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Abstract—Speaker anonymization aims to conceal a speaker’s
identity while preserving content information in speech. Current
mainstream neural-network speaker anonymization systems dis-
entangle speech into prosody-related, content, and speaker rep-
resentations. The speaker representation is then anonymized by
a selection-based speaker anonymizer that uses a mean vector
over a set of randomly selected speaker vectors from an exter-
nal pool of English speakers. However, the resulting anonymized
vectors are subject to severe privacy leakage against powerful
attackers, reduction in speaker diversity, and language mismatch
problems for unseen-language speaker anonymization. To generate
diverse, language-neutral speaker vectors, this article proposes an
anonymizer based on an orthogonal Householder neural network
(OHNN). Specifically, the OHNN acts like a rotation to transform
the original speaker vectors into anonymized speaker vectors,
which are constrained to follow the distribution over the original
speaker vector space. A basic classification loss is introduced to
ensure that anonymized speaker vectors from different speakers
have unique speaker identities. To further protect speaker iden-
tities, an improved classification loss and similarity loss are used
to push original-anonymized sample pairs away from each other.
Experiments on VoicePrivacy Challenge datasets in English and
the AISHELL-3 dataset in Mandarin demonstrate the proposed
anonymizer’s effectiveness.

Index Terms—Speaker anonymization, selection-based
anonymizer, orthogonal Householder neural network anonymizer,
weighted additive angular softmax.

I. INTRODUCTION

S PEECH technology enables machines to recognize, an-
alyze, and understand human speech, which facilitates

human-machine communication and offers great convenience
in our daily lives. Despite its prominent advantages, it suffers
from voice privacy leakage, which allows for intrusion upon or
tampering with a speaker’s private information. For instance, by
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using advanced speaker [1], [2], dialect [3], [4], pathological
condition [5], [6], or other types of speech attribute recognition
systems, attributes such as a speaker’s identity, geographical
origin, and health status can easily be captured from speech
recordings. Moreover, advanced speech synthesis techniques
enable resynthesis, cloning, or conversion of a speaker’s identity
information to access personal voice-controlled devices [7],
[8], [9]. In this article, we are especially interested in speaker
anonymization, which is a user-centric voice privacy solution
to conceal a speaker’s identity without degrading intelligibility
and naturalness [10], [11], [12]. This task was standardized
by the VoicePrivacy Challenge (VPC) committee [11], [12],
[13], which held challenges in 2020 and 2022, to advance the
development of voice privacy preservation techniques.

Several approaches to protect speaker privacy are based on
digital signal processing (DSP) methods [11], [12], [14], [15],
[16], [17], [18], which modify instantaneous speech character-
istics such as the pitch, spectral envelope, and time scaling.
State-of-the-art anonymization approaches have borrowed ideas
from neural speech conversion and synthesis, mainly focusing
on disentangled latent representation learning [10], [19], [20],
[21], [22], [23], [24], [25] via two hypotheses. The first is
that speech can be explicitly decomposed into content, speaker
identity, and prosodic (intonation, stress, and rhythm) represen-
tations. Here, the speaker identity is a statistical time-invariant
representation throughout an utterance, whereas content and
prosodic information vary over time. The second hypothesis is
that a speaker’s identity representation carries most of his or
her private information. Thus, generated speech using original
content, prosodic, and anonymized speaker representations can
suppress the original identity information (privacy) while main-
taining intelligibility and naturalness (utility).

A general framework for disentanglement-based speaker
anonymization involves the following components.

Fine-grained disentangled representation extraction from
original speech: Here, extraction entails three aspects: (i) Con-
tent feature extraction. Low-dimensional phonetic bottleneck
features are typically extracted from an intermediate layer of a
language-specific automatic speech recognition neural acoustic
model (ASR AM) [26], [27]. This type of content encoder
is trained in a supervised manner using transcribed English
training data. As the objective is to obtain accurate linguistic
representations, the effectiveness is severely limited when ap-
plied to a different language. Content encoders based on self-
supervised learning (SSL) can overcome this limitation thanks
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to being trained in a self-supervised manner using unlabeled
training data. Specifically, they can provide general content
representations not dependent on the language, thus enabling
robust anonymization of speech data even for unseen languages.
(ii) Prosody-related feature extraction to obtain the fundamen-
tal frequency, i.e., F0. (iii) Speaker embedding extraction. A
speaker vector is extracted either from an automatic speaker
verification (ASV) system based on a time-delay neural network
(TDNN) [28], or from a more effective ASV system based on
emphasized channel attention, propagation and aggregation in
TDNN (ECAPA-TDNN) [29].

Speaker representation anonymization: The core idea of a
speaker vector anonymizer is to hide original speaker informa-
tion while preserving the diversity among different speakers. A
widely used anonymizer is based on the selection and averaging
of speaker vectors [23], [30]. Given a large set of speaker vectors,
the anonymizer finds the N farthest candidate vectors away
from an input original vector. It then randomly selects N ∗ < N
vectors among the N farthest ones and utilizes their average as
a pseudo-speaker vector to replace the original speaker vector.
The large set of speaker vectors, called an external pool, has to
be loaded by the anonymizer during anonymization.

Anonymized speech synthesis: An anonymized speaker vector
with the original fundamental frequency and content features is
passed to a speech waveform generation model to synthesize
high-quality anonymized speech. The speech synthesis model
can be a traditional text-to-speech pipeline model—a speech
synthesis acoustic model (SS AM) and a neural source filter-
(NSF-) based vocoder [31]—or a unified HiFi-GAN [32].

Despite confirmation of this approach’s effectiveness [11],
[12], [33], there remains much room for improvement for dif-
ferent attack scenarios and unseen language anonymization.
Previous works [11], [12], [23], [33] have suggested that the most
significant performance bottleneck for the current mainstream
approach is the selection-based speaker anonymizer, whose per-
formance significantly depends on the distribution of the external
pool and how pseudo-speakers are selected from the pool. (i) For
English speaker anonymization [11], [12], [13], the performance
of speaker verifiability has gradually decreased against more
powerful attackers. Additionally, voice distinctiveness is signif-
icantly degraded by anonymization. (ii) For unseen-language
(e.g., Mandarin) speaker anonymization, pseudo-speaker rep-
resentations are generated from an external English speaker
vector pool, and the resulting language mismatch increases the
character error rate (CER) [33], [34].

Following this pipeline of disentanglement-based anonymiza-
tion, with special consideration of the selection-based ap-
proach’s problems, we propose a novel speaker anonymiza-
tion system (SAS) based on an orthogonal Householder neu-
ral network (OHNN). As shown in the lower part of Fig. 1,
the OHNN-based anonymizer generates distinctive anonymized
speaker vectors that can protect privacy under all attack sce-
narios and can successfully be adapted to unseen-language
speaker anonymization without severe language mismatch.
Specifically, original speaker vectors are rotated to anonymized
ones by an OHNN, which is a linear transformation with or-
thogonality. This module ensures that the anonymized speaker

Fig. 1. Architecture of an SSL-based SAS, with selection- and OHNN-based
anonymizers.

vectors follow the distribution over the original speaker vector
space. To discourage overlap between anonymized speakers
and other speakers, we use a classification loss based on an
additive angular margin softmax (AAM) and cross-entropy to
train the OHNN, and we assign different target class labels
to the original and anonymized speaker vectors of different
speakers. This encourages the anonymized vectors to not overlap
with any other speakers, regardless of whether they are original
or anonymized. To further push original-anonymized sample
pairs away from each other, an improved classification loss
called weighted AAM (w-AAM) and a cosine similarity loss are
used.

The main contributions of this work are as follows:
� We propose an OHNN-based anonymizer that transforms

original speaker vectors into anonymized ones with care-
fully designed training constraints. We show empirically
that these anonymized speaker vectors are diverse and
language-neutral.

� We visualize the cosine similarities between pairs of
speaker vectors extracted from the generated speech of
users and different attackers. These generated speech
are obtained using the commonly used selection-based
anonymizer and our OHNN-based anonymizer. The results
show that our proposed method effectively reduces the
privacy leakage against different attackers and improves
the diversity of anonymized speakers. We conducted ex-
periments on VPC English datasets and the AISHELL-3
Mandarin datasets. Our findings show that the proposed
model can be successfully adapted to both a matched
language condition (i.e., English) and a mismatched lan-
guage condition where the target language (Mandarin)
is not included in the training database. The proposed
anonymizer achieved a competitive performance under all
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Fig. 2. Speaker anonymization task. A user anonymizes original speech to hide his or her identity before publication, and attackers use biometric (ASV) technology
and knowledge of the anonymization method to re-identify the original speaker’s identity.

attack scenarios in terms of privacy and utility metrics.
Under the Semi-informed condition, our proposed methods
achieved better results for English speaker anonymization
than all the submissions to VPC2022 [24], [25], [35], [36],
[37], [38].

II. RELATED WORK

In this section, we introduce the VPC’s official design, which
provides the setting for this study, including definitions of spe-
cific goals, attack models, and objective evaluation metrics. We
also overview existing speaker anonymization approaches and
their limitations.

A. The VoicePrivacy Challenges

The VPC formulates the speaker anonymization task as a
game between users and attackers, as shown in Fig. 2. A user
publishes anonymized data, called test trials, after applying an
SAS to his or her original private speech. According to the VPC
evaluation plan [13], an SAS should:
� output an anonymized speech waveform;
� conceal the speaker’s identity from different attackers;
� keep content and other paralinguistic attributes unchanged

to maintain intelligibility and naturalness;
� ensure all test trials from the same speaker are attributed

to the same pseudo-speaker, while test trials from different
speakers have different pseudo-speakers1

1) Attack Models and Objective Evaluation Metrics:

1This is called speaker-level anonymization. A different approach known as
utterance-level anonymization assigns different pseudo-identities to different
utterances of the same original speaker. In this work, we follow the VPC protocol
and utilize speaker-level anonymization.

a) Privacy metric: To assess the ability to protect a
speaker’s identity in different scenarios, the ASV performance
in terms of the equal error rate (EER) is computed as the pri-
mary privacy metric by using language-matched ASV evaluation
models. This metric is calculated under the four attack models
shown in the lower left of Fig. 2. The attackers are assumed
to have access to a few original or anonymized utterances for
each speaker, called enrollment utterances, and to have different
levels of knowledge about the SAS:
� Unprotected: No anonymization is applied, and attackers

verify the original test trials against the original enrollment
data by using an ASV system trained on the original dataset,
denoted ASVeval.

� Ignorant: Attackers are unaware of the anonymization
strategy used for the test trial utterances; instead, they use
the original enrollment data andASVeval to infer a speaker’s
identity.

� Lazy-informed: Attackers use a similar SAS without ac-
curate parameters to anonymize their enrollment data, and
they use ASVeval to detect a speaker’s identity.

� Semi-informed: The only difference from Lazy-informed
is that the attackers use ASV anon

eval , a more powerful version
trained on anonymized speech, to reduce the mismatch
between the original and anonymized speech and infer the
speaker’s identity.
b) Primary utility metric: To assess how well speech con-

tent is preserved in anonymized speech, the ASR performance
in terms of the word error rate (WER) is computed as a pri-
mary utility metric by using language-matched ASR evaluation
models. As illustrated in the lower right of Fig. 2, two ASR
models are trained in the same way to decode the anonymized
data:ASReval, trained on the original data, andASRanon

eval , trained
on the anonymized data. This enables exploration of whether
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speech content can be maintained better by simply retraining
with similarly anonymized data.

c) Secondary utility metric: To assess and visualize the
preservation of voice distinctiveness, the gain of voice dis-
tinctiveness metric, GVD [39], [40], is computed. Precisely,
M = (M(i, j))1≤i≤N,1≤j≤N is a voice similarity matrix for N
speakers, where the similarity value M(i, j) for speakers i and
j is formulated as follows:

M(i, j)=sigmoid

⎛
⎜⎜⎝

1

ninj

∑
1≤k≤ni and 1≤l≤nj

k �=l if i=j

LLR(x(i)
k , x

(j)
l )

⎞
⎟⎟⎠ ,

(1)
Here, ni and nj are the numbers of utterances for each

speaker; and LLR(x(i)
k , x

(j)
l ) is the log-likelihood ratio obtained

by comparing the k-th utterance of the i-th speaker with the l-th
utterance of the j-th speaker. These LLR scores are computed
by probabilistic linear discriminant analysis (PLDA) [41] of the
ASVeval model trained on the original data.

Three matrices are constructed from the original (o) and
anonymized (a) data: Moo from the original data, Moa from the
original and anonymized data, and Maa from the anonymized
data. The diagonal dominance Ddiag(M) is computed as the
absolute difference between the mean values of diagonal and
off-diagonal elements:

Ddiag(M)=

∣∣∣∣∣
∑

1≤i≤N

M(i, i)

N
−

∑
1≤j≤N and 1≤k≤N

j �=k

M(j, k)

N(N − 1)

∣∣∣∣∣.

(2)
Next, GVD [39] is defined as the diagonal dominance ratio of

the two matrices:

GVD = 10 log10
Ddiag(Maa)

Ddiag(Moo)
, (3)

Here, a gain of GVD = 0 dB indicates that voice distinctive-
ness is preserved on average after anonymization, while a gain
above or below 0 dB corresponds respectively to an average
increase or decrease in voice distinctiveness.

An ideal anonymization system should achieve high EERs
(close to 50%) in the Ignorant, Lazy-informed, and Semi-
informed scenarios to protect the speaker’s information. In ad-
dition, the WER should be as low as for the original speech, and
GVD should be close to 0 dB to preserve voice distinctiveness.

B. Existing Speaker Anonymization Approaches

1) Digital Signal Processing (DSP) Methods: A simple ap-
proach [14] that does not require training data is to change
speaker attributes with distortion of the spectral envelope by
using McAdams coefficients [42] to randomly shift the positions
of formant frequencies. Widening of formant peaks [15] further
distorts the spectral envelope. Data-driven formant modification
can also be applied by using the formant statistics of desired
speakers [16] or time-scale algorithms [18]. Phonetically con-
trollable anonymization [17] modifies a speaker’s vocal tract and
voice source features, with a focus on F0 trajectories. Although

these methods perceptually manipulate the speech signal, previ-
ous works have indicated that powerful attackers can effortlessly
recover speaker identities [11], [12], [43].

2) Disentangled Representation Methods: A typical ap-
proach based on disentangled representation learning, called
x-vector based anonymization, is used as the primary baseline
in the VPC [10], [11], [12], [13]. It extracts speaker representa-
tions and linguistic features by using a pretrained TDNN-based
ASV system [28] and ASR AM based on a factorized time-
delay neural network (TDNN-F), respectively. Then, to hide
the original speaker’s information, a selection-based speaker
anonymizer [30] replaces the original x-vector with the mean
vector of a set of randomly selected speaker vectors from an
external pool of English speakers. Specifically, given a centroid
of source speaker vectors from one speaker, the cosine distance
is used to find the 200 farthest centroids in an external speaker
vector pool, and 100 of those are randomly selected and averaged
to obtain an anonymized speaker vector [30]. Finally, an SS
AM generates mel-filterbank features from the anonymized
pseudo x-vector, F0, and linguistic features, and an NSF-based
waveform generator synthesizes anonymized speech.

Because this disentanglement-based method is more effective
at protecting speaker identities than the DSP-based methods
discussed in Section II-B1 [12], [43], most speaker anonymiza-
tion studies have followed a similar framework. Improvements
mainly come from two sources:

Improved speech disentanglement: Some works [44], [45],
[46] have argued that the disentangled linguistic information
extracted from the language-specific ASR AM and F0 still con-
tain speaker information. Accordingly, they modify the F0 and
linguistic information to remove the residual speaker identity.

Improved speaker vector anonymization: Other researchers
have modified the original x-vector in ways that increase the
privacy protection ability. Perero-Codosero et al. [47] trans-
formed an original x-vector to an anonymized one by using
an autoencoder with an adversarial training strategy to suppress
speaker, gender, and accent information. This requires labels for
the speaker identity, gender, and nationality. Turner et al. [48]
sampled anonymized x-vectors from a Gaussian mixture model
in a space reduced by principal component analysis (PCA)
over an external pool of speakers, which preserves the distri-
butional properties of the original x-vectors. There have been
recent attempts to generate a target pseudo-speaker for speaker
anonymization in the systems submitted to the VoicePrivacy
Challenge 2022. For example, Meyer et al. [24] utilized a gener-
ative adversarial network to generate artificial speaker embed-
dings, where the anonymization stage requires a manual search
to find vectors that are dissimilar to the anonymized one. Yao
et al. [25] proposed using a look-up table (LUT)-based method to
generate pseudo-speaker embeddings, along with an average of
randomly selected speaker embeddings from the real speakers.
However, it suffers from limited variability in the anonymized
voices. Chen et al. [35] proposed a method for distorting an input
speech signal by adding adversarial noise designed to hide the
original speaker identity.

Most of the existing approaches are limited in two aspects.
First, they use an ASR-based content extractor that requires large
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Fig. 3. Framework for an OHNN-based anonymizer. The xo are original
speaker representations extracted from a pretrained ECAPA-TDNN, which then
pass through a transfer module f(·) to produce the corresponding anonymized
speaker representations xa. The xo and xa are trained as different speakers.
After training, xa is used as a pseudo-speaker vector to synthesize speech.

amounts of transcribed English training data. Such an ASR-
based content extractor is ineffective for speaker anonymization
in unseen languages. Our previous work alleviates this issue by
using an SSL-based content extractor [33]. As shown in Fig. 1,
this SSL-based SAS consists of a HuBERT-based soft content
encoder [49], an ECAPA-TDNN speaker encoder [29], an F0
extractor, and a HiFi-GAN decoder [32]. It does not require
text transcriptions or any other language-specific resources,
and it has demonstrated the ability to anonymize speech data
with reasonable performance even if the data is in a language
not included in the training data. However, it suffers from a
remaining limitation of selection-based anonymizers according
to previous results [11], [12], [13], [33], [34]: the distribution
of the external speaker pool significantly affects anonymized
speakers, and the averaging of vectors from the speaker pool
reduces voice distinctiveness.

III. PROPOSED OHNN-BASED ANONYMIZER

To mitigate the problems with existing approaches, we pro-
pose the OHNN-based anonymizer shown in Fig. 3. Hence,
this section formulates speaker anonymization as a constrained
optimization problem, describes a general form of the proposed
anonymizer, and explains the implementation details.

A. Problem Formulation

The training set {(xo
i , y

o
i )}Mi=1 comprises M speaker vector

xo
i and the corresponding speaker label yoi . The speaker vector

xo
i ∈ R

d is a d-dimensional segment-level speaker embedding
obtained from an ECAPA-TDNN pretrained on the original
audio waveform. xo

i follows an unknown distribution xo
i ∼ pxo .

Anonymized speaker vectors xa
i ∈ R

d are obtained by trans-
forming xo

i with a function fΘ : Rd → R
d, written as follows:

xa = fΘ(x
o). (4)

Accordingly, the anonymized speaker vectors follow another
distribution xa

i ∼ pxa or xa
i ∼ pfΘ(xo).

An ideal speaker anonymization method should meet at least
three constraints:
� Speaker privacy protection: xo

i and xa
i are dissimilar to

hide the original speaker identity. More specifically, in the
context of VPC, xo

i and xa
i are dissimilar to the extent that

the anonymized speech generated using xa
i is recognized

as being a different speaker by the attackers’ ASV.

� Speaker diversity: xa
i has a unique speaker identity yai

to maintain the diversity of anonymized speech across
different speakers.

� Distribution similarity: xa
i ∼ pxa satisfies the same dis-

tribution as xo
i to maintain the naturalness of the original

speech.
The above constraints can be formulated as an optimization

problem:

(Θ,Ψ)∗ = argmin
Θ,Ψ

E{xo,yo}∈D [λLs (x
o, fΘ(x

o))

+Lc (y
o, gΨ(x

o); ya, gΨ(fΘ(x
o)))] , (5)

s.t. D(
pxo , pfΘ(xo)

)
< ε, (6)

where λ is a hyperparameter to balance the multi-objective
function. Ls is a similarity metric to optimize Θ by minimizing
the similarity of the original-anonymized pair, which ideally
makes the original and anonymized speech be recognized as
different speakers by the attackers’ ASV.

Next, gΨ(·) denotes the classifier layer, and Lc is its clas-
sification loss function to optimize Θ and Ψ by minimizing
the discrepancy between the sets of desired outputs, yo, ya, and
predicted outputs, gΨ(xo), gΨ(x

a). The outputs may be defined
for a multi-speaker classification task in which the original
and corresponding anonymized speaker vectors are intentionally
treated as different target speaker classes. This means that all
speaker vectors after anonymization are treated as different
classes, as well as different classes from the original speakers to
maintain speaker diversity.

Finally, D(pxo , pfΘ(xo)) is the divergence between distri-
butions of x included in a training database before and after
anonymization. This term ensures similarity between the distri-
butions of the anonymized and original speaker vectors, with
some tolerance ε. The Kullback–Leibler divergence (KLD) or
other types of divergence are applicable.

B. General Form of Proposed Anonymizer

Finding a direct solution of (5) and (6) for an arbitrarily
designed DNN-based fΘ is difficult. Here, we propose an
anonymizer that, with a few assumptions, always satisfies the
constraint in (6) regardless of the value of Θ. In such a case,
Θ and Ψ can be optimized via (5) and a conventional gradient
descent method.

Let µxo ∈ R
d and Σxo ∈ R

d×d be the mean and covariance
matrix of pxo , respectively. Our proposed anonymizer fΘ(·) can
be written as follows:

xa = fΘ(x
o) = L−1

xoWLxo(xo − µxo) + µxo , (7)

where Lxo is a whitening matrix2 that satisfies L−1
xoL−1

xo
�
=

Σxo , and W ∈ R
d×d is an orthogonal matrix that satisfies

WW� = W�W = I. While µxo and Lxo are determined by
the data distribution, the values of W are learned via (5).

Before introducing the parameterization and optimization
of W, we show that the proposed anonymizer satisfies

2Lxo is a whitening matrix. It can be derived from Σxo by a matrix
decomposition method used in, e.g., PCA or Cholesky whitening [50].
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D(pxo , pfΘ(xo)) = 0 given that pxo is a Gaussian distribution
N (µxo , Σxo)3 We first decompose (7) into three steps:
� Centering and whitening: x̃o = Lxo(xo − µxo),
� Rotation: x̃a = Wx̃o,
� De-whitening and de-centering: xa = L−1

xo x̃a + µxo .
The centered and whitened speaker vector x̃o obviously

follows a normal distribution x̃o ∼ N (0, I). As W is an
orthogonal matrix, x̃a also follows a normal distribution
N (W0,WW�) = N (0, I). Through the affine transforma-

tion in the last step, we know that xa ∼ N (µxo ,L−1
xoL−1

xo
�
) =

N (µxo ,Σxo). Hence, the defined anonymizer does not change
the distribution, i.e., D(pxo , pfΘ(xo)) = 0.

The above explanation also reveals the core idea of our
proposed anonymizer: while it does not change the overall
distribution, each speaker vector is rotated through an orthogonal
transformation. The anonymizedxa is guaranteed to be different
from the originalxo as long asW �= I. While an infinite number
of orthogonal matrices can be applied for rotation, the optimal
W with respect to the criterion in (5) must be estimated through
an optimization process.

In real applications, µxo and Σxo of the test set data are
unknown. They can be estimated by collecting multiple samples
from the test domain if it is possible. Otherwise, we can either
use the statistics from the training set or make some simplifica-
tions. Through preliminary experiments, we found an effective,
simplified form:

xa = fΘ(x
o) = W(xo − µtrain

xo ) + µtrain
xo , (8)

where µtrain
xo is the mean of the speaker vectors in the training

set, and Σxo is assumed to be an identity matrix.

C. Rotation Matrix Using Householder Reflection

We now need a specific way to parameterize W to guarantee
that the learned W through gradient descent is orthogonal.
While many methods can be used, we found that one based on a
Householder reflection [53] is efficient for DNNs. Without loss
of generality, assume thatW is a product of multiple orthogonal
matrices:

W = W1Wl. . .WL, (9)

where each matrix Wl ∈ R
d×d is given by

Wl = Hql Hql−1 . . .H1, ql ≤ d, (10)

Here, each sub-matrix Hql is constructed with a Householder
reflection [53] given a non-zero vector vql ∈ R

d as follows:

Hql = I− 2

v�
ql
vql

vqlv
�
ql
. (11)

The resulting H is known to be an orthogonal matrix for
any non-zero vector vql , i.e., H�H = HH� = I and H �=

3Being Gaussian is a desirable but not absolutely required condition to ensure
D(pxo , pfΘ(xo)) = 0, but many types of speaker vectors can be assumed to
follow a multivariate Gaussian distribution in the high dimensional space. One
example is the length-normalized i-vector [51]. Another example is the ECAPA-
TDNN speaker vectors, which can be well modeled using PLDA with Gaussian
distributions [52].

Fig. 4. Two types of OHNN-based anonymizers.

I, ∀vql �= 0. Accordingly, Wl and W are orthogonal and guar-
anteed not to be the identity matrix.

Equations (9)–(11) allow us to parameterize W as
{· · · ,vql , · · · }. We further propose two implementations, which
differ in how they compute v:

1) Random orthogonal Householder (ROH) reflection:v
is treated as a learnable free parameter, i.e., Θ =
{· · · ,vql , · · · }, and each v is randomly initialized and
optimized using (5). The anonymization process is illus-
trated in Fig. 4(a).

2) Learnable orthogonal Householder (LOH) reflection:
Eachv is transformed from a small NN given the inputxo.
In such a case, Θ is the set of the trainable weights in a set
of small NNs. Fig. 4(b) illustrates an implementation in
which each DNN has a single 1D convolution layer with
192 output channels and a kernel size of 3.

While both implementations ensure that the transformation
matrix W is orthogonal, the first approach assumes a global
transformation for all the input speaker vectors. In contrast, the
latter approach assumes that the transformation matrix varies
according to the input.

D. Loss Functions

Before delving into the details of the loss functions, we de-
scribe how to build batch data for an OHNN-based anonymizer.
Let N be the batch size and C be the number of origi-
nal speakers. Each mini-batch comprises N/2 original sam-
ples: [xo, yo] = {(xo

i , y
o
i )}N/2

i=1 , where yoi ∈ [1, C] and N/2
corresponding anonymized samples, and [xa, ya] = {(xa

i , y
o
i +

C)}Ni=(N/2)+1. Therefore, the number of speakers is 2C during
the training of an OHNN-based anonymizer.

We now explain the loss functions for learning the best values
of Θ and Ψ as defined in (5). For the classification loss Lc, we
first consider the widely used AAM softmax loss [54], [55]:

Lc = LAAM-softmax = − 1

N

N∑
i=1

log
e‖wyi‖·‖xi‖·cos(θyi,i+m1)

Z
,

(12)
where

Z = e||wyi
||·||xi||·cos(θyi,i+m1) +

2C∑
j=1,j �=yi

e||wj ||·||xi||·cos(θj,i),
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wj is the j-th column of the weight in the fully-connected layer
before the softmax layer, where w ∈ R

d×2C ; and θyi,i is the
angle between xi and the target class’s weight vector wyi

. After
fixing the weight ||wyi

|| = 1 by �2-normalization and rescaling
||xi|| to s to ensure that the gradient is not too small during
training, we can write (12) as

Lc = LAAM-softmax = − 1

N

N∑
i=1

log
es(cos(θyi,i+m1))

Z
, (13)

where Z = es(cos(θyi,i+m1)) +
∑2C

j=1,j �=yi
es(cos(θj,i)). Since

the target label yi varies across the original and anonymized
speakers, the classification loss LAAM-softmax encourages the
OHNN-based anonymizer to produce anonymized vectors that
are varied for different speakers and distinct from original
speaker vectors.

To further improve the discrepancy for original-anonymized
(or anonymized-original) pair samples, we add an extra mar-
gin penalty m2 into the AAM softmax loss. The approach is
called weighted additive angular margin (w-AAM) softmax. Let
i ∈ [1, N ] be the index of the original (or anonymized) sample
in a mini-batch based on this batch data construction method.
The corresponding anonymized (or original) sample is indexed
by (i+N/2)%N , where % denotes the modulo operation. The
proposed w-AAM-based loss function Lw-AAM is similar to
Lw-AAM except that the factor Z is defined as

Z = es(cos(θyi,i+m1)) + e
s(cos(θy(i+N/2)%N,i−m2))

+

2C∑
j=1,j �=i,j �=(i+N/2)%N

es(cos(θj,i)). (14)

In our experiments, we set m1 = m2 = 0.2, s = 30 and
compared the performance with settings of Lc = LAAM and
Lc = Lw-AAM.

For the similarity metric Ls, we choose the cosine similarity4

given by Ls(x
o
i ,x

a
i ) = max(0, cos(xo

i ,x
a
i )−m), we set the

margin m = 0. The cosine similarity is a reasonable choice
because it is closer to what most ASV systems use for scoring
the similarity between speaker vectors. As the anonymizers are
trained to minimize the cosine similarity between original and
anonymized speaker vectors, the anonymized speech is expected
to be judged as a different speaker by the attacker ASV, hence
protecting the speaker’s identity.

IV. EVALUATION

To evaluate the effectiveness of the SSL-based SAS using the
proposed OHNN-based anonymizer under all the attack scenar-
ios for English speaker anonymization, we followed the VPC
evaluation plan [11], [12], [13] described in Section II. Then,
we conducted anonymization experiments under a language-
mismatched condition, using Mandarin data as the non-included
language in the training database. The purpose of these exper-
iments was to determine whether that the proposed OHNN-
based anonymizer, which eliminates the need for an English

4https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.
html

speaker pool, can effectively reduce the language mismatch
present in anonymized speaker representations. As a result,
better speech content preservation is achieved for Mandarin
speaker anonymization.

A. Speaker Anonymization Dataset and Experimental Setup

1) Dataset: The SSL-based SAS was built using the fol-
lowing VPC standard datasets [11]: an ECAPA-TDNN speaker
encoder trained on the VoxCeleb-2 [56]; a HuBERT-based soft
content encoder finetuned from a pretrained HuBERT Base
model5 on LibriTTS-train-clean-100 [57] to capture content
representations; and a HiFi-GAN model trained on LibriTTS-
train-clean-100 [57].

Unlike the selection-based anonymizer, which relies on an
additional multi-speaker English dataset (LibriTTS-train-other-
500) containing data from 1,160 speakers as the external pool,
the OHNN-based anonymizers reuse a multi-speaker multi-
language dataset (VoxCeleb-2), that is used to train the ECAPA-
TDNN of the SSL-based SAS [33]. This large-scale dataset
contains over 1 million utterances by 5,994 speakers of 145
different nationalities.

English speaker anonymization was evaluated on the official
VPC development and test sets [11], [12], [13]. These two sets
contain English utterances by several female and male speakers
from the LibriSpeech and VCTK [58] corpora. For the Ignorant
and Lazy-informed conditions, we used the language-matched
ASVeval system provided by the VPC [11], [12], [13]. It was
trained on the original LibriSpeech-train-clean-360 English
dataset. For the Semi-informed condition, we trained ASV anon

eval
system in the same way asASVeval, but with anonymized speech
data. Likewise, ASReval and ASRanon

eval were trained with the
same original and anonymized speech data, respectively.

The same anonymization systems used for English speak-
ers were directly adopted for Mandarin speaker anonymization
without training or fine-tuning on Mandarin data. The evaluation
for Mandarin was conducted on a test set sampled from a 20-
hour, multi-speaker Mandarin corpus called AISHELL-3 [59].
The test set contains 4,267 utterances by 44 speakers. We split
the utterances into test trial (88 utterances) and enrollment
(4,179 utterances) subsets, which were used to produce 10,120
enrollment-test pairs for ASV evaluation, including 2,200 same-
speaker and 7,920 different-speaker pairs. The ASV evaluation
model ASV mand

eval under the Lazy-informed condition was an
ECAPA-TDNN trained on the Mandarin datasets CN-Celeb-1 &
2 [60], [61]. The ASV evaluation model under the Semi-informed
condition called ASV anonmand

eval was fine-tuned from ASV mand
eval

using anonymized utterances from 285 speakers in the interview,
speech and live broadcasting genres of CN-Celeb-1 & 2. The
ASR evaluation model ASRmand

eval was a publicly available ASR
Transformer [62] trained on a 150-hour Mandarin ASR dataset,
AISHELL-1 [63].

2) Experimental Setup: Table I lists notations for the differ-
ent speaker anonymization approaches that we examined. B1.a,
B1.b, and B2 are the baseline systems from VPC 2022 [13].

5https://github.com/pytorch/fairseq/tree/main/examples/hubert

https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
https://github.com/pytorch/fairseq/tree/main/examples/hubert
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TABLE I
NOTATIONS FOR THE EVALUATED SPEAKER ANONYMIZATION METHODS

S-Select denotes the SSL-based SAS using a selection-based
anonymizer. S-ROH denotes a system obtained by replacing
the selection-based anonymizer of S-Select with a random OH
(ROH) anonymizer and keeping other components unchanged.
Likewise, S-LOH indicates the use of a learnable OH (LOH)
anonymizer. Noted that, hereafter, S-ROH* and S-LOH* refer
to models trained with the w-AAM and cosine similarity losses.

For S-Select, the YAAPT algorithm [64] is used to extract the
F0. The ECAPA-TDNN with 512 channels in the convolution
frame layers [29] provides 192-dimensional speaker identity
representations. The HuBERT-based soft content encoder [49]
takes the CNN encoder and the first and sixth transformer layers
of the pretrained HuBERT base model as a backbone. It down-
samples a raw audio signal into a 768-dimensional continuous
representation, which is then mapped to a 200-dimensional vec-
tor by one projection layer to predict discrete speech units. These
speech units are obtained by discretizing the intermediate 768-
dimensional representations via k-means clustering6 [65], [66].
The training procedures are detailed in [33]. For the selection-
based anonymizer, attackers had different random seeds from
users when randomly choosing 100 speaker vectors from the 200
farthest ones; thus, the attackers had different pseudo-speaker
vectors.

The OHNN-based anonymizer accepts 192-dimensional
speaker representations extracted from a pretrained ECAPA-
TDNN, which was the same here as the ECAPA-TDNN of
the SSL-based SAS. We followed the VPC evaluation plan, in
which attackers in the Lazy-informed and Semi-informed sce-
narios have partial knowledge of the speaker anonymizer. They
are assumed to know the training dataset, structure, loss func-
tions, and other training parameters of the user’s OHNN-based
anonymizer, except for the training seed to initialize the train-
ing weights. Specifically, the training seeds were 50 and 1986
for users and attackers, respectively.7 Using knowledge of the
OHNN-based anonymizer, an attacker trains a new anonymizer
to anonymize speech. All the OHNN-based anonymizers were
trained with a cyclical learning rate [67], which varied between
1e-8 and 1e-3, and the Adam optimizer [68] by using the
SpeechBrain [62] toolkit based on PyTorch [69]. The number
of iterations of one cycle was set to 130 k. We fixed d = 192,
L = 12 for both the ROH and LOH anonymizers, but we use

6https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/
speech2unit

7The training seeds can be any values as long as they are different for users
and attackers.

Fig. 5. Visualization of original and anonymized speaker vectors generated
by the S-Select and S-LOH* anonymizers.

ql = 192 and ql = 50 for the ROH and LOH training, respec-
tively. The hyperparameter λ in (5) was set to 208.

B. Speaker Anonymization Experiments in English

For the English experiments, first, we explored the differ-
ence between selection- and OHNN-based anonymizers by
comparing the performance of S-Select and S-LOH*. Then,
we investigated different configurations for the OHNN-based
anonymizer, including the losses and whether to explicitly use
speaker information to optimize the Householder transforma-
tion. Finally, we compared SSL-based speaker anonymization
using an OHNN-based anonymizer with other approaches, in-
cluding the disentanglement- and DSP-based approaches.

1) Comparison of Selection- and OHNN-Based Anonymiz-
ers: In the first experiments, we visualized the original and
anonymized speech generated by S-Select and S-LOH* in terms
of speaker embeddings, the cosine similarity of the speech pairs,
and voice distinctiveness.

Original and anonymized speaker embeddings: To show the
difference between the S-Select and S-LOH* anonymizers,
we first applied t-distributed stochastic neighbor embedding (t-
SNE) [70] to visualize the original and anonymized embeddings.
The results are shown in Fig. 5. The speaker embeddings were
extracted from 50 speakers in the VoxCeleb-2 training set, which
are shown in different colors, and 10 utterances were randomly
selected from each speaker. Clearly, the anonymized speaker
vectors generated by S-Select were heavily dependent on the
distribution of an external pool, whereas S-LOH* generated
distinctive anonymized speaker vectors that followed the distri-
bution of the original speaker vector space.

Cosine similarity distribution on speech pairs: Fig. 6 plots the
cosine similarities between pairs of speaker vectors extracted
from generated speech for all the test sets of LibriSpeech and
VCTK on speech pairs provided by [12]. Depending on the attack
condition, the speech can be original or anonymized generated
by S-Select or S-LOH*. For the Unprotected condition, shown
on the left side of Fig. 6, the positive cosine similarity distri-
butions (green) are close to 1, and the negative distributions
(yellow) are close to 0, which indicates that the speaker vectors

8Audio samples are available at https://github.com/nii-yamagishilab/SSL-
SAS

https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/speech2unit
https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/speech2unit
https://github.com/nii-yamagishilab/SSL-SAS
https://github.com/nii-yamagishilab/SSL-SAS
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Fig. 6. Cosine similarities between pairs of the speaker vectors extracted from the generated speech of users and different attackers. Positive: paired utterances
from the same speaker. Negative: paired utterances from different speakers.

of the original speech were highly discriminative. To protect
speaker privacy, an ideal SAS should push the positive score
distributions toward the negative ones regardless of the attacker
type.

On the right side of Fig. 6, the top part shows the score dis-
tributions for three attacker conditions with S-Select. There are
much bigger overlaps of the positive and negative distributions
for the Ignorant condition than for the Unprotected condition,
which means that S-Select achieved reasonable speaker privacy
performance under the Ignorant condition. Unfortunately, the
overlaps are smaller for the Lazy-informed and Semi-informed
conditions. This reveals the reason for the significant speaker pri-
vacy leakage under more powerful attack conditions. Moreover,
most of the cosine similarity scores are very close to 1, which
may pose a risk of reducing the diversity of the anonymized
speakers.

The bottom right of Fig. 6 shows the score distributions for
three attacker conditions with S-LOH*. The overlaps of the
positive and negative distributions are well magnified under
all the attack scenarios. This verifies the effectiveness of our
OHNN-based anonymizer in ensuring that the attackers cannot
gain significant speaker privacy information from users. Fur-
thermore, most of the cosine similarity scores are far from 1,
indicating the diversity of the anonymized speakers.

Comparison of gain of voice distinctiveness (GVD): Fig. 7
shows voice similarity matrices obtained for S-Select and S-
LOH*. The upper-left submatrix of each matrix M is Moo, and
the distinct diagonal reflects the high voice distinctiveness within
the original speech. The upper-right (or lower-left) submatrix
Moa reflects the voice similarity between the original and the
anonymized speech, such that the diagonal disappears when
they differ. The lower-right submatrix Maa reflects the voice
similarity within the anonymized speech, where a dominant
diagonal appears if the anonymized speakers remain distin-
guishable [39]. There is a very weak dominant diagonal in
Maa for S-Select, indicating that voice distinctiveness was lost
among the anonymized speakers. In contrast, the matrices for
S-LOH* exhibit distinct diagonals in Maa, indicating that voice
distinctiveness was preserved after anonymization.

In general, the S-LOH* anonymizer met the three constraints
described in Section III-A: good privacy protection, voice

Fig. 7. Voice similarity matrices for S-Select and S-LOH* on the female
speakers in the LibriSpeech-dev and VCTK-dev datasets. The global matrix M
for each system comprises three submatrices Moo, Moa, and Maa defined in
Section II-A1 via M = [Moo Moa

Moa Maa
].

distinctiveness, and naturalness of the speaker vector space from
the above analysis and visualization.

2) Effects of Various Components for Proposed OHNN-
Based Anonymizer: The proposed OHNN-based anonymizer
has two novel components: the loss functions and the House-
holder transformations. Table II summarizes the average EERs
and WERs9 under all attack scenarios using two OHNN-based
anonymizers with different losses. In the table, ↑ indicates a
better performance with higher values, while ↓ indicates a better
performance with lower values.

Effect of the different losses: For the proposed OHNN-based
anonymizer, w-AAM+cos performed better than AAM+cos in
terms of the EER under most attacker conditions. This was
because the introduced margin of w-AAM expands the inter-
class variance of original-anonymized pairs, thus increasing the
dissimilarity.

9The EER weights and detailed results for each subset are given in Appendix
A. Due to limited space, other results are moved to the appendix of the article
on Arxiv.
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TABLE II
AVERAGE EER (%), WER (%), AND GVD(dB) ON THE VPC ENGLISH DEVELOPMENT(DEV) AND TEST SETS

TABLE III
AVERAGE EER (%), WER (%), AND GVD(dB) ON THE VPC ENGLISH DEV AND TEST SETS WHEN PROCESSED BY VARIOUS SPEAKER ANONYMIZATION SYSTEMS

Effect of different Householder transformations: Clearly, the
LOH anonymizers generally achieved better EERs than the ROH
did. This result supports the view that, instead of using a global
transformation for ROH, the LOH is more flexible because
it learns from the speaker embeddings and thus brings more
discriminative information.

For the WERs, those computed byASRanon
eval were consistently

lower than those of ASReval for all systems. This implies that
such utility degradation due to OHNN-based anonymizers can
easily be offset by training ASR evaluation models on similar
anonymized data. Meanwhile, all the OHNN-based anonymizers
achieved similar WERs with ASReval or ASRanon

eval , which con-
firms that the orthogonality of ROH and LOH did not change the
distributions of the original and anonymized speaker vectors.

3) Comparison of Various SASs Using Different Anonymiz-
ers: Primary privacy and utility evaluation: Table III lists the
average EER and WER results for various SASs under all sce-
narios. To anonymize the speaker representations, B2 randomly
alters the formant position, B1.a, B1.b, and S-Select used the
selection-based anonymizer, while S-ROH* and S-LOH* used
the OHNN-based anonymizer.

First, we examine the results with the selection-based
anonymizer. Using the selection-based anonymizer, the EERs
of S-Select, B1.a and B1.b decreased by around 30% under the
Lazy-informed condition and 7%–9% under the Semi-informed
condition, indicating severe speaker privacy leakage.

Next, we examine the results with the proposed OHNN-based
anonymizer integrated into different configurations. First, S-
ROH* and S-LOH* could protect speaker information almost

as well as the VPC baselines (B1.a and B1.b) could when facing
the Ignorant attacker. Moreover, for the Lazy-informed and
Semi-informed attackers, it comfortably outperformed all the
baseline systems, achieving over 40% EER. Second, among all
the methods, S-ROH* and S-LOH* preserved speech content
the best with ASRanon

eval , achieving even lower WERs than for
original speech on average.

Another interesting observation is that, while B2, B1.a,
B1.b, and S-select are effective for protecting user privacy
under the Ignorant condition, the utility performance in terms
of WER and GVD is worse than that of the OHNN-based
anonymizers. This suggests that the baseline methods sacri-
fice utility to achieve a high privacy protection performance.
Our proposed methods achieve a good balance between im-
proving both privacy and utility metrics under various attack
scenarios.

Secondary utility evaluation: The bottom of Table III lists
the results for the average gain of voice distinctiveness, GVD.
They indicate that our proposed S-ROH* and S-LOH* achieved
much better preservation of voice distinctiveness than the SASs
using the selection-based anonymizer. The GVD results of the S-
select and OHNN-based anonymizers again confirm the findings
described in Section IV-B1. MOS prediction: To further analyze
the effectiveness of our proposed models, we utilize a recently
proposed mean opinion score (MOS) prediction network [71]
to estimate the perceived naturalness as another utility metric.
Box plots of the predicted MOS scores are shown in Fig. 9. The
results demonstrate that S-Select has a higher naturalness than
B2 and B1.a. After replacing the selection-based anonymizer
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Fig. 8. Radar charts for each system on English speaker anonymization. All values are rescaled to [0, 100].

Fig. 9. Box plots on predicted naturalness scores of anonymized speech from
experimental systems. Triangle symbols and the bar marks in the boxes represent
mean and median scores, respectively.

with the OHNN-based anonymizers S-ROH* and S-LOH*, we
see a further improvement in naturalness.

Note that we used predicted MOS rather than human
perception-based MOS obtained through listening tests in light
of time and cost limits. The predicted MOS is reasonably well-
aligned with human perception [71]. In Fig. 9, we can see that
the ranking of the predicted MOS of the original, B1.a, and B2
are consistent with those from the listening test done by the
VPC [12].

Overall performance: As there are multiple metrics for eval-
uating the model performance, we summarize the results using

a radar chart for each system in Fig. 8. Each radar chart covers
the EER values under the Ignorant, Lazy-informed, and Semi-
informed conditions, WERo by ASReval, WERa by ASRanon

eval ,
and GVD. Note that the chart shows 100−WER, so the higher
the better. Accordingly, a larger shaded area in the radar plot
indicates a better overall performance. It is evident that the
proposed S-ROH* and S-LOH* achieve larger shaded areas
than the other systems, which performed particularly worse
under the challenging semi-informed condition.

C. Speaker Anonymization Experiments in Mandarin

Table IV lists the EERs and CERs for the Mandarin test
dataset. The first observation is that baselines B1.a and B2
obtained EERs higher than 30% under the three conditions, but
the CERs were higher than 60%. These results indicate that both
systems achieved a high level of speaker identity protection by
heavily distorting the speech contents. In particular, the results
of B1.a suggest that it was inappropriate to use the ASR AM
trained on the English data to extract speech content from the
Mandarin data. The second observation is that the trends for the
S-Select and OHNN-based anonymizers with different losses
were remarkably similar to those observed on the English test
sets.

The proposed OHNN-based anonymizers obtained ASV
EERs higher than 30% under all evaluation conditions, and
the CERs were lower than those of other systems. Com-
pared to the baselines, the proposed systems adequately pro-
tected the speaker information without heavily sacrificing the
speech contents. Compared to the selection-based system, the
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TABLE IV
EER (%) AND CER (%) ON MANDARIN DATA WITH ASV MAND

EVAL , ASV ANONMAND

EVAL , AND ASRMAND
EVAL

proposed system[s?] achieved a lower CER while obtaining
much higher ASV EERs, particularly in the most challenging
Lazy-informed and Semi-informed scenarios. In particular, the
CER on the anonymized speech decreased to less than 18%
with the OHNN-based anonymizers, suggesting improved util-
ity. One possible reason for the decreased CER when using
OHNN-based anonymizers is that this mismatch was mitigated
by the OHNN-based anonymizers trained using VoxCeleb 2,
which contains large-scale, multi-speaker, and multi-language
data.

V. CONCLUSION

This article has proposed a novel OHNN-based speaker
anonymization approach that rotates original speaker vectors
into anonymized ones with a distribution following the orig-
inal speaker vector space. Towards good privacy protection
and voice distinctiveness, AAM/w-AAM and cosine similarity
loss functions were introduced to encourage the generation of
distinctive anonymized speaker vectors. Experiments on English
VPC datasets demonstrated that the proposed model protects
speaker privacy while maintaining speech content: it achieved
competitive performance under all attack scenarios in terms of
privacy and utility metrics. Comparison of the cosine similarities
between pairs of speaker vectors extracted from the generated
speech with a commonly used selection-based anonymizer and
the OHNN-based anonymizer further verified that our proposed
method can effectively reduce privacy leakage when facing
different attackers, while improving the diversity of anonymized
speakers. Experiments on the Mandarin AISHELL-3 datasets
demonstrated that our OHNN-based anonymizer is more ro-
bust to the language mismatch scenario than the selection-
based methods and can be adopted for this unseen-language
anonymization task directly.

To further improve the privacy protection performance un-
der various attack scenarios, our future work will investigate
the training loss. One potential direction is to optimize the
distance between the original and anonymized speaker vectors
by integrating a proxy ASV evaluation model into the training
process i.e., using an ASV to measure Ls in (5) on original and
anonymized speech waveforms. Such a training scheme is closer
to how attackers infringe on the speaker’s identity. Additionally,
we are considering extending the OHNN-based anonymizer to
protect other personal attributes such as age, gender, emotion,

and dialect. We previously proposed a system for concealing
the gender of a speaker [72], and we feel the framework can
be extended to other attributes as well. Our goal is to achieve
controllable voice privacy protection that enables users to cus-
tomize and control the anonymization process according to their
specific privacy needs.

APPENDIX A
DETAILED RESULTS

TABLE V
IGNORANT EER WITH AAM+COS, W-AAM+COS OF ROH AND LOH

TABLE VI
LAZY-INFORMED EER WITH AAM+COS, W-AAM+COS OF ROH AND LOH
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TABLE VII
SEMI-INFORMED EER WITH AAM+COS, W-AAM+COS OF ROH AND LOH
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