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Deep Latent Fusion Layers for Binaural
Speech Enhancement

Tom Gajecki and Waldo Nogueira , Member, IEEE

Abstract—This work addresses the issue of enhancing speech
in binaural hearing scenarios. Specifically, we present a method
to improve binaural noise reduction by integrating latent features
produced by monaural speech enhancement algorithms through
the use of “Fusion layers.” These layers perform Hadamard prod-
ucts between latent spaces at specific processing stages. These fusion
layers draw inspiration from multi-task learning techniques, which
involve sharing model weights across various models aimed at
handling interconnected tasks. The layers perform element-wise
dot products between tensors representing latent representations at
the same processing stage, mimicking the physiological excitatory
and inhibitory mechanisms of the binaural hearing system. This
study initially presents a general fusion model, demonstrating its
ability to better fit synthetic data compared to independent linear
models, equalize activation variance between learning modules,
and exploit input data redundancy to improve the training error.
We then apply the concept of fusion layers to enhance speech in
binaural listening conditions. The proposed method shows promise
for improved noise reduction compared to other feature-sharing
approaches. The study also suggests that including fusion can
enhance predicted speech intelligibility and quality, but too many
fused features may have a negative impact on expected speech
intelligibility. Furthermore, the results suggest that fusion layers
should share parameterized latent representations to effectively
utilize information from each listening side, rather than using
deterministic representations. Overall, this study highlights the
potential of sharing information between speech enhancement
modules through deep fusion layers to improve binaural speech
enhancement while maintaining constant trainable parameters and
improving generalization.

Index Terms—Binaural speech enhancement, deep learning,
fusion layers, latent representations.

I. INTRODUCTION

D EEP learning technology has been successfully applied to
perform speech enhancement, i.e., removing or attenuat-

ing interfering noise from a speech signal. Recently, binaural
speech enhancement methods [1], [2] that share information
between listening sides have been developed to exploit redun-
dant information to further improve noise reduction. Here, we
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address the problem of speech enhancement in binaural listening
by introducing a simple weight-sharing mechanism between two
monaural speech enhancement algorithms.

Commonly, deep learning models are trained to perform one
task at a time. For example, in image processing, a deep neural
network (DNN) can be trained to classify images between a set of
classes or to segment particular objects of interest within images
(e.g., [3], [4], [5]). In the context of speech processing, DNNs
can be trained to recognize the words in speech sentences from
the raw audio (e.g., [6], [7], [8]), or to automatically remove
the unwanted components of a corrupted speech signal, such
as noise or other speakers (e.g., [9], [10], [11], [12]). These
approaches work generally well, but they may ignore potentially
rich sources of information contained in real-world problems.
For instance, speech enhancement systems improve noise reduc-
tion performance when also relying on visual feedback, giving
rise to audio-visual speech enhancement [13]. Here is where
multi-task learning (MTL) comes into play.

MTL is a subset of deep learning techniques in which multiple
learning tasks are solved at the same time while exploiting
similarities and differences between them. This technique is
generally the result of sharing parameters between different
models [14], [15], [16]. MTL can provide the models with higher
generalization capabilities by leveraging the domain-specific
information contained in the training signals of related tasks.
It does this by training tasks in parallel while sharing latent
representations of the input data. This method can be used, for
example, to identify an object within an image, recognize the
overall scene and generate a verbal caption for it (e.g., [17],
[18]). Also, for speech processing, MTL can be used to improve
speech activity detection (e.g., [19], [20]).

Much of the current deep learning research has focused on
coming up with better architectures, and it is not different for
MTL. Actually, architecture plays possibly an even larger role
in MTL because of the number of possibilities that one has to tie
multiple tasks together. In other words, the way the parameter
sharing between the networks is performed is not obvious. In
fact, there is research devoted to finding optimal latent multi-task
architectures [21], [22]. However, simple approaches such as
cross-stitch networks that learn linear combinations of latent
representations between the models have proven to be successful
in generalizing into multiple tasks [23], [24]. In this work, we
present a simple weight-sharing method to perform binaural
speech enhancement.

A healthy human auditory system is excellent at isolating
target signals in acoustically challenging conditions, this is due
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to the ability it has to exploit both acoustic inputs captured by
each of the ears, and to centrally compare features contained in
them; this is known as binaural hearing [25], [26]. The problem
of binaural speech enhancement has been an active research
problem for already some time (e.g., [27], [28], [29], [30]).
However, more recently, DNNs have proven to be successful
at performing speech separation in binaural listening by sharing
acoustic binaural features. For example, previous research has
used feature concatenation at the input level to perform binau-
ral speech enhancement (e.g., [2], [31]). These methods have
been shown to improve speech enhancement performance when
compared to independent models, however, they rely on explicit
spectral feature extraction and are not necessarily motivated by
the human binaural auditory system.

Although the exact fundamental physiological mechanisms
by which the binaural hearing system exploits different acous-
tic cues are not fully understood [32], [33], there have been
attempts to develop computational models that explain empir-
ically observed human binaural hearing abilities, such as the
equalization-cancellation model [34], [35]. This model suggests
explaining binaural masking level differences with processes of
relative delay compensation and then subtraction of particular
acoustic features captured by each ear to attenuate the interfering
noise. In this work, we propose DNNs that although do not
perform the same operations as the equalization model, may
learn to combine latent features to emulate neural excitation and
inhibition processes that happen in the brain stem for binaural
acoustic processing [33].

Inspired by the physiological excitatory and inhibitory mech-
anisms that occur in the binaural hearing system [36], we in-
vestigate the influence that sharing the latent representations
of two single-channel end-to-end speech enhancement DNNs
has on the speech enhancement performance of binaural noisy
speech signals. The latent representations are shared through
fusion layers that apply element-wise dot product operations
to each of the features contained in them. These layers are
designed to introduce non-linearities to the learning model that
will allow better fitting of the training data while improving
generalization without affecting the number of trainable param-
eters. We expect that the fused models will emphasize latent
target feature representations in the fused layers by canceling
unwanted noisy elements contained in the input audio signal,
causing also a decrease in layer activation variance. Here we
extend a previous study1 presented at the 2021 Clarity speech
enhancement challenge [37] by formalizing the concept and by
analyzing the effect of input data correlation, latent activation
variance, and encoding methods.

This work proposes a method for improving binaural speech
enhancement by combining latent representations generated by
DNNs using “Fusion layers.” These layers perform element-
wise dot products between tensors representing latent represen-
tations at the same processing stage, inspired by the physiologi-
cal excitatory and inhibitory mechanisms of the binaural hearing
system. The proposed method shows potential for better noise

1[Online]. Available: https://github.com/APGDHZ/FusionLayers/blob/
main/Clarity_2021_gajecki.pdf

Fig. 1. Graph diagram of a general fused model. Learning modules are
indicated by black-filled vertices and fusion layers by white vertices, whereas
the flow of tensors is indicated by directed edges.

reduction compared to other data merging methods like spectral
feature concatenation, and for improving predicted speech in-
telligibility and quality. However, fusing too many features can
have a negative impact on predicted speech intelligibility. This
highlights the need for caution when using fusion to prevent
excessive degradation of output signals.

The rest of this manuscript is organized as follows. Section II
describes the method. The experimental results are presented in
Section III, and Section IV concludes this manuscript.

II. METHODOLOGY

A. General Fused Model

The main aspect we aim at investigating in this study is the
effect that sharing information between deep learning models
has on data fitting and generalization performance. We pro-
pose to share this information by means of fusion layers that
apply dot-product operations to specific latent representations
at different stages of data processing. We will first describe a
general fused model to formalize the notation that will be used
throughout the manuscript.

LetYm = Ωm(Xm) ∈ R
DL , whereDL is the dimensionality

of the output tensors, be the output tensors computed by a set
of learning models given by Ωm(·), for a given set of input
tensors Xm ∈ R

D0 , where D0 is the dimensionality of the input
tensors, m = {1, . . . ,M}, and M is the number of DNNs.
Each of the models contains L learning modules (i.e., layers,
multi-layer perceptrons, etc...) that apply a function ωl,m(·)
to transform its input tensor into a latent representation of
it, i.e., Xl,m = ωl,m(Xl−1,m), l = {1, . . . , L} (note that for
the input and output tensors, the index l is omitted). At this
point, we introduce the fusion layer. This layer is designed to
share information between the different models by means of
an element-wise dot product of the latent representations at
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different stages of the processing. Let ρ(·) be the Hadamard
product operator. The output of the fusion layers will be rep-
resented by tensors χl,m = ρ(Xl,m,Λl,m), where Xl,m is the
output of the learning module (l,m), and Λl,m is the set of
tensors that will be fused at layer (l,m) with Xl,m, such that
Λl,m := {Xl,m′ |m′ �= m ∧ 1 ≤ m′ ≤ M}. Here, the direct path
without fusion is indicated by Λl,m = {Jl} ∈ R

Dl (all-ones
tensor), with Dl being the output dimensionality of layer l. In
this case χl,m = Xl,m.

A general deep fusion model is shown in Fig. 1. In this
graph, learning modules and fusion layers are indicated by black
and white vertices, respectively, whereas the flow of tensors is
indicated by directed edges. This model can be simply described
with matrix notation through the deep latent fusion matrix Δ for
each fusion set Λl,m ∈ R

Dl , as follows:

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1,1 Λ1,2 · · · · · · · · · Λ1,M

Λ2,1 Λ2,2 · · · · · · · · · Λ2,M

...
...

. . .
...

Λl,1 Λl,2 Λl,m Λl,M

...
...

. . .
...

ΛL−1,1 ΛL−1,2 · · · · · · · · · ΛL−1,M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

The here presented fusion layers have three purposes, namely:
1) Introduce non-linearities to the model in a controlled way;
2) Leverage input feature redundancy (i.e., correlations) to im-
prove data fitting, and; 3) Act as a channel for the gradients
to back-propagate through, to reduce the activation variance
between learning modules and improve generalization on unseen
data [38].

B. Fully Fused Linear Models

To investigate the effects that the fusion layers have on a
specific model we will simplify the generic fused model by
assuming that all learning modules (i.e., fully connected layers)
are linear, and that input tensors are vectors Xm ∈ R

1×T , where
T can be interpreted as the number of time steps. This will
allow us to assess how non-linearities are introduced due to the
interconnection of the independent models, characterize how
the input data correlation affects the data fitting, and assess how
the variance of the layer activations is impacted. The general
model shown in Fig. 1 that does not contain any fusion layers
will be referred to as “independent” (i.e., Λl,m = {Jl} ∀ l,m).
Each of the models containsL layers (i.e., the learning modules)
consisting of nl parameters. Activation functions for each of
the layers are defined by φl,m(·), ∀ l,m. The output at layer
l for model m is given by Xl,m = ω(Xl−1,m;wl,m, bl,m) =
φl,m(X�

l−1,mwl,m+bl,m), where wl,m∈R(nl−1)×nl and bl,m ∈
R

1×nl are the weights and biases, respectively. Assuming that all
activations are linear, the output of each layer and model Xl,m

will satisfy∂Ym(Xl,m)/∂Xl−1,m = Cl,m ∈ R; i.e., a constant.
Hence, every model m will be reduced to a linear regression.

1) Generating Non-Linear Models Through Fusion: Now
let us define a fused model where all layers are multiplied
with each other for all learning modules, that is Λl,m :=

{Xl,m′ ∀ l ∧m′ �= m}. We will introduce two fusion modalities,
namely: side-wise fusion and depth-wise fusion. These two
ways of making the models interact with each other will have
different effects on the non-linearities introduced and on how
latent information is transmitted throughout the models. These
will be described in the following lines.

Side-wise fusion level is defined as the size of the fusion set,
that is, |Λl,m| (where |A| represents the cardinality of a set A).
In general, the fusion output at layer l in a fully fused model
(side-wise fusion level of |Λl,m| = M − 1) is given by:

χl =

M∏
m=1

ωl,m (Xl−1,m;wl,m, bl,m). (2)

This fusion operator (i.e., chained Hadamard products) will
cause the M models to no longer be independent, introducing
non-linearities at the output of a given learning module l such
that the leading order term (LOT) is:

LOT

(
∂χl,m

∂Xl−1,m

)
∼ O (

nM−1
) ∀ M ≥ 1. (3)

Depth-wise fusion level is here defined as the number of fusion
operations that precede the deepest fusion layer. It occurs for
models with multiple learning modules (i.e., deep multi-layer
models), that include deeper processing stages to increase the
order of the modeled function. If we consider a fully fused linear
model, the fusion output of layer l can be written as (2). At layer
L− 1 the output of the fusion layer will be not only dependent
on the side-wise fusion operation but also on the previous latent
representations. This output can be written as a function of
previous fusion operations as follows:

χL−1 =

L∏
l>1

M∏
m=1

ωl,m (Xl−1,m;wl,m, bl,m), (4)

where L is the number of learning modules that each model
contains. In this case the introduced non-linearities at the output
of a given learning module m such that the LOT is:

LOT

(
∂χL−1

∂XL−2

)
∼ O

(
n(M−1)·(2(L−1)−1)

)
∀ M ≥ 1, L > 1.

(5)
It is important to note that the special case whereM = 1 leads

to a model with no fusion operations, where |Λl,1| = 0 ∀ l, and
the output is reduced to a linear regression.

III. RESULTS

A. Experiment 1: Study on Synthetic Data

In this experiment, our objective is to examine the impact
of the fusion operation on basic regression problems using a
dataset generated artificially. We partition this experiment into
two sub-experiments. The first one will demonstrate through
empirical evidence that the operation presented in (2) introduces
non-linearities. In the second sub-experiment, we explore the
trade-off between the correlation of the input data in each sub-
model and its fitting capabilities.
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Fig. 2. Block diagram of a model comprised of two deep learning sub-models,
each containing three learning modules. Fusion layers are included or bypassed
using the switches depicted in the block diagram. Each sub-model is represented
by the grey blocks and each of the learning modules is represented by the white
blocks. This model has a side-wise fusion level of one and a depth-wise fusion
level of two.

Model: In this experiment we will keep the number of sub-
models m = 2 (as shown in Fig. 2). All learning modules are
fully connected layers with linear activation functions. The input
and output layers of all sub-models consist of one single unit and
the number of units in each of the hidden layers will be specified
by nl, for which we tested nl ={32, 64, 128, 256}.

Dataset: The dataset for this experiment was artificially gen-
erated by creating input vectors with elements sampled from
random uniform distributions. Because we keep the number of
models m = 2, two input vectors were created, X1 ∈ U{0, 1}
and X2 ∈ U{0, 1} containing 500 samples each (T = 500, see
Fig. 3, first panel). From the input data, we generated a non-linear
output for each sub-model (Y1 for sub-model 1 and Y2 for
sub-model 2) as follows:{

Y1 = 0.5 · sin (10 · z1) +Xn1 + 0.4

Y2 = 0.5 · sin (10 · z2 + 2) +Xn2 + 0.9
, (6)

where z1 = X1, z2 = X1 · (1− d) + d ·X2. Xn1 and Xn2 are
noisy samples with a maximum amplitude of 0.3, and d is a
multiplicative factor that controls the amount of correlation at
the input (d = 0 for fully correlated inputs, i.e., identical input
signals, and d = 1 for fully uncorrelated inputs).

Loss function: To fit the artificial training data to the target
functions described in (6), we minimized the mean-squared-
error (MSE) between the predicted output Y and the target Ỹ.
The MSE computed over n samples is defined as:

MSE(Y, Ỹ) =
1

n

n∑
i=1

(Yi − Ỹi)
2. (7)

Training: The models were trained for a maximum of 100
epochs in batches of 10 samples. The initial learning rate was
set to 1e-3. The learning rate was halved if the accuracy of the
validation set did not improve during 3 consecutive epochs, early
stopping with a patience of 5 epochs was applied as a regular-
ization method, and only the best-performing model was saved.
For the model optimization, Adam [39] was used to minimize
the MSE (see (7)) between the estimated and true outputs.

1) Visual Intuition: An illustrative example of how the output
of a model of size nl = 64, for l = {2, 3} (see Fig. 2) is affected
by the addition of fusion layers is shown in Fig. 3. The first panel
shows the raw data generated by (6). The second panel shows the
data fitted by an independent model. The third panel shows the
non-linearity introduced by this model using a side-wise fusion
level of 1 and a depth-wise fusion level of 0 (i.e., a polynomial
of order 2). Finally, the last panel shows the fitting performed
by a fully fused model with a side-wise fusion level of 1 and
a depth-wise fusion level of 1; obtaining a quartic polynomial
regression.

a) Independent model: The data regressions obtained with
this model can be seen to be linear for both predicted outputs
(Fig. 3, second panel). In this model, the two sub-models shown
in Fig. 2 are disconnected, that is, latent representations at any
stage are independent of each other. This is equivalent to having
a side-wise and depth-wise fusion level of zero. Because no
fusion layers are present throughout the model, we can apply (5)
for M = 1, obtaining outputs that satisfy ∂Ỹ1,2/∂X = C1,2 ∼
O(n0), i.e., linear regressions.

b) Single fusion model: The regressions produced by this
model display a quadratic trend in both predicted outputs, as
depicted in the third panel of Fig. 3. In this case, we fuse the
latent representations of the model between two fully connected
layers (note that it does not matter whether is between l = 1 and
l = 2 or l = 2 and l = 3, because of the symmetry of the model,
that is, all deep learning modules have the same dimensionality).
The fusion operation performed in this case is a one-sided fusion
and not a depth-wise fusion. Therefore, we apply (3) forM = 2,
which satisfies ∂Ỹ1,2/∂X = f(X)1,2 ∼ O(n1), which can be
seen by the unique global minima in the third panel of Fig. 3.
Note that in this example both quadratic functions show a convex
nature, caused by the fact that most raw target data points are
located in the top half of the panel. One would expect the second
derivative of the output regressions to change sign if the target
data would be vertically flipped around Y = 0.5.

c) Double fusion model: In this case, the model’s regres-
sions are represented by quartic functions for both outputs, as
illustrated in the fourth and last panel of Fig. 3. This model
presents a depth-fusion level of one, which in this particular
model represents a fully fused model. For this reason, we can
apply (5) forM = 2 andL = 3, which will satisfy∂Ỹ1,2/∂X =
f(X)1,2 ∼ O(n3), which can be seen by the three function
turning points in each regression.

2) Experiment 1.1: In this experiment, we aim to investi-
gate the effect that the non-linearities introduced by the fusion
mechanisms have on the training error. We do this by comparing
the output errors obtained by the linear independent and fused
models. Also, for this experiment, the input vector fed to each
sub-model will be identical (X1 = X2). This experiment may
reveal if one can profit by adding non-linearities in a controlled
way through fusion compared to a completely linear model.

Fig. 4 shows box plots of the MSE improvement given by
the fused models with linear activations computed as δMSE =
MSEind − MSEΛ, where MSEind and MSEΛ represent the MSE
produced by the independent and fused model, respectively.
δMSE is shown for the front, back, and double fusion.
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Fig. 3. Data regression plots obtained by the independent and fused models on generated synthetic data. Left most plot shows the raw output data Y as a function
of the input data X for the left and right channels, and the remaining three plots show the obtained regressions on top of it.

Fig. 4. Box plots showing the increment in MSE error of the different fused
models w.r.t. the independent linear model (δMSE = MSEind − MSEΛ), for
the front, back, and double fusion. The black horizontal bars within each box
represent the median for each condition, the circle-shaped marks indicate the
mean improvement, and the top and bottom extremes of the boxes indicate the
Q3 = 75% and Q1 = 25% quartiles, respectively. The box length is given by
the interquartile range (IQR), used to define the whiskers that show the variability
of the data above the upper and lower quartiles (the upper whisker is given by
Q3 + 1.5·IQR and the lower whisker is given by Q1 − 1.5·IQR [40]). Black
dots indicate observations that fall beyond the whisker range (outliers).

3) Experiment 1.2: In this experiment, our goal is to explore
the sensitivity of the proposed attention mechanism to variations
between inputs in each sub-model. To achieve this, we will
calculate the errors at the outputs of both the individual and fused
models, based on the correlation of the input data. This investi-
gation is crucial due to the motivation behind employing fusion
layers in binaural speech enhancement systems, where there is
a presence of correlation between hearing sides. However, our
aim is to determine a potential threshold below which fusion
might not provide significant benefits in fitting the training data
distribution.

Fig. 5 shows a dot plot together with its polynomial regression
showing how the input data correlation affects the training
δMSE. It can be seen that for the fully fused model, the perfor-
mance is proportional to the input data correlation whereas, for
the single fused models, the performance reaches its maximum
at around 75% correlation. Note that the error of the fully fused
models is smaller than the error of the independent models (i.e.,

Fig. 5. Dot plot of the training error differences between the independent
and fused models (δMSE = MSEind − MSEΛ) as a function of input data
correlation for generated synthetic data. A second-order polynomial regression
is included to show the performance trend for each condition.

δMSE > 0), indicating that the introduced non-linearities do
help the model fit the input training data more accurately.

4) Experiment 1.3: In this experiment, we empirically mea-
sure the activation variances across predictions of the fused lay-
ers (See Λi,j ∀ {i, j} = {1, 2} in Fig. 2) as well as their counter
independent layers. The variance of the activations contained in
each layer is defined as:

V ar[activations] = E[(wl,m −wl,m)2], (8)

where E[·] is the expected value operator, wl,m is the tensor
containing all of the learned weights in layer l in model m, and
wl,m is the average activation value in layer l and model m.

To assess how variance changes across models, we train an
independent and all possible fused models (from Fig. 2 using
only Λ1,1 and Λ1,2, only Λ2,1 and Λ2,2, both pair of sets, or
none of them) 50 times using different random initialization
seeds. This will give an idea of how the activation variance is
affected by the fusion operation. Also, we measure the variance
including correlated and uncorrelated input data to remove pos-
sible training bias.

Fig. 6 shows violin plots of the activation variance (in the log10
domain) for the front and back fusion layers in the different linear
models and fused models. Box plots are also overlapped above
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Fig. 6. Violin plots indicating the activation variance across predictions for
the front and back fusion layers (see Fig. 2) in the different models for generated
synthetic data. Data are plotted on a logarithmic scale for visualization purposes.
The black horizontal bars within each box represent the median for each
condition, the circle-shaped marks indicate the mean improvement, and the
top and bottom extremes of the boxes indicate the Q3 = 75% and Q1 = 25%
quartiles, respectively. The box length is given by the interquartile range (IQR),
used to define the whiskers that show the variability of the data above the upper
and lower quartiles (the upper whisker is given by Q3 + 1.5·IQR and the lower
whisker is given by Q1 − 1.5·IQR [40]). Black dots indicate observations that
fall beyond the whisker range (outliers).

the violin plots to show the mean, median, and overall locality
of the data.

The violin plot shows, on the one hand, that fusion reduces
the range of activation values, especially in the back layers (see
in Fig. 6 how the violin plots show less deviation from the
mean when adding the fusion operation). It can also be seen that
variance is not only equalized between sides due to fusion but
also between the front and back layers, as depicted by the violin
plots corresponding to the double fusion model. It is important
to note here that the fact that variance is equalized and balanced
through the model is relevant to ensure that all learning modules
are learning at the same rate [38].

B. Experiment 2: Ablation Study

In this experiment, we investigate the effect that fusion layers
have on noise reduction performance in the context of end-to-end
speech enhancement.

Model: The investigated fusion method will be investigated
in the context of a well-known fully-convolutional time-domain
audio separation network (Conv-TasNet [9]; which will we be re-
ferring to as “TasNet” for simplicity). In this ablation experiment
we analyze the effect of introducing and/or removing fusion lay-
ers between specific latent representations of the input signals.
The TasNet relies on two end-to-end audio speech enhancement
models; each consisting of three processing stages, as shown in
Fig. 7: an encoder, a separator (a temporal convolution module
(TCN), and a mask estimator), and a decoder. The encoder
extracts features from the input audio signal that are then passed
into the separator that estimates a mask to remove noisy elements
of the input audio, and the enhanced speech is resynthesized by
the decoder. The utilized range of hyperparameters is presented
in detail in Table I. The implementation was done in Tensor-
Flow 2.0 [41] and the code for training and evaluating can be
found online.2

2[Online]. Available: https://github.com/APGDHZ/FusionLayers

TABLE I
HYPERPARAMETERS USED TO TRAIN THE DEEP LEARNING MODELS

Dataset: The speech material used for the evaluation of the
speech enhancement models was obtained from the TIMIT
acoustic-phonetic Continuous Speech Corpus [42] (consisting
of a set dedicated to training and another set for testing). TIMIT
contains broadband recordings of 630 speakers of eight major
dialects of American English, each reading ten phonetically
rich sentences. The TIMIT corpus includes time-aligned ortho-
graphic, phonetic, and word transcriptions as well as a 16-bit,
16-kHz speech waveform file for each utterance. The speech
data contained in this corpus consists of fluent spoken sentences
with a total duration of 18 hours.

The interfering noisy signals were all obtained from the
DEMAND collection of multi-channel recordings of acoustic
noise in diverse environments [43]. The environmental noises
recorded to create this dataset are split into six categories; four
are indoor noises and the other two are outdoor recordings. The
indoor environments are further divided into domestic, office,
public, and transportation; the open-air environments are divided
into streets and nature. There are 3 environment recordings per
category.

The training set was obtained by mixing all of the training
data contained in the TIMIT speech dataset with 50% of the
DEMAND noise signals. The validation dataset, used to monitor
the models’ training process, consisted of 20% of the training
material. The testing set was obtained by mixing the remaining
50% of the DEMAND noise signals with the TIMIT speech
testing set. As a preprocessing stage, all audio material was
ensured to be stereo and sampled at 16 kHz.

Each acoustic scene corresponded to a unique target utterance
and a unique segment of noise from an interferer, mixed at signal-
to-noise ratios (SNRs) ranging from −6 to 6 dB. The three sets
were balanced for the target speaker’s gender. Binaural room
impulse responses (BRIRs) [44] were used to model a listener
in a realistic acoustic environment. The BRIR recording data
set3 consisted of 4 different rooms of different sizes and acoustic
properties. The audio signals for the scenes were generated by
convolving source signals with the BRIRs and summing.

Tested topologies: To investigate how the fusion operation
affected the models’ performance, we tested four configurations
described in Table II.

To expand our intuition about the effect that fusion layers
have on speech enhancement performance, two different

3[Online]. Available: https://github.com/IoSR-Surrey/RealRoomBRIRs

https://github.com/APGDHZ/FusionLayers
https://github.com/IoSR-Surrey/RealRoomBRIRs
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Fig. 7. Block diagram of the evaluated algorithms. “Independent” model bypasses both fusion layers. “Front fusion (ΔF )” model, “Back fusion (ΔB)” model,
and “Double fusion (ΔD)” model.

TABLE II
SPEECH ENHANCEMENT ALGORITHMS AND THEIR CORRESPONDING FUSION

MATRIX

encoder/decoder module pairs (i.e., encodings) and two
different cost functions were investigated.

Tested encodings: We explore the impact of fusion operations
on the performance of models when using different encodings
of the input signals. Our investigation focuses on comparing
a non-deterministic learned representation and a deterministic
representation. The objective of this analysis is to examine
whether these fusion layers effectively utilize redundant bin-
aural data by sharing underlying representations among models
through the inclusion of adaptable non-linearities that align with
the input data.

The input mixture sound can be divided into overlapping
segments of length R, represented by Xk ∈ R

1×R, where k =
1, . . . , T̂ denotes the segment index and T̂ denotes the total num-
ber of segments in the input. At the encoding stage, Xk is trans-
formed into an F -dimensional representation, λk ∈ R

1×1×F .
This representation can be obtained through 1-d convolution
operations (non-deterministic encoding; deep encoding), such
as in [9], or with a classic spectro-temporal representation of
the signal; i.e., deterministic encoding (short-time Fourier trans-
form; STFT). These encoding-decoding stages are represented
by the encoder-decoder blocks shown in Fig. 7.

Tested loss functions: To assess whether the effect of the
fusion mechanisms is dependent on the loss function used to
train the models, we investigated two typical cost functions used
in the context of speech enhancement, namely, the SNR and
the scale-invariant signal-to-distortion ratio (SI-SDR) [45]. The
SNR between a given signal with T samples, X ∈ R

1×T and its
estimate Ỹ ∈ R

1×T is defined as:

SNR(X, Ỹ) = 10 · log10
( ||X||2
||X − Ỹ||2

)
. (9)

TABLE III
ABSOLUTE VALIDATION AND TESTING SNR (FIRST TWO COLUMNS) AND

SI-SDR (LAST TWO COLUMNS) VALUES OBTAINED BY THE INDEPENDENT

MODELS FOR THE DIFFERENT TESTED LOSS FUNCTIONS AND ENCODINGS

The SI-SDR between a given signal and its estimate is defined
as:

SI–SDR(X, Ỹ) = 10 · log10
( ||γ · X||2
||γ · X − Ỹ||2

)
, γ =

Ỹ
�

X
||X||2 .

(10)
Training: The models were trained for a maximum of 100

epochs on batches of two 4-s long audio segments. The initial
learning rate was set to 1e-3. The learning rate was halved if
the accuracy of the validation set did not improve during 3
consecutive epochs, early stopping with 5-epoch patience was
applied as a regularization method, and only the best-performing
model was saved. For the model optimization, Adam [39] was
used. The models were trained and evaluated using a PC with an
Intel(R) Xeon(R) W-2145 CPU @ 3.70 GHz, 256 GB of RAM,
and an NVIDIA TITAN RTX as the accelerated processing unit.

1) Absolute Speech Denoising Performance With No Fusion
Layers: Table III shows the absolute testing and validation
results of the speech enhancement algorithm with no fusion
layers for the tested loss functions (SNR and SI-SDR), encodings
(deep non-deterministic encoding based on 1-D convolutions,
and deterministic encoding based on the STFT), N (encoding
size; the number of filters in the 1-D convolution or the number of
STFT bins), and S (number of filters in the latent representation
at the output of the temporal convolutions, before the mask
estimation module; for details refer to [9]).
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Fig. 8. Box plots indicating the activation variance on the testing set. The
black horizontal bars within each box represent the median for each condition,
the circle-shaped marks indicate the mean improvement, and the top and bottom
extremes of the boxes indicate theQ3 = 75% andQ1 = 25% quartiles, respec-
tively. The box length is given by the interquartile range (IQR), used to define
the whiskers that show the variability of the data above the upper and lower
quartiles (the upper whisker is given by Q3 + 1.5·IQR and the lower whisker is
given by Q1 − 1.5·IQR [40]). Black dots indicate observations that fall beyond
the whisker range (outliers).

2) Relative Denoising Performance With Fusion Layers: To
assess the generalization capabilities of the fusion layers, we
will be reporting on the test score difference (δ) of the different
fused models concerning the values shown in Table III. Fig. 9
shows bar plots of the increment in the validation and testing
error (δ Test score = LossΛ − Lossind) of the different fused
models (see Table II) as a function of fusion size, loss function,
and encodings. Here it can be seen that fusion seems to improve
the performance of the “independent” models only when using
deep encoding. In the case of deterministic STFT encoding, the
fusion mechanisms may blur or distort the signal and fail to
produce final faithful decoding. This suggests that the shared
information between sides is learned.

3) Speech Denoising Performance as a Function of the Num-
ber of Fused Channels: To investigate how the number of fused
channels between the left and right speech enhancement models
impacts the testing error, we correlated the total amount of fused
channels to the objective test loss, for the different encodings and
loss functions. Fig. 10 shows the relation of the performance dif-
ference between the fused and independent models as a function
of the total number of fused latent channels and encoding type.

This plot corroborates that a deep encoding is necessary to
take advantage of the fusion layers, as we can see that not only
the STFT deterministic encoding is negatively correlated to the
total number of fused channels (frequency bins when fusing the
encoder outputs) but also that this encoding generally performs
poorer than the independent model.

4) Layer Variance Analysis of the Different Speech Denoising
Topologies: Fig. 8 shows a box plot of the layer activation
variances of the different speech enhancement algorithms tested
in this study. The left panel shows the layer variance of the
encoder output (note that this analysis is only applicable for
the deep non-deterministic encoding) and the right panel shows
the variance of the temporal convolution outputs. It can be seen
that the activation variance is again affected by the fusion opera-
tion. For example, note how the single fusion models obtained an

unbalanced variance being smaller where the fusion operation
is performed.

The fusion operation causes a reduced layer activation vari-
ance. The double fusion model obtains activation values at
the front and back layers that are numerically closer to each
other, compared to the other three models. Fundamentally, this
may indicate that the fusion operation causes the gradient to
propagate between the left and right enhancement modules,
acting as a channel that balances the learning rate.

C. Experiment 3: Comparative Study

In this section, we assess the effect of fusion compared with
other baseline models. We also extend the baseline models by
introducing fusion layers to assess their efficacy in improving
binaural speech enhancement. All the tested models based on
TCN separation share the same hyper-parameters shown in
Table I with N = S = 256, and all with deep encoders and
decoders. For all the other models, the number of trainable
parameters was set to be roughly the same as the rest. To
further assess the effect of the fusion layers on speech enhance-
ment we computed the modified binaural short-time objective
intelligibility (MBSTOI metric [46]); for each deep learning
topology. MBSTOI is an extension of STOI [47] that includes
a modified version of the equalization-cancellation model and
enables predictions including binaural advantages, while also
maintaining the monaural performance of the STOI measure.

To support this last analysis we include the averaged
STOI [47] across listening sides and to monitor the quality of
the separated speech we also include the PESQ [48] measure,
also averaged across listening sides.

1) Final Tested Models:
a) Independent [9]: This is the simplest baseline model

and it is comprised of two TasNets performing single-channel
speech enhancement on each listening side independently.

b) CDNN [49]: In this model, binaural speech enhance-
ment is performed by means of a fully connected complex DNN.
Here, signals in the left and right channels are considered as
the real and imaginary components of a monaural complex
signal. Unlike alternative models, this architecture undergoes
the challenge of estimating a complex ideal ratio mask.

c) Front fusion: This model uses two TasNets connected
with a fusion layer after the encoding blocks, as defined in
Table II, second row.

d) Concat [2]: This model uses spectral feature concate-
nation after the encoding stage.

e) Concat + Fusion: This model extends the “Concat”
model by introducing a back fusion layer (defined in Table II,
third row) after the TCN outputs, as shown in Fig. 7 (see back
fusion block).

f) Stitch [23]: In this configuration we substitute the front
fusion operation with a cross-stitch network. The inputs to the
TCN module at each side (X ′

{f,b},{r,l}, following the notation
shown in Fig. 7) are given by:[

X ′
{f,b},r

X ′
{f,b},l

]
=

[
αrr αrl

αlr αll

][
X{f,b},r
X{f,b},l

]
, (11)
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Fig. 9. Bar plots of the increment in the speech enhancement testing error with respect to the independent model (δ test score = Lossind − LossΛ) of the different
fused models as a function of fusion size, loss function, and encoding type.

where αij for i, j ∈ {r, l} are trainable parameter tensors of
adequate dimensionality.

g) Stitch+Fusion [23]: This model extends the “Stitch”
model by introducing a back fusion layer (defined in Table II,
third row) after the TCN outputs, as shown in Fig. 7 (see back
fusion block).

h) Parallel concat [2]: This model is described in [2] as
“parallel encoder + sum & mask,” and here we concatenate the
encoded spectral features obtained from the encoders.

i) Parallel fusion: This model is architecturally identical
to the model “Parallel Concat,” but we replace the intermediate
feature concatenation layer with a fusion layer.

j) Parallel cross [31]: This model is based on two Tas-
Nets using two encoders per channel and shares cross-domain
features. Specifically, cross-channel features are concatenated to
the encoder output using interaural time and level differences as
spatial features. An implementation of this model can be found
online.4

k) Parallel Cross+Fusion: This model adds a back fusion
layer (defined in Table II, third row) to model “Parallel Cross.”

l) Double fusion: This model fuses the latent representa-
tions after the decoder and TCN outputs, as shown in Fig. 7 and
defined in Table II, last row.

2) Final Performance Results: Table IV shows the objective
measures for each of the tested models using the SNR loss
and Table V the results using the SI-SDR loss. It can be seen
that the proposed fusion operation improves noise reduction

4[Online]. Available: https://github.com/speechbrain

TABLE IV
ABSOLUTE TESTING OBJECTIVE INSTRUMENTAL SCORES FOR THE DIFFERENT

FINAL TESTED MODELS TRAINED USING THE SNR LOSS

TABLE V
ABSOLUTE TESTING OBJECTIVE INSTRUMENTAL SCORES FOR THE DIFFERENT

FINAL TESTED MODELS TRAINED USING THE SI-SDR LOSS

https://github.com/speechbrain
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Fig. 10. Regression of the testing error difference between the fused and inde-
pendent models as a function of the number of the total number of fused channels
for each of the investigated encoders. Shaded areas represent a point-wise 95%
confidence interval on the fitted values. Correlation analysis is expressed as the
adjusted-R and p-value, and it is considered to be significant when p < 0.05.

performance for all baseline models. However, it can also be
seen that in general, the fusion operation causes a slight drop in
predicted speech intelligibility and quality, which may be related
to the potential presence of artifacts and distortions introduced
by the operation. This observation aligns with the findings of [50]

where they demonstrate that increased noise reduction leads to a
corresponding loss of spatial information and added distortions,
which is a key factor in determining speech intelligibility as
predicted by MBSTOI, and quality, as predicted by PESQ. Inter-
estingly, there is one fused model that improves noise reduction
and also speech intelligibility indexes and quality, namely the
“Concat+Fusion” model. While the exact causes remain uncer-
tain and require additional investigation, it can be inferred that
the utilization of fusion may yield advantages by considering
the balance between noise reduction and potential distortions
it may introduce. Consequently, integrating fusion with other
feature-sharing techniques has the potential to enhance both
noise reduction and speech quality.

IV. CONCLUSION

In this manuscript, we have proposed the utilization of deep
fusion layers as an approach to enhance speech in binaural listen-
ing scenarios. First, we introduce and establish the concept of the
general fused model, elucidating its fundamental notation and
describing its characteristics. With this work, we have demon-
strated that fusion layers introduce non-linearities to the model,
improving its ability to accurately represent the distribution of
input data. Also, our empirical analysis has shown that fused
models are susceptible to input decorrelation, highlighting the
importance of considering this aspect. Additionally, we observe
that the fusion layers act as a channel through which the gradients
through, reducing the variance between learning modules.

Furthermore, we have conducted an analysis of the impact
of fusion layers on binaural speech enhancement. Our find-
ings indicate that fused models exhibit promising capabilities
in reducing noise compared to independent models. Among
various topologies explored, we have discovered that the model
incorporating the largest double fusion layers yields the best
performance on unseen data.

Importantly, our results have demonstrated that the fusion
operation leads to enhanced noise reduction performance when
compared to all investigated baseline models. Nonetheless, we
recognize the trade-off between the extent of noise reduction and
the MBSTOI and PESQ scores, which are important metrics
for evaluating noise reduction quality. It is worth noting that
the fusion layers we propose not only improve noise reduction
but also maintain a constant number of parameters. This aspect
becomes particularly relevant when there is a necessity to share
large latent representations between the listening sides.

Based on these findings, we firmly believe that our approach
holds potential for enhancing future binaural speech processing
systems. However, it is crucial to acknowledge that our work
assumes instantaneous transmission of information between the
listening sides, which may not hold true in real-life applications.
Therefore, an important avenue for further investigation is evalu-
ating how latency and the necessary reduction in bitrate for trans-
mitting latent spaces impact the performance of fused models.

Overall, this study may help advance binaural speech pro-
cessing techniques, and we anticipate that future research will
build upon these insights to further refine and optimize the
fusion-based approach.
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