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How Robust are Audio Embeddings for Polyphonic
Sound Event Tagging?

Jakob Abeßer , Member, IEEE, Sascha Grollmisch , and Meinard Müller , Fellow, IEEE

Abstract—Sound classification algorithms are challenged by the
natural variability of everyday sounds, particularly for large sound
class taxonomies. In order to be applicable in real-life environ-
ments, such algorithms must also be able to handle polyphonic
scenarios, where simultaneously occurring and overlapping sound
events need to be classified. With the rapid progress of deep learn-
ing, several deep audio embeddings (DAEs) have been proposed
as pre-trained feature representations for sound classification. In
this article, we analyze the embedding spaces of two non-trainable
audio representations (NTARs) and five DAEs for sound classi-
fication in polyphonic scenarios (sound event tagging) and make
several contributions. First, we compare general properties like
the inter-correlation between feature dimensions and the scattering
of sound classes in the embedding spaces. Second, we test the
robustness of the embeddings against several audio degradations
and propose two sensitivity measures based on a class-agnostic and
a class-centric view on the resulting drift in the embedding space.
Finally, as a central contribution, we study how a blending between
pairs of sounds maps to embedding space trajectories and how
the path of these trajectories can cause classification errors due to
their proximity to other sound classes. Throughout our analyses,
the PANN embeddings have shown the best overall performance
for low-polyphony sound event tagging.

Index Terms—Sound event tagging, sound polyphony, deep
audio embeddings, embedding space.

I. INTRODUCTION

THE ability to recognize sounds is of vital importance
for navigating through different everyday environments.

Each environment comes with its unique set of sounds whose
detection and categorization is an essential part of auditory scene
analysis. While sound event detection aims at localizing sound
events in time, sound event tagging (SET) focuses solely on
classifying all sound classes occurring in a given scene [1].

Sounds from the same class can exhibit large differences in
timbre, duration, and loudness. This intrinsic variability already
makes the classification of isolated sound events (sound event
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classification) a challenging task. Real-life environments are
often characterized by multiple sound sources, which are audible
at the same time. In this article, we focus on the challenge of
classifying overlapping sounds in such scenarios, a task which
we refer to as sound event tagging (SET).

Deep neural networks, which are a core component of state-
of-the-art sound classification and tagging algorithms, require
large amounts of training data if they are trained in a supervised
fashion. In many application scenarios however, only limited
amounts of annotated data are available. Transfer learning has
been successfully used for SET [2], [3], [4], [5], [6] to pre-train
deep neural networks on large datasets and later fine-tune them
for novel (down-stream) tasks with limited amounts of training
data. The intermediate layer representations of such networks
(embeddings) have been shown to be powerful features for
several audio classification tasks [7] and related tasks such as
audio source separation [8] and acoustic scene classification [9].

As the main contribution of this article, we compare various
(pre-trained) audio embeddings for SET, i. e., sound event clas-
sification in polyphonic scenarios. We focus our investigations
on lower sound polyphony degrees and study how mixtures
of different sound classes are represented in the embedding
spaces of two non-trainable audio representations (NTARs) and
five deep audio embeddings (DAEs), which are pre-trained and
then applied for SET. Second, we test the robustness of the
embeddings against three different types of audio degradations,
which are common in real-life sound monitoring applications.
To this end, we propose to measure the resulting embedding drift
in the embedding space both from a class-agnostic and from a
class-centric view. Finally, as a central contribution, we investi-
gate how overlapping sounds are represented in the embedding
spaces. For this we implement a continuous blending between
sound pairs and study the resulting trajectories in the embedding
space. We aim to understand how the path of these trajectories
can cause sound misclassification due to its proximity to other
sound classes. Fig. 1 illustrates how audio degradations (middle)
and blending between sounds (bottom) may influence the audio
clip’s position in the embedding space. In the first example,
a car sound is first modified to have a lower volume and then
mixed with ambient background sounds. In the second example,
an alarm sound is continuously blended with a car sound. As
illustrated, the resulting shifts and trajectories in the embedding
space can cause confusions with other sound classes (e. g., bird
calls).

The remainder of this article is organized as follows. Section II
provides an overview of the relevant scientific work. Section III
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Fig. 1. Mapping of audio clips to embedding representations (top). Measuring
the robustness of audio embeddings against audio degradations such as loudness
variations and background noise (middle) and for mixtures of overlapping sound
events (bottom).

describes the general procedure for extracting embeddings from
audio signals. Furthermore, this section introduces the NTARs
and DAEs compared in this article. Section IV explains how
we generate and augment audio recordings with overlapping
sounds to serve as a dataset. As the main part of this article,
we discuss methods for exploring different embedding spaces
(see Section V) and the robustness of embedding representations
with respect to degradations of the audio signal (see Section VI).
Furthermore, we study in Section VII the embedding space
trajectories of blended sounds. Finally, Section VIII concludes
this article.

We publish relevant data and source code alongside this article
to enable reproducibility of the experiments.1

II. RELATED WORK

The paradigm of transfer learning was successfully used
in various disciplines ranging from computer vision, natural
language processing, to speech processing [10]. In the field of
audio analysis, DAEs were trained either in a supervised or self-
supervised fashion [11]. A common self-supervised learning
strategy is contrastive learning [12], [13], [14], where embedding
representations are learnt to capture similarity relationships
between data instances or augmented versions thereof. While
most DAEs operate solely in the audio domain, relationships
between audio data and other modalities can be modeled by
learning joint embedding spaces. Such cross-modal embeddings
were applied for several audio-visual tasks such as identity
verification [15], audio-visual stream correspondence [4], scene
classification [16], text-based audio retrieval [14], [17], [18],

1[Online]. Available: https://github.com/jakobabesser/embedding_
robustness_2022

and cross-modal retrieval based on audio, images, and text [13].
Further knowledge and constraints can be integrated during the
learning process, for instance, using additional loss terms for
regularization [19].

While most deep audio embeddings rely on spectrogram-like
feature representations such as the Mel-spectrogram [2], [3],
[4], [12], Lopez-Meyer et al. [20] propose a convolutional
neural network (CNN) architecture that maps raw audio clips
to an embedding representation in an end-to-end fashion. Kong
et al. [5] combine both waveform-based and spectrogram-based
features in deriving the PANN embeddings. Deep generative
models for audio synthesis [21] or music synthesis [22] on a
waveform-level often use encoder–decoder network architec-
tures to learn suitable embedding representations [23], which
can further be be regularized to control the perceptual properties
of the synthesized audio [24].

DAEs have been applied for a large variety of down-stream
tasks. Most audio embeddings are trained on the AudioSet [25],
which to date is the largest set of audio files from different
domains, including speech, environmental sounds, and music.
Previous work has shown that DAEs trained for sound clas-
sification perform well for related tasks such as urban sound
tagging [26], [27], [28], acoustic scene classification [9], and
various other audio classification tasks ranging from music to
industrial sounds [7]. Notably, DAEs are also effective for tasks
outside of their original training data domain such as audio cap-
tioning [29], [30], speech enhancement [31], and for detecting
COVID-19 in respiratory-related sounds like breathing, cough,
and speech [32]. Furthermore, DAEs have been used for SED
in order to inform algorithms for source separation [8], [33] and
speech denoising algorithms [34].

In the context of transfer learning, the most common way to
evaluate embedding representations is to measure their perfor-
mance on a set of down-stream tasks [4], [5], [7]. The Holistic
Evaluation of Audio Representations (HEAR) benchmark rep-
resents the largest effort so far to evaluate embeddings for a large
number of down-stream tasks [35].

In addition to such general performance evaluations, em-
bedding spaces have been investigated to better understand the
predictions of classification models. For multi-class classifica-
tion tasks, it is common to visualize embedding spaces after
applying dimensionality reduction techniques such as Principal
Component Analysis (PCA), t-Distributed Stochastic Neigh-
bor Embedding (t-SNE), or Uniform Manifold Approximation
and Projection (UMAP). Such visualizations allow for testing
whether class instances form well separated clusters in the em-
bedding space. A common observation is that class separability
typically improves in the embedding space from layer to layer,
which supports the idea of hierarchical feature learning [36].
We study in detail how sound classes scatter in the embedding
spaces of different audio representations in Section V-B.

The analysis of DAEs can provide powerful cues about char-
acteristics of the input data of a neural network. As shown by
Stacke et al. in [37], a discrepancy between embedding space
distributions of two datasets can be used as a proxy to quantify
domain shift. Similarly, changes in the embedding space have
been investigated as indicator for the robustness of embedding

https://github.com/jakobabesser/embedding_robustness_2022
https://github.com/jakobabesser/embedding_robustness_2022


2660 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Fig. 2. Audio clips are segmented into one-second blocks from which em-
bedding vectors are extracted and averaged. Block-level embedding vectors are
then concatenated to yield a final embedding vector.

representations towards degradations of the audio signal [38].
While this previous study investigated only the OpenL3 and
YamNet embeddings, we follow in this article a similar approach
to measure the robustness of seven different audio represen-
tations towards audio degredations in Section VI. While most
prior work focused on multi-class classification tasks, the study
of embedding spaces for multi-label tasks such as SET is a
relatively new field of research [39], [40]. To the best of our
knowledge, no prior work investigated embedding spaces for
SET.

III. AUDIO REPRESENTATIONS

In this section, we first explain the general procedure of
embedding extraction from audio files. Then, we introduce
seven audio representations, which we compare in our exper-
iments. These representations include two non-trainable audio
representations (NTARs) as discussed in Section III-B and five
pre-trained deep audio embeddings (DAEs) as discussed in
Section III-C.

A. Embedding Extraction

In the following, we explain how we extract embedding
vectors from monaural audio clips x ∈ RL·fs . We enforce the
clip duration to be an integer multiple of seconds by applying
zero-padding if necessary.L ∈ N denotes the number of seconds
andfs ∈ N denotes the sample rate in Hz. As visualized in Fig. 2,
we first partition the audio clip x into L non-overlapping blocks
xb ∈ Rfs of one-second duration. An embedding function f
maps each block xb to a block-level embedding matrix Zb

as f : xb ∈ Rfs �→ Zb ∈ REb×M with Eb ∈ N denoting the
embedding size and M ∈ N denoting the feature rate in Hz.
Afterwards, we average Zb over the time frames and obtain an
embedding vector zb ∈ REb . Finally, we stack all block-level
embedding vectors to a final embedding vector z ∈ RE with
E = L · Eb. In our experiments, we analyze 5s long audio files,
henceL = 5. As an alternative, variable-length input clips could
be processed using a shingle-based approach [41], where mul-
tiple pre-defined fixed-size embedding matrices are extracted
from longer audio clips using an overlap of 50 %.

When analyzing a set of N ∈ N audio clips, we stack their
embedding vectors to an embedding matrix Z ∈ RN×E . As
basis for distance calculations in the corresponding embed-
ding space, we apply z-score normalization to Z. As will be

TABLE I
COMPARISON OF ALL COMPARED AUDIO REPRESENTATIONS IN TERMS OF THE

BLOCK-LEVEL EMBEDDING MATRIX SIZE Eb AND FEATURE RATE M , THE

STACKED EMBEDDING SIZE E, AS WELL AS THE TRAINING OBJECTIVE OF THE

DAES (SL - SUPERVISED LEARNING, SSL - SELF-SUPERVISED LEARNING)

discussed in the following sections, most investigated audio
representations have different time resolutions. The presented
approach of averaging over block-level embeddings leads to the
same temporal resolution of one second for each embedding,
which we believe is a good compromise that allows to capture
time-dependent sound characteristics.

Table I summarizes all audio representations, which are com-
pared in this article: The embedding dimensionality Eb and
feature rate M of the block-level embedding matrices Zb as
well as the embedding dimension E of the stacked embeddings
z are provided. The training objective (last column) of the DAEs
is either supervised learning (SL) or self-supervised learning
(SSL).

B. Non-Trainable Audio Representations

As baseline representations, we use the librosa Python li-
brary [42] to compute two NTARs, which characterize the
time-frequency energy distribution in the audio clips. Here,
we use a sample rate of fs = 22.05 kHz (as in [43]), a
hopsize of 1024 samples (46.4ms), and a blocksize of 2048
samples (92.9ms). The first representation is a log-magnitude
Mel-spectrogram (MelSpec) using 128 Mel bands. As sec-
ond representation, we compute the first 13 Mel-frequency
Cepstral Coefficients (MFCC) as a compact representation of
the spectral envelope. Both NTARs have a feature rate of
M = 22 Hz.

C. Deep Audio Embeddings

In addition to the NTARs introduced in Section III-B, we
investigate five pre-trained DAEs, which are based on different
CNN and Transformer architectures. All DAEs were trained on
the AudioSet dataset [25], which is the largest audio dataset to
date covering different audio domains. The AudioSet includes
around two million audio clips, which are weakly-labeled with
an average of 2.7 labels per file. The dataset covers 527 sound
classes. All DAEs except for the PANN embeddings use Mel-
spectrogram variants as input features, however with different
number of Mel bands and time resolution (hopsize). As shown in
the original publications, the performance of the DAEs is greatly
influenced by their parameters. We use the best-performing
models here and do not include further ablation studies related
to model parameters. While this section provides a high-level
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overview over the applied deep audio embeddings, a detailed list
of model parameters are provided on the accompanying website.
Since all DAEs rely on NTARs as input representations, we
hypothesize that DAEs in general will show a better performance
on the SET task.

Kumar et al. [3] proposed a CNN with 12 convolutional layers
with intermediate pooling and a final global pooling operation
to make use of the weak labels of the AudioSet. The network
processes Mel-spectrograms with 128 Mel bands as input rep-
resentations. Finally, the layer activations of the penultimate
convolutional layer are used as (Kumar) embedding vector with
Eb = 1024 and a feature rate of M = 1 Hz.

The OpenL3 [4] embeddings are DAEs that are trained in
a self-supervised fashion. This approach does not require any
labeled data but instead uses audio–visual correspondences as
training objective. The underlyingL3-Net was initially proposed
in [44] and includes two sub-networks for audio and image
processing, respectively, and several fusion layers. The audio
sub-network processes Mel-spectrograms using a stack of four
convolutional layers with intermediate max pooling. Multiple
configurations of the OpenL3 embeddings exist which were
trained on different subsets of the AudioSet dataset. We use the
“music” configuration with 256 Mel bands and an embedding
size of Eb = 512, which has shown to outperform the “en-
vironmental” configuration for various datasets including the
ESC-50 dataset [4], [7]. The embeddings have a feature rate of
M = 42 Hz.

The Pretrained Audio Neural Network (PANN) embeddings
were introduced by Kong et al. [5]. Among several tested
network architectures, the “Wavegram-Logmel-CNN” model
performed best for the AudioSet (sound) tagging task. The
used CNN14 model includes a total of 12 convolutional layers
combined with two final dense layers. Opposed to the other
three DAEs, the PANN embeddings combine as input a learnable
waveform-based input feature (wavegram) and a non-trainable
Mel-spectrogram with 64 Mel bands. Furthermore, a final global
pooling operation aggregates the full temporal context of a given
audio file by combining max and average pooling. The final
dimensionality of thePANN embedding matrix isEb = 512with
a feature rate of M = 1 Hz.

The VGGish embeddings [2] are based on a modified version
of a VGG model [45] that includes five convolutional layers
and three final dense layers. The network takes log-magnitude
Mel-spectrograms with 64 Mel bands as input. Each VGGish
embedding vector has a size of Eb = 128 with a feature rate of
M = 1 Hz.

As alternative to the convolutional neural network architec-
ture, we incorporate the Audio Spectrogram Transformer (AST)
model [46] as DAE, which takes sequences of Mel-spectrogram
patches as input. In particular, we use the PaSST-S model
proposed in [6], which was trained using a strategy referred to as
structured patchout. The patchout technique involves removing
randomly chosen patches from the input sequence. In structured
patchout, the removed patches are selected in such way that
they cover the entire frequency range at one particular time
window or, vice versa, the entire clip duration at a specific fre-
quency range. This approach is comparable to data augmentation

TABLE II
DESCRIPTIONS AND LABELS FOR FIVE DIFFERENT AUDIO DEGRADATIONS

WITH CORRESPONDING AUDIOMENTATIONS PARAMETER SETTINGS BELOW

techniques used for SpecAugment [47]. Each PaSST embed-
ding vector has a size of Eb = 1295 with a feature rate of
M = 20 Hz.

IV. EXPERIMENTAL DATASET

For our investigations, we use an augmented version of the
ESC-50 dataset [48], which is a freely-available sound recogni-
tion dataset that has been widely used as benchmark for SET2. It
includes 2000 5s-long isolated sound recordings from 50 sound
classes. The dataset covers a large variety of sound classes
that range from domestic and urban sounds, over nature and
animal sounds, to human non-speech sounds. As all DAEs are
pre-trained on the AudioSet dataset, we consider the audio clips
of the ESC-50 dataset as previously unseen and hence as suitable
data for our experiments.

Our research focus is on embedding space analysis for SET.
To this end, we create 1000 random pairs of sounds taken from
the ESC-50 dataset. Given our random sound assignment, the
large majority of 98.2% of the sound pairs include sounds
from different classes. From each sound pair, we create six
mixtures by blending between the sound pairs. In addition to its
unprocessed version, we create four degraded versions of each
mixture using the methods listed in in Table II. These versions
are used in Section VI to study the robustness of different audio
representations towards audio degredations. We refer to this
dataset as “ESC50Mix” in the following.3

For the m-th random sound pair (xm,1, xm,2) with
xm,1 ∈ RL·fs , xm,2 ∈ RL·fs with L = 5 and m ∈ [1 : 1000],
we create sound mixtures using a mixture coefficient
γg ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} (indexed by g ∈ {1 : 6}) and ap-
ply a degradation function Λa (indexed by a ∈ {1 : 5}) as

xm,g,a = Λa (γg · xm,1 + (1− γg) · xm,2) (1)

with m denoting the sound pair index. The mixing indices
g ∈ {1, 6} result in the isolated sounds xm,2 and xm,1, respec-
tively, while g ∈ [2 : 5] result in mixtures of both sounds. No
normalization is applied to the original ESC-50 audio clips.

2[Online]. Available: https://github.com/karolpiczak/ESC-50
3The dataset has been published at https://zenodo.org/record/7913031
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Fig. 3. Inter-correlation strength αi for different audio representations. Error
bars indicate standard deviation across feature dimension pairs.

As detailed in Table II, we use the audiomentations4

Python library to implement loudness reduction, additive Gaus-
sian noise, as well as low-frequency and high-frequency boost
as degradation functions Λa. In total, the ESC50Mix dataset
includes 30000 audio clips. Given an embedding function f(·),
each sound mixture xm,g,a is mapped to its corresponding
embedding vector zm,g,a ∈ RE as

zm,g,a = f(xm,g,a). (2)

For the experiments conducted in this article, we stack the em-
bedding vectors of all 1000 sound pairs separately for each com-
bination of embedding function and audio degradation method
as an embedding matrix Z ∈ R1000×E .

V. EMBEDDING SPACE EXPLORATION

In this section, we introduce several measures to explore
the embedding space distributions of the audio representations
introduced in Section III.

A. Inter-Correlation

We investigate the redundancy of an audio representation by
measuring the average pair-wise correlation between its feature
dimensions. We use the sample Pearson correlation coefficient
as correlation measure. It is defined as

r(q, v) =

∑K
i=1(qi − μq)(vi − μv)√∑K

i=1(qi − μq)2
√∑K

i=1(vi − μv)2
(3)

for two vectors q ∈ RK and v ∈ RK with K ∈ Z and their
means μq ∈ R and μv ∈ R, respectively.

Given a stacked embedding matrix Z ∈ RN×E of N row-
wise stacked embedding vectors z ∈ RE , we measure the inter-
correlation strength αi as

αi =
1

E(E − 1)

∑
i∈[1:E]

∑
j∈[1:E]
j �=i

|r(Z[:, i], Z[:, j])| (4)

withZ[:, i] ∈ RN denoting the i-th column ofZ. For simplicity,
we only investigate the non-degraded isolated sound recordings
(a = 1, g ∈ {1, 6}).

As shown in Fig. 3, DAEs are less redundant audio represen-
tations than NTARs as their inter-correlation strength is lower.

4https://github.com/iver56/audiomentations

Fig. 4. Possible embedding space configurations with four well-separated
classes (left) and four partially overlapping classes (right). The intracluster
distance Δ for the purple class as well as the intercluster distance δ between the
purple and blue classes are shown as examples.

This holds in particular for the DAEs trained in a supervised
fashion (Kumar, PANN, and VGGish). The high value for
MelSpec is expectable since adjacent filters in the triangu-
lar filterbank for the Mel-frequency mapping overlap. MFCC,
OpenL3, and PaSST show similar inter-correlation strength
values.

B. Class Scattering

If we consider a multi-class classification scenario, an ideal
embedding space has dense and well-separated clusters for each
class as shown on the left side of Fig. 4. In contrast, as shown on
the right side, partially overlapping classes can cause confusions
between adjacent classes and hence complicate the task for a
subsequent classification model. In this section, we use the Dunn
Index (DI) [49] and the Davies-Bouldin Index (DBI) [50] as
two established separation measures to characterize the class
scattering in the embedding space for the non-degraded isolated
sound recordings (a = 1, g ∈ {1, 6}).

Given a set Z = {z ∈ RE} of embedding vectors of isolated
sounds, let Zi = {z ∈ Z | c(z) = i} be the subset of all em-
bedding vectors labeled with class c(z) ∈ [1 : C] where C ∈ N
denotes the number of classes. The class centroids in the em-
bedding space are computed as

μi =
1

|Zi|
∑
z∈Zi

z. (5)

The intracluster distance Δi measures the average distance of
all class samples to their class centroid as

Δi =
1

|Zi|
∑
z∈Zi

d(z, μi) (6)

where d(·) denotes the Euclidean distance. The intercluster dis-
tance δi,j measures the distance between the two class centroids
of class i and j as

δi,j = d(μi, μj). (7)

Based on these concepts, the Dunn IndexαDI looks for the closest
pair of clusters as well as the most spread cluster to derive a

https://github.com/iver56/audiomentations
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Fig. 5. Dunn Index (DI) and Inverted Davies-Bouldin Index (DBI) for different
audio representations. Higher values indicate a better class separability.

separation measure as

αDI =

mini,j∈[1:C]
i�=j

δi,j

maxi∈[1:C] Δi
(8)

This measure follows a “pessimistic” view and only considers
the most poorly segregated and widely dispersed classes.

As a second measure, the Davies-Bouldin Index first com-
putes pair-wise cluster similarity measures as

Ri,j =
Δi +Δj

δi,j
(9)

Then, for each class, the most similar other class is identified
and these similarity values are finally averaged as

αDBI =
1

C

∑
i∈[1:C]

max
j∈[1:C]
j �=i

Ri,j (10)

Since αDBI decreases with improved class separability, we use
the inverted DBI measure (1/αDBI) as a separation measure of
a given clustering.

Fig. 5 summarizes the two measures for all audio representa-
tions. Both measures show a similar trend that DAEs in general
yield a better class scattering in the embedding space. At the
same time, there is no clear evidence whether DAEs trained in a
supervised or self-supervised fashion show a better separability.

VI. SENSITIVITY TO AUDIO DEGRADATIONS

In this section, we aim to measure the sensitivity of audio
representations against different types of audio degradations.
Such degradations are caused by acoustic variations such as
background noise and loudness variations, which often appear in
real-world sound monitoring scenarios. Ideally, an embedding
function f(·) is robust against such audio degradations since
they do not change the semantics of the sound classes to be
recognized.

As illustrated in Fig. 6, we consider two types of sensitivity
measures. In the class-agnostic measure ψa (see left side of
Fig. 6), we do not take the class membership of embedding
vectors into account. Instead, we consider only the distance
between the non-degraded embedding vector z and the degraded
embedding vector zd:

ψa =
1

|Z|
∑
z∈Z

d(z, zd). (11)

Fig. 6. Class-agnostic view (left side) and class-centric view (right side)
for computing the sensitivity towards a degradation function, which causes a

embedding vector z to move to zd. For the class-centric view, z(+)
d

and z(−)
d

show two cases where the embedding vector moves either towards or away from
its corresponding class centroid μz.

Fig. 7. Sensitivity measures ψa (upper plot) and ψc (lower plot) observed per
audio representation and degradation type. Error bars indicate standard deviation
across test samples. Horizontal dashed lines indicate global averagesψa andψc

over both sensitivity values.

In the class-centric measure ψc (see right side of Fig. 6), we
measure the “drift” of an embedding vector relative to its corre-
sponding class centroid μc(z):

ψc =
1

|Z|
∑
z∈Z

(
d(z, μc(z))− d(zd, μc(z))

)
. (12)

Positive values for ψc indicate that an embedding vector moves
towards its class centroid whereas negative values indicate a drift
away from it.

In our experiment, we analyze the degraded versions of the
isolated sound recordings in the ESC50Mix dataset (g ∈ {1, 6}).
Fig. 7 illustrates the mean sensitivity values and the correspond-
ing error bars based on the standard deviation computed over
all audio recordings. The class-agnostic sensitivity measure ψa

show that the “Noise” degradation has the strongest impact on
the embeddings and generally causes the embeddings to move
away from their class centroids with the exception of MFCC,
where ψc remains almost zero on average. This is expectable, as
the MFCC provide a decorrelated approximation of the spectral
envelope, which naturally suppresses noise.

On the other hand, the “Quiet” degredation, which reduces
the loudness, leads to an embedding drift for all representations
except for MelSpec. Notably, the MFCCs seem robust to such
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Fig. 8. Two possible embedding space trajectories that are obtained by blend-
ing between two sounds z0 and z1. Given a sound mixture zg of these sounds, the
plots show the distancesd0,d1, andd∗ towards the corresponding class centroids
μ0 and μ1 as well as the closest out-of-class centroid μ∗. The trajectory (black
dotted line) indicates a “wrapped” continuous path on a submanifold embedded
in a high-dimensional feature space.

degradation as they tend to drift towards their class centroids
which does not introduce a higher risk for misclassifications. The
two audio degradations “BoostHigh” and “BoostLow”, which
alter the spectral envelope, have a stronger effect on the DAEs
than on the NTARs. However, both do not cause a strong drift
towards or away from the class centroids. In summary, while
this investigation revealed individual strengths and weaknesses
of all embeddings, the PaSST as well as the PANN embeddings
appear to be in overall the most robust representations against
the investigated audio degradations.

VII. SOUND BLENDING TRAJECTORIES

In this experiment, we investigate how a blending between two
isolated sounds maps to a trajectory between their embedding
vectors. We argue that if such a trajectory passes by other classes
in the embedding space, misclassification can be caused. Fig. 8
illustrates this idea: Given the embedding vectors z0 and z1 of
two isolated sounds, we investigate the trajectory corresponding
to the embedding vectors of the mixtures zg of both sounds,
which according to (1) depends on the mixing coefficient g. In
this experiment, we do not apply any audio degradation (a = 1).

A. Embedding Space Distances

Given an example mixture zg along this trajectory, we mea-
sure its embedding space distance to the class centroids μ0 and
μ1 of both isolated sounds as d0 = d(zg, μ0) and d1 = d(zg, μ1)
as well as its distance to the closest out-of-class centroid μ∗

z as
d∗ = d(zg, μ

∗
z). Fig. 8 illustrates two possible trajectories: The

first trajectory (left plot) passes by two other classes (purple
triangles, green pentagons) and shows potential for sound mis-
classification. The second trajectory (right plot) remains close to
the original classes (blue stars, orange circles) and the mixtures
remain further away from out-of-class centroids.

Fig. 9 shows the dependence of the three distance values
d0, d1 and d∗ on the mixing parameter g for different audio
representations. The plots show the mean values averaged over
all 1000 sound pairs to illustrate general trends. We make several
observations: First, d∗ has a convex shape and is consistently
below d1 and d2 for the NTARs as well as for OpenL3. This

Fig. 9. Subplots show for all embedding types the distancesd0 andd1 between
the mixture embeddings z to the class centroidsμz,0 andμz,1 of the correspond-
ing sound classes as well as the distance d∗ to the closest out-of-class centroid
μ∗z. A likelihood measure for class confusion is derived as min(d0, d1)− d∗
and shown here only for positive values.

property is disadvantageous for SET as it indicates that both
the isolated sounds as well as the mixtures tend to remain
closer to out-of-class centroids than to their corresponding
class centroids. When looking at the supervised DAEs (Ku-
mar, PANN, PaSST, and VGGish), d∗ has a concave shape,
which indicates that for stronger mixtures (g ∈ {0.4, 0.6}), the
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Fig. 10. Multi-label SET performance of a two-layer MLP model measured
as macro-level mean average precision (mAP), which is shown for differ-
ent embeddings and different types of sound mixtures based on the mixing
coefficient g.

potential for confusion with other classes is smaller than for
isolated sounds (g ∈ {0, 1}) or soft mixtures (g ∈ {0.2, 0.8}).
We further illustrate in Fig. 9 a likelihood measure for class
confusion derived asmax(0,min(d0, d1)− d∗). In particular for
the PANN and PaSST embeddings, we have the desired property
that min(d0, d1) < d∗ holds true for all mixture coefficients g.
Therefore, we expect the structure of the embedding spaces of
both the PANN and PaSST embeddings to be most suitable for
low-polyphony SET among the investigated audio representa-
tions as class confusions due to proximate out-of-class centroids
being mostly avoided.

B. SET Experiment

Complementary to the embedding space distance investiga-
tions presented in Section VII-A, we run a SET experiment
using the ESC50Mix dataset. We use the first 800 sound pairs
as training data and the last 200 sound pairs as test data. Again,
we focus on the non-degraded audio clips (a = 1) and consider
all gain factors g when compiling the training and test datasets.
Consequently, all SET models are trained and evaluated with
both single-label and multi-label audio clips. In particular, we
obtain single-label annotations for all audio clips with only
one sound being audible (γg = 0 and γg = 1) and multi-label
annotations for all sound mixtures.

Inspired by [7], we use a two-layer Multi-Layer Perceptron
(MLP) model as a classifier to process the embeddings, which
consists of a first layer with 128 neurons and a Rectified Linear
Unit (ReLU) activation function and a second layer of 50 neurons
with a sigmoid activation function. All models are trained for 150
epochs using binary crossentropy loss, the Adam optimizer [51]
with a learning rate of 10−3, and a batch size of 32. We ran-
domly use 20 % of the training set as validation set and use
early stopping on the validation loss to stop the training. The
macro-average mean average precision (mAP) is computed as
evaluation metric.

Fig. 10 summarizes the mAP values obtained for three types
of sound mixtures ranging from isolated sounds (g ∈ {0, 1})
over mixtures of one predominant and one background sound

(g ∈ {0.2, 0.8}) to mixtures of two sounds of similar intensity
(g ∈ {0.4, 0.6}). It comes by no surprise that we can observe
a decrease in mAP from single-label audio clips with isolated
sounds to multi-label audio clips. Interestingly, the tagging
models perform slightly better for the multi-label clips when
both sounds have a similar intensity. The NTARs perform
significantly worse than the DAEs. Presumably, the shallow
MLP model is less expressive using NTARs, which characterize
sounds only by the shape of their spectral envelopes. DAEs, in
contrast, are trained to capture more complex temporal-spectral
patterns. When comparing the different DAEs, the PANN em-
bedding perform best followed by OpenL3 and PaSST embed-
dings, which perform en par. This confirms our findings from
Section VII-A, where DAEs clearly outperformed the NTARs.
As only exception, the OpenL3 embeddings perform better
than expected based on the observed embedding space distance
relationships.

VIII. CONCLUSION

Motivated by the challenges of deploying machine listening
approaches for real-life application scenarios, we study in this
article the suitability of two non-trainable audio representations
(NTARs) as well as five deep audio embeddings (DAEs) for SET.
We first investigated general properties of these embeddings
such as the redundancy caused by feature inter-correlations as
well as the class separability in the embedding spaces. Then, we
assessed the robustness of the embeddings against four types
of audio degredations. We proposed two measures based on a
class-agnostic and a class-centric view on the resulting embed-
ding drift in the embedding space. We observed that both NTARs
and DAEs have individual weaknesses while the PaSST and
PANN embeddings seem to be the most robust representations.

As a main contribution of this article, we blended between
random sound pairs to create sound mixtures and studied the
resulting embedding space trajectories to assess the risk of sound
misclassification. This arises if sound mixtures are too close to
other sound classes in the embedding space. Again, we found
that the embedding space of the PANN embeddings seems to
be structured in such way that sound mixtures generally remain
close enough to their original sound classes, which leads to su-
perior SET performance. Our analyses so far are based on a low
sound polyphony of two overlapping sounds. As future work,
new training approaches should be developed to learn DAEs
which better account for sound mixtures of higher polyphony
degrees, which are common in real-world soundscapes. Another
open question is, how the proposed embedding space trajectories
can be generalized to higher sound polyphony degrees with a
rapidly increasing number of sound permutations.
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