enhance the disentanglement performance
while maintaining the premise that only noisy speech data are
available. Additionally, since the commonly used metrics for VC
are unsuitable for evaluating noisy speech, we will also explore
the development of new metrics designed explicitly for assessing
noisy speech quality.
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