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Abstract—Independent deeply learned matrix analysis
(IDLMA) is a state-of-the-art determined audio source separation
method based on pretrained deep neural networks (DNNs). Owing
to the excellent expression power of DNNs, IDLMA can handle
a wider range of sources than conventional source models such
as nonegative matrix factorization (NMF). However, owing to
its supervised nature, the separation performance of IDLMA
often degrades in the presence of timbral mismatches between
the training data and the to-be-separated data. In this paper,
we propose two source models that encompass the NMF- and
DNN-based source models by constructing a prior distribution of
the source power spectrogram (product of priors: PoP) on the basis
of the product-of-expert concept. Since the NMF-based source
model works well for a fully blind situation, the proposed models
can handle the timbral mismatch without losing the expression
power of DNNs. By introducing the PoP-based source models
into IDLMA, we propose IDLMA extensions (PoP-IDLMAs) and
derive their efficient parameter estimation algorithms on the basis
of the majorization–minimization algorithm. Experimental results
demonstrated the effectiveness of the proposed PoP-IDLMAs
and that the proposed models greatly improve the source power
estimation in frequency bands above 500 Hz.

Index Terms—Independent deeply learned matrix analysis,
independent low-rank matrix analysis, multichannel music source
separation, product of experts.

I. INTRODUCTION

B LIND source separation (BSS) is a technique of extracting
source signals from their mixture without knowing any

information about sources or a mixing process. It plays an
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important role in multichannel audio source separation and has
thus far been well studied [1]. The BSS problem is divided into
two situations: undetermined (the number of microphones M is
smaller than that of sourcesN ) and (over-)determined (M ≥ N )
situations. In this article, we focus on the determined situation.

For the determined situation, a typical BSS approach is to
assume the statistical independence of sources, for example,
frequency-domain independent component analysis [2], [3], [4],
[5], independent vector analysis (IVA) [6], [7], and independent
low-rank matrix analysis (ILRMA) [8]. In this approach, the
determined BSS problem is formulated as the problem of finding
a demixing filter (the inverse system of the mixing process)
simultaneously with the estimation of source power spectro-
grams. For example, ILRMA uses a source model based on a
nonnegative matrix factorization (NMF) [9], [10]. The NMF
represents each slice of a source power spectrogram by a sum of
common spectral templates weighted by their activations, i.e.,
it approximates a source power spectrogram using a low-rank
nonnegative matrix. This representation is suited for capturing
recurring spectral patterns, and ILRMA achieves the state-of-
the-art performance in the determined BSS methods.

Alongside with extensions for the fully blind situation [11],
[12], [13], ILRMA has been extended for a spatially blind
but source-supervised situation, where a mixing system is still
unknown but training data of each source are available. This
extension is named independent deeply learned matrix analysis
(IDLMA) [14]. It is constructed by replacing the NMF-based
source model with a source model based on a pretrained deep
neural network (DNN) in the ILRMA framework. Owing to the
flexible expression power of a DNN, IDLMA works well even
for sources that the NMF assumption is not suited for (e.g., a
singing voice).

Although a DNN-based source model can handle a wider
range of sources, its performance is often degraded by a timbral
mismatch between the training data and an observed signal.
One cause of this performance degradation is the supervised
nature of the DNN-based source model. For example, the higher-
frequency components greatly fluctuate owing to musical instru-
ment types and performers’ skills, which make the DNN training
difficult. Indeed, we experimentally observed such a perfor-
mance degradation of the DNN-based source model particularly
in higher frequency bands, as we will show in Section V-F.
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Fig. 1. Overview of proposed t-PoP-IDLMA and G-PoP-IDLMA. | · |·τ returns the τ th power of the absolute value of each element. See Section III for variables
of t-PoP-IDLMA and Section IV for variables of G-PoP-IDLMA.

To alleviate this problem while maintaining the capability of
handling various sources, we should extend the DNN-based
source model to include an adaptive mechanism against timbral
mismatches.

In this article, we propose a source model capable of handling
timbral mismatches by unifying the NMF- and DNN-based
source models. The idea of developing the proposed model is
to combine unsupervised and supervised source models. Unlike
the DNN-based source model, the NMF-based source model can
work well in an unsupervised manner. We pretrain only the DNN
part and use the NMF part in an unsupervised manner. Hence, the
NMF part accounts for the time–frequency components that are
difficult for the DNN part to represent. The NMF and DNN parts
are described with probability distributions of a source power
spectrogram. To combine the two distributions in a Bayesian
manner, we use a product-of-expert (PoE) technique [15]. PoE
represents a probability distribution as a product of multiple
probability distributions called experts. By associating the dis-
tributions of the NMF and DNN parts with the experts, we can
construct a prior distribution of the source power spectrogram
as their product. Each of the two distributions can be seen
as a prior distribution of the source power spectrogram in the
ILRMA/IDLMA framework. Named after this aspect, we call
the proposed prior distribution product of priors (PoP).

By replacing the DNN-based source model with the PoP-
based source model, we propose an IDLMA extension named
PoP-IDLMA (see Fig. 1). Furthermore, we propose a variant of
PoP-IDLMA by taking the limit of one of the hyperparameters
of the PoP-based source model under a certain condition. To

distinguish them, we call the former t-PoP-IDLMA and the latter
G-PoP-IDLMA. For both PoP-IDLMAs, we derive efficient
parameter estimation algorithms based on the majorization–
minimization (MM) algorithm [16]. We conducted experiments
on determined source separation and showed the effectiveness
of the proposed methods.

While we focus on the IDLMA and ILRMA families through-
out this article, the idea of PoP can be extended for underdeter-
mined source separation methods such as multichannel NMF
(MNMF) [17], [18] and fast MNMF [19], [20] because they
use generative models of a source power spectrogram similarly
to the determined source separation methods. We leave such
extensions as our future work.

The remainder of this article is organized as follows. In
Section II, we briefly describe ILRMA and IDLMA. In
Section III, we propose the PoP-based source model and in-
troduce it to IDLMA for constructing t-PoP-IDLMA. We also
derive its parameter estimation algorithm on the basis of the MM
algorithm. In Section IV, we present G-PoP-IDLMA and derive
its parameter estimation algorithm similarly to t-PoP-IDLMA.
In Section V, we show the effectiveness of the proposed methods
through multichannel music source separation experiments. In
Section VI, we conclude this article.

This article is partially based on our previous conference
article [21], with the following five contributions. (i) We propose
a PoP-based source model by combining the prior distributions
of the NMF- and DNN-based source models. Note that the
method presented in [21] is used for the DNN part. (ii) We extend
the PoP-based source model so that it can avoid the DNN training
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cost caused by changing hyperparameter. (iii) We introduce
these source models into the IDLMA framework and propose
efficient parameter estimation algorithms for t- and G-PoP-
IDLMAs. (iv) Through music source separation experiments,
we demonstrated the effectiveness of t- and G-PoP-IDLMAs
and (v) that the NMF part improves the source power estimation
in the frequency band where the DNN part failed to estimate.

II. CONVENTIONAL METHODS

A. Formulation of Determined Audio Source Separation

In this section, we formulate a determined audio source sepa-
ration problem with M microphones and N sources (M ≥ N ).
The short-time Fourier transforms (STFTs) of source, observed,
and separated signals are defined as

sij = (sij1, . . . , sijN )T ∈ CN , (1)

xij = (xij1, . . . , xijM )T ∈ CM , (2)

yij = (yij1, . . . , yijN )T ∈ CN , (3)

where i = 1, . . . , I , j = 1, . . . , J , n = 1, . . . , N , and m =
1, . . . ,M are the indices of frequency bins, time frames, sources,
and channels, respectively. The superscript T denotes the trans-
pose operator.

When the mixing system is time-invariant and an analysis
window is sufficiently longer than the reverberation time, xij is
represented as an instantaneous mixture:

xij = Aisij , (4)

where Ai ∈ CM×N is the mixing matrix. If M = N and Ai is
nonsingular, we can write yij as

yij = W ixij , (5)

where W i = (wi1, . . . ,wiN )H ∈ CN×M is the demixing ma-
trix and the superscript H is the Hermite transpose operator.

In ILRMA and IDLMA, yijn is assumed to follow an isotropic
complex Gaussian distribution with zero mean and variance
rijn ∈ R≥0:

p(yijn; rijn) =
1

πrijn
exp

(
−|yijn|

2

rijn

)
. (6)

The variance rijn corresponds to the (i, j)th entry of the power
spectrogram of source n, and we call it the source power spec-
trogram. With this assumption, the source separation problem
is formulated as a maximum likelihood estimation problem
with respect to rijn and W i for a given xijm. Let Xm and
Y n be I × J complex matrices consisting of {xijm}I,Ji=1,j=1

and {yijn}I,Ji=1,j=1, respectively. By taking the negative of the
log-likelihood function, we obtain a cost function as

L = − log p({Xm}Mm=1)

= − log p({Y n}Nn=1)−
∑
i

log | detW i|2J

Fig. 2. Source model of ILRMA.

c
=
∑
i,j,n

(
log rijn +

|wH
inxij |2
rijn

)
− 2J

∑
i

log | detW i|,

(7)

where
c
= denotes the equality up to constants. The second

equation of (7) comes from (5) and the change of variables
formula. For brevity, we represent an I × J nonnegative matrix
consisting of {rijn}I,Ji=1,j=1 as Rn ∈ RI×J

≥0 .
ILRMA and IDLMA represent Rn with an NMF and a DNN,

respectively. To distinguish them, we hereafter add superscripts
(NMF) and (DNN) to Rn for ILRMA and IDLMA, respectively.

B. ILRMA [8]

1) Representation of R(NMF)
n : Fig. 2 shows the source model

of ILRMA. In this model, the source power spectrogramR
(NMF)
n

is represented as a product of two nonnegative matrices with rank
K:

R(NMF)
n = T nV n, (8)

or equivalently,

r
(NMF)
ijn =

K∑
k=1

tiknvkjn, (9)

where k = 1, . . . ,K is the index of the NMF bases. The ma-
trices T n ∈ RI×K

≥0 and V n ∈ RK×J
≥0 are the basis and activa-

tion matrices consisting of {tikn}I,Ki=1,k=1 and {vkjn}K,J
k=1,j=1,

respectively. The column vectors of T n represent the spectral
patterns of source n and the row vectors of V n are the energies
of the corresponding bases.

2) Parameter Estimation Algorithm: By substituting (9) into
(7), we obtain the cost function of ILRMA as

LILRMA
c
=
∑
i,j,n

(
log
∑
k

tiknvkjn +
|wH

inxij |2∑
k tiknvkjn

)

− 2J
∑
i

log | detW i|. (10)

The minimization of (10) can be performed by iteratively up-
dating the parameters of the NMF-based source model (tikn and
vkjn) and those of the spatial model (W i) [8].

The parameter estimation algorithm of ILRMA is based on
the MM algorithm [16], which offers the guarantee that (10) does
not increase at each update. In the MM algorithm, we design an
auxiliary function that is tangent to an original cost function. By
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Algorithm 1: IP Algorithm.

1: function IP({Xm}m, {W i}i, {Rn}n)
2: for i = 1, . . . , I do
3: for n = 1, . . . , N do
4: U in = (1/J)

∑
j xijx

H
ij/rijn

5: win ← (W iU in)
−1en

6: win ← win/
√
wH

inU inwin

7: end for
8: end for
9: return{W i}i
10: end Function

using the auxiliary function, we can derive update rules that do
not increase the original cost function:

Theorem 1: Let f(θ) be a cost function and f+(θ, θ̄) be
its auxiliary function that satisfies f(θ) = minθ̄ f

+(θ, θ̄). The
cost function f(θ) is not increased by iteratively performing the
following updates.

θ̄ ← arg min
θ̄

f+(θ, θ̄), θ ← arg min
θ

f+(θ, θ̄). (11)

By adequately designing an auxiliary function of (10), we can
obtain update rules for tikn and vkjn [8]:

tikn ← tikn

√√√√∑j (
∑

k′ tik′nvk′jn)
−2 vkjn|yijn|2∑

j (
∑

k′ tik′nvk′jn)
−1 vkjn

, (12)

vkjn ← vkjn

√∑
i (
∑

k′ tik′nvk′jn)
−2 tikn|yijn|2∑

i (
∑

k′ tik′nvk′jn)
−1 tikn

. (13)

Since the terms in the outer parentheses in (12) and (13) are
nonnegative, the nonnegativity of tikn and vkjn always holds
once their initial values are nonnegative.

The demixing matrixW i is updated by the iterative projection
(IP) algorithm [22]:

{W i}i ← IP({Xm}m, {W i}i, {R(NMF)
n }n), (14)

where IP(·, ·, ·) is defined in Algorithm 1. Here en is the N -
dimensional unit vector whose nth element is one. This algo-
rithm guarantees that (10) does not increase at each update [23].
It is also used in IDLMA and our proposed methods, as we will
show in Sections II-C, III-C, and IV-B.

After the parameter estimation, the projection back (PB) [5]
is applied to yij to resolve the scale uncertainty between win

and r
(NMF)
ijn :

yij ← diag(di)yij , (15)

where diag(di) ∈ CN×N is a matrix that has elements of
di ∈ CN on the main diagonal and zero elsewhere. The N -
dimensional vector di is computed as di = (W T

i )
−1emref ,

where mref denotes a reference channel index.

C. IDLMA [14]

1) Representation of R(DNN)
n : Fig. 3 shows the source model

of IDLMA. In this model,R(DNN)
n is obtained with the pretrained

Fig. 3. Source model of IDLMA.

DNN DNNn. Let | · |·τ denote the elementwise τ th power of
absolute values of a matrix. It converts |Y n|·1 into the source
magnitude spectrogram Σn ∈ RI×J

≥0 :

Σn = DNNn(|Y n|·1). (16)

Let σijn be the (i, j)th entry of Σn. We obtain rijn as

r
(DNN)
ijn = max(σ2

ijn, ε1), (17)

where max(·, ·) returns a maximum value of two inputs and ε1
is a small value used to prevent numerical instability.

2) Parameter Estimation Algorithm: The parameter estima-
tion algorithm of IDLMA consists of two stages: separation and
DNN training stages. The separation stage is performed after
the DNN training stage. We describe the separation stage in this
section and the DNN training stage in Section II-C3.

In the separation stage, the parameters of the source and
spatial models are estimated from observed signals Xm. The
cost function of IDLMA is defined by replacing rijn with r(DNN)

ijn

in (7):

LIDLMA
c
=
∑
i,j,n

(
log r

(DNN)
ijn +

|wH
inxij |2
r
(DNN)
ijn

)

− 2J
∑
i

log | detW i|. (18)

As in ILRMA, the parameter estimation algorithm of IDLMA
consists of iterative updates of the source model and demixing
matrices.

The source power spectrogram R
(DNN)
n is updated in accor-

dance with (16) and (17), where Y n is obtained with the current
estimates of W i. For the update of W i, we can use the IP
algorithm because the terms of (18) involved in W i have the
same form as those of ILRMA:

{W i}i ← IP({Xm}m, {W i}i, {R(DNN)
n }n). (19)

The PB technique is applied to yij after every update of W i,
which can reduce linear distortion.

3) DNN Training: In the DNN training stage, we train DNNn

so that it can estimate a clean magnitude spectrogram from a
noisy magnitude spectrogram. The point of IDLMA is that a cost
function for the DNN training is consistent with the cost function
(18) used in the separation stage in a maximum likelihood sense.

Let s̆ijn be the (i, j)th element of a clean complex spectro-
gram of source n. The cost function for the DNN training is
derived by respectively replacing wH

inx and r
(DNN)
ijn with s̆ijn
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and σ2
ijn in LIDLMA:

C(n)IDLMA =
∑
i,j

(
|s̆ijn|2 + ε2
σ2
ijn + ε2

− log
|s̆ijn|2 + ε2
σ2
ijn + ε2

− 1

)
, (20)

where ε2 is a small value used to prevent numerical instability.
The right-hand side of (20) is the Itakura–Saito divergence
between |s̆ijn|2 + ε2 and σ2

ijn + ε2. When ε2 is negligibly
small, the minimization of (20) with respect to σ2

ijn is equivalent
to the maximum likelihood estimation of (18) with respect to
σ2
ijn. Hence, the DNN training with C(n)IDLMA corresponds to the

emulation of the maximum likelihood estimation with respect
to σijn in the separation stage.

III. PROPOSED t-POP-IDLMA

A. t-PoP-Based Source Model

1) PoP: In this section, we propose the PoP-based source
model by unifying the NMF- and DNN-based source models
on the basis of PoE [15]. PoE designs a probability distribu-
tion of a random variable by multiplying multiple probability
distributions of the variable. The multiplication is analogous
to an “and” operation of multiple conditions, and the designed
distribution has high values at events where such conditions
tend to be satisfied simultaneously. In the proposed model, we
treat the source power spectrogram rijn as a latent variable and
construct its prior distribution by multiplying the NMF- and
DNN-based probability distributions of rijn. By using the prior
distribution (i.e., PoP), we define the source model through the
marginalization of rijn.

As in ILRMA and IDLMA, yijn is assumed to obey an
isotropic Gaussian distribution with zero mean and variance
rijn. To clarify that rijn is a latent variable, we rewrite (6) as

p(yijn|rijn) = 1

πrijn
exp

(
−|yijn|

2

rijn

)
. (21)

Following PoE, we can define a prior distribution of rijn with a

set of hyperparameters θ(t-PoP)
ijn as

p
(
rijn; θ

(t-PoP)
ijn

)
∝ q

(
rijn; θ

(NMF)
ijn

)
q
(
rijn; θ

(DNN)
ijn

)
, (22)

where q(rijn; θ
(NMF)
ijn ) and q(rijn; θ

(DNN)
ijn ) are the NMF- and

DNN-based probability distributions with sets of parameters
θ
(NMF)
ijn and θ

(DNN)
ijn , respectively.

For the right-hand side of (22) to be a probability distribu-
tion, a normalization constant should exist. Unfortunately, it
is not always described in an explicit form. However, by ad-
equately choosing probability distributions for q(rijn; θ

(NMF)
ijn )

and q(rijn; θ
(DNN)
ijn ), we can write the right-hand side of (22)

in a closed form, which helps the derivation of a parameter
estimation algorithm.

Let us choose an inverse gamma distribution for q(rijn; θ
(l)
ijn)

for part label l ∈ {NMF,DNN}:

q
(
rijn; θ

(l)
ijn

)
= IG

(
rijn;α

(l)
ijn, β

(l)
ijn

)
, (23)

IG
(
rijn;α

(l)
ijn, β

(l)
ijn

)
:=

(β
(l)
ijn)

α
(l)
ijn

Γ(α
(l)
ijn)

r
−α(l)

ijn−1
ijn e−β

(l)
ijn/rijn ,

(24)

where θ
(l)
ijn = {α(l)

ijn, β
(l)
ijn}, α(l)

ijn > 0 is the shape parameter,

β
(l)
ijn > 0 is the scale parameter, and Γ(·) is the gamma function.

Since a product of two inverse gamma distributions is also an
inverse gamma distribution, we can explicitly write the proposed
PoP as

p
(
rijn; θ

(t-PoP)
ijn

)
= IG

(
rijn;α

(t-PoP)
ijn , β

(t-PoP)
ijn

)
, (25)

where θ
(t-PoP)
ijn = θ

(NMF)
ijn ∪ θ

(DNN)
ijn and

α
(t-PoP)
ijn = α

(NMF)
ijn + α

(DNN)
ijn + 1, (26)

β
(t-PoP)
ijn = β

(NMF)
ijn + β

(DNN)
ijn . (27)

It should be noted that we can combine more than two probability
distributions in the same manner.

2) Source Model: The proposed source model is defined as
a marginalization distribution p(yijn; θ

(t-PoP)
ijn ):

p
(
yijn; θ

(t-PoP)
ijn

)
=

∫ ∞
0

p(yijn|rijn)p
(
rijn; θ

(t-PoP)
ijn

)
drijn.

(28)
An inverse gamma distribution is a conjugate prior distribution
of a normal distribution (see [24] for example). Thus, we can
compute the marginal distribution in a closed form:

p
(
yijn; θ

(t-PoP)
ijn

)
=

1

πr̃
(t-PoP)
ijn

(
1 +

2|yijn|2
ν
(t-PoP)
ijn r̃

(t-PoP)
ijn

)−1−ν(t-PoP)
ijn /2

,

(29)
where

r̃
(t-PoP)
ijn =

β
(t-PoP)
ijn

α
(t-PoP)
ijn

, ν
(t-PoP)
ijn = 2α

(t-PoP)
ijn . (30)

The resulting distribution is identical to a complex isotropic
Student’s-t distribution with the degree-of-freedom (DoF) pa-
rameter ν(t-PoP)

ijn and scale parameter r̃(t-PoP)
ijn . Decreasing ν

(t-PoP)
ijn

leads to a more heavy-tailed probability distribution, i.e., it
controls the Gaussianity of the distribution. We call the source
model (29) the t-PoP-based source model.

B. Interpretation of t-PoP-Based Source Model

We have thus far derived the proposed t-PoP-based source
model. In this section, we provide an interpretation of the t-
PoP-based source model to bridge it with the source models
of ILRMA and IDLMA. On the basis of this interpretation, we
parameterize θ

(NMF)
ijn and θ

(DNN)
ijn with an NMF and a DNN.

Similarly to (30), we define

r̃
(l)
ijn =

β
(l)
ijn

α
(l)
ijn

, ν
(l)
ijn = 2α

(l)
ijn, (31)
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Fig. 4. Relationship between proposed and conventional source models.

for l ∈ {NMF,DNN}. Since α
(l)
ijn and β

(l)
ijn can be represented

by r̃
(l)
ijn and ν

(l)
ijn, respectively, we hereafter redefine θ

(l)
ijn by

θ
(l)
ijn := {r̃(l)ijn, ν

(l)
ijn} for l ∈ {NMF,DNN}.

Let us consider the case where we choose a uniform
distribution for q(rijn; θ

(DNN)
ijn ) in (22). In this case, since

p(rijn; θ
(t-PoP)
ijn ) equals q(rijn; θ

(NMF)
ijn ), the resultant source

model is given as a complex isotropic Student’s-t distribution
with the DoF parameter ν(NMF)

ijn and scale parameter r̃(NMF)
ijn . It

coincides with the source model of a Student’s-t-distribution-
based extension of ILRMA (t-ILRMA) [25]. Furthermore, by
invoking the fact that a complex isotropic Student’s-t distribu-
tion becomes a complex isotropic Gaussian distribution as the
DoF parameter goes to infinity, we obtain a complex isotropic
Gaussian distribution with zero mean and variance r̃

(NMF)
ijn as

ν
(NMF)
ijn →∞. It coincides with the NMF-based source model

of ILRMA. Similarly to (9), we can parameterize r̃
(NMF)
ijn as

R(NMF)
n = T̃ nṼ n, (32)

or equivalently

r̃
(NMF)
ijn =

∑
k

t̃iknṽkjn, (33)

where t̃ijn and ṽikn are the (i, j)th entries of the basis and activa-
tion matrices T̃ n ∈ RI×J

≥0 and Ṽ n ∈ RI×J
≥0 , respectively. We can

provide a similar interpretation for q(rijn; θ
(DNN)
ijn ). Fig. 4 shows

the relationship between the proposed and conventional source
models, where t-IDLMA [14] is a Student’s-t-distribution-based
extension of IDLMA. As in the IDLMA family, r̃(DNN)

ijn is esti-

mated from |Y n|·1 by using a pretrained DNN ˜DNNn.
The above interpretations reveal the relationship between the

proposed source model and the source models of ILRMA and
IDLMA. With the notations (31), we can rewrite the parameters
of the t-PoP-based source model r̃(t-PoP)

ijn and ν
(t-PoP)
ijn as

r̃
(t-PoP)
ijn =

ν
(t-PoP)
ijn − 2

ν
(t-PoP)
ijn

[
ηijnr̃

(NMF)
ijn + (1− ηijn)r̃

(DNN)
ijn

]
,

(34)

ν
(t-PoP)
ijn = ν

(NMF)
ijn + ν

(DNN)
ijn + 2, (35)

where

ηijn =
ν
(NMF)
ijn

ν
(NMF)
ijn + ν

(DNN)
ijn

. (36)

Since ηijn is in the open set (0,1), the term in parentheses in
(34) can be seen as an ηijn-weighted sum of the NMF- and
DNN-based source power spectrograms. The DoF parameters
ν
(NMF)
ijn and ν

(DNN)
ijn determine the weighting factor ηijn.

C. Parameter Estimation Algorithm

1) Cost Function: By replacing the DNN-based source
model with the t-PoP-based source model, we propose t-PoP-
IDLMA. As in ILRMA and IDLMA, the source separation
problem can be formulated as a maximum likelihood estima-
tion problem with respect to θ

(t-PoP)
ijn and W i. The negative

log-likelihood of {Xm}m, i.e., the cost function, is given as

Lt-PoP =
∑
i,j,n

log p
(
yijn; θ

(t-PoP)
ijn

)
−
∑
i

log | detW i|2J

(37)

c
=
∑
i,j,n

(
1 +

ν
(t-PoP)
ijn

2

)
log

(
1 +

2|wH
inxij |2

ν
(t-PoP)
ijn r̃

(t-PoP)
ijn

)

+
∑
i,j,n

log r̃
(t-PoP)
ijn − 2J

∑
i

log | detW i|. (38)

The parameter estimation algorithm of t-PoP-IDLMA consists
of two stages as in IDLMA. In the DNN training stage, the DNN
is trained with the training data of each source, which we will
describe in Section III-D. In the separation stage, we estimate
t̃ikn, ṽkjn, r̃

(DNN)
ijn , and ν

(DNN)
ijn from {Xm}m. Note that ν(NMF)

ijn

is treated as a hyperparameter. In the following, we derive update
rules of t̃ikn, ṽkjn, r̃

(DNN)
ijn , and ν

(DNN)
ijn on the basis of the MM

algorithm.
2) Update Rule of W i: The cost function Lt-PoP includes
|wH

inxij |2 in the logarithm term, which makes it difficult to
minimize Lt-PoP. To construct an upper bound of this term, we
can use the following lemma [25]:

Lemma 1: For a concave function f(θ), its tangent line at
point θo is greater than or equal to f(θ):

f(θ) ≤ f ′(θo)(θ − θo) + f(θo). (39)

The equality holds if and only if θ = θo.
Since the logarithmic function is concave, we obtain

log

(
1 +

2|wH
inxij |2

ν
(t-PoP)
ijn r̃

(t-PoP)
ijn

)

≤ 1

ζijn

[
1 +

2|wH
inxij |2

ν
(t-PoP)
ijn r̃

(t-PoP)
ijn

− ζijn

]
+ log ζijn, (40)
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where ζijn > 0 is the auxiliary variable. The equality of (40)
holds if and only if

ζijn = 1 +
2|wH

inxij |2
ν
(t-PoP)
ijn r̃

(t-PoP)
ijn

. (41)

Hence, the auxiliary function of Lt-PoP is given as

L+
t-PoP

c
=
∑
i,j,n

|wH
inxij |2

ζijnν
(t-PoP)
ijn r̃

(t-PoP)
ijn /(2 + ν

(t-PoP)
ijn )

+
∑
i,j,n

log r̃
(t-PoP)
ijn − 2J

∑
i

log | detW i|

+
∑
i,j,n

(
1 +

ν
(t-PoP)
ijn

2

)(
1

ζijn
− 1 + log ζijn

)
.

(42)

The win-related terms in (42) are only quadratic and log-
determinant terms, which fits the requirements for using the IP
algorithm [23]. Hence, the update rule of W i is given as

{W i}i ← IP({Xm}m, {W i}i, {Ξn}n), (43)

where Ξn is an I × J matrix consisting of ξijn given by

ξijn =
ν
(t-PoP)
ijn

ν
(t-PoP)
ijn + 2

r̃
(t-PoP)
ijn +

2

ν
(t-PoP)
ijn + 2

|yijn|2. (44)

Note that ξijn is the denominator of the first term of (42) in
which the equality condition (41) is substituted.

3) Update Rules of t̃ikn and ṽkjn: By invoking (33) and
(34), we find that the first and second terms of (42) include
the sums over k in the reciprocal and logarithmic functions,
respectively. These terms make it difficult to analytically solve
the minimization of (42) with respect to t̃ikn and ṽkjn. To
overcome this problem, we derive update rules of tikn and vkjn
on the basis of the MM algorithm.

For a reciprocal function, we can use the following lemma:
Lemma 2: For a series of nonnegative values {hk}k,

1∑
k hk

≤
∑
k

λ2
k

hk
, (45)

where λk ≥ 0 is the auxiliary variable such that
∑

k λk = 1.
This lemma can be proved by Jensen’s inequality [24]. Using

Lemma 2, we can obtain the following inequality:

1

ηijn
∑

k t̃iknṽjkn + (1− ηijn)r̃
(DNN)
ijn

≤
(∑

k

(λ
(NMF)
ijkn )2

ηijnt̃iknṽjkn
+

(λ
(DNN)
ijn )2

(1− ηijn)r̃
(DNN)
ijn

)
, (46)

where λ
(NMF)
ijkn > 0 and λ

(DNN)
ijn > 0 are the auxiliary variables

that satisfy
∑

k λ
(NMF)
ijkn + λ

(DNN)
ijn = 1. The equality of (46) holds

if and only if

λ
(NMF)
ijkn =

ηijntiknvkjn

r̃
(t-PoP)
ijn

, λ
(DNN)
ijn =

(1− ηijn)r̃
(DNN)
ijn

r̃
(t-PoP)
ijn

. (47)

Using Lemma 1, we can derive the following inequality for the
second term of (42):

log

(
ηijn

∑
k

t̃iknṽkjn + (1− ηijn)r̃
(DNN)
ijn

)

≤ ηijn
∑

k t̃iknṽkjn + (1− ηijn)r̃
(DNN)
ijn

γijn
− 1 + log γijn

(48)

where γijn > 0 is an auxiliary variable. The equality of (48)
holds if and only if

γijn = ηijn
∑
k

t̃iknṽkjn + (1− ηijn)r̃
(DNN)
ijn . (49)

Taken together, the upper bound of (42) is obtained as

L++
t-PoP =

∑
i,j,n

(
ν
(t-PoP)
ijn + 2

)
|yijn|2(

ν
(t-PoP)
ijn − 2

)
ζijn

∑
k

(
λ
(NMF)
ijkn

)2
ηijnt̃iknṽjkn

+
∑
i,j,n

ηijn
γijn

∑
k

t̃iknṽkjn +D(t-PoP)
\t̃,ṽ , (50)

whereD(t-PoP)
\t̃,ṽ denotes terms that do not include t̃ikn or ṽkjn. By

solving∂L++
t-PoP/∂t̃ikn = 0 and∂L++

t-PoP/∂ṽijn = 0 and substitut-
ing equality conditions (41), (47), and (49) into the solutions,
we can derive the following update rules:

t̃ikn ← t̃ikn

√√√√∑j ν
(NMF)
ijn ṽkjn|yijn|2/(ν(t-PoP)

ijn r̃
(t-PoP)
ijn ξijn)∑

j ν
(NMF)
ijn ṽkjn/(ν

(t-PoP)
ijn r̃

(t-PoP)
ijn )

,

(51)

ṽkjn ← ṽkjn

√√√√∑i ν
(NMF)
ijn t̃ikn|yijn|2/(ν(t-PoP)

ijn r̃
(t-PoP)
ijn ξijn)∑

i ν
(NMF)
ijn t̃ikn/(ν

(t-PoP)
ijn r̃

(t-PoP)
ijn )

,

(52)

where ξijn is given as (44).

4) Update Rules of r̃(DNN)
ijn and ν(DNN)

ijn : In t-PoP-IDLMA, the

DNN of the nth source ˜DNNn estimates the DNN-based source
model parameters r̃(DNN)

ijn and ν
(DNN)
ijn from |Y n|·1. Although we

can determine ν(DNN)
ijn before training as in t-IDLMA, it requires

the retraining of a DNN per ν(DNN)
ijn , which leads to a prohibitive

computational cost for the hyperparameter search. Hence, we
designed ˜DNNn to output both r̃

(DNN)
ijn and ν

(DNN)
ijn .

For ˜DNNn, we adopted a DNN proposed in [21], where
ν
(DNN)
ijn is represented by a weighted sum of anchors:

ν
(DNN)
ijn =

∑
κ∈K

ρ
(κ)
ijnκ, (53)

whereK is a set of anchors and ρ
(κ)
ijn is a weight of anchor κ that

satisfies

0 ≤ ρ
(κ)
ijn ≤ 1,

∑
κ∈K

ρ
(κ)
ijn = 1. (54)
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Algorithm 2: Parameter Estimation Algorithm of t-PoP-
IDLMA.

Input: {Xm}m, {˜DNNn}n, {ν(NMF)
ijn }ijn

Output: {Y n}n
1: for I(t-PoP)

(out) iterations do

2: Update {r̃(DNN)
ijn }ijn and {ν(DNN)

ijn }ijn by (53), (55),
and (56)

3: Update {r̃(t-PoP)
ijn }ijn and {ν(t-PoP)

ijn }ijn by (34) and
(35)

4: Update {Ξn}n by (44)
5: for I(t-PoP)

(in) iterations do
6: Update {t̃ijn}ijn and {ṽijn}ijn by (51) and (52)

7: Update {r̃(t-PoP)
ijn }ijn by (34)

8: Update {Ξn}n by (44)
9: {W i}i ← IP({Xm}m, {W i}i, {Ξn}n)

10: Update {Y n}n by (5)
11: Update {Y n}n by (15)
12: end for
13: end for

In this network, the DNN outputs not ν(DNN)
ijn but {ρ(κ)ijn}κ for

each time–frequency slot. Since ν
(DNN)
ijn is always between the

minimum and maximum values of ρ
(κ)
ijn, the sum-of-anchors

model can avoid an excessive increase in ν(DNN)
ijn , which degrades

the separation performance of IDLMA [21]. Hence, we can
update r̃(DNN)

ijn and ν
(DNN)
ijn by using (53) and the following rules:

{{σ̃ijn}ij , {ρ(κ)ijn}ijκ} ← ˜DNNn(|Y n|·1), (55)

r̃
(DNN)
ijn ← max(σ̃2

ijn, ε1), (56)

where σ̃ijn is the (i, j)th entry of the source magnitude spectro-

gram obtained using ˜DNNn.
5) Entire Procedure of Separation Stage: Fig. 1(a) shows the

overview of the separation process of t-PoP-IDLMA, where
the spatial and source models are iteratively updated. Algo-
rithm 2 shows the entire parameter estimation algorithm of
t-PoP-IDLMA in the separation stage, whereI(t-PoP)

(in) andI(t-PoP)
(out)

denote the numbers of inner and outer iterations, respectively.
The inner iteration does not include the update of the DNN part,
whereas the outer iteration includes the update.

D. DNN Training

As in IDLMA, the DNN part is trained before the separation
stage described in Section III-C. In the DNN training stage, we
set r̃(NMF)

ijn = 0 because the DNN part is responsible for source
components similar to the training data. In the spirit of IDLMA,
we design a cost function for the DNN training to be consistent
with the cost function (38) of the separation stage:

C(n)t-PoP =
∑
i,j

log

[
ν
(DNN)
ijn

ν
(t-PoP)
ijn

(σ̃2
ijn + ε2)

]

+
∑
i,j

(
1+

ν
(t-PoP)
ijn

2

)
log

[
1+

2(|s̆ijn|2+ε2)

ν
(DNN)
ijn (σ̃2

ijn+ε2)

]
,

(57)

where σ̃ijn is estimated from a noisy mixture using ˜DNNn. The
noisy mixture is generated by mixing the clean spectrogram of
source n s̆ijn and the spectrogram of other sources.

The minimization of C(n)t-PoP with respect to σ̃ijn is consistent
with the maximum likelihood estimation of σ̃ijn in (38). Thus,

the DNN training with C(n)t-PoP matches the maximum likelihood
estimation as in IDLMA.

IV. PROPOSED G-POP-IDLMA

A. G-PoP-Based Source Model

t-PoP-IDLMA successfully combines the NMF- and DNN-
based source models. However, the cost function (57) for the
DNN training includes ν

(NMF)
ijn . Thus, we need to train ˜DNNn

whenever ν(NMF)
ijn changes. In this section, we propose an exten-

sion of t-PoP-IDLMA that can avoid the DNN training caused
by the change of ν(NMF)

ijn .
On the basis of our interpretation in Section III-B, we intro-

duce the following assumption.
Assumption 1: ν

(NMF)
ijn , ν

(DNN)
ijn →∞ (i.e., ν(t-PoP) →∞)

while keeping ηijn finite.
Since a complex isotropic Student’s-t distribution becomes a

complex isotropic Gaussian distribution as the DoF parameter
goes to infinity, we can convert (29) into

p(yijn; θ
(G-PoP)
ijn ) =

1

πr̃
(G-PoP)
ijn

exp

(
− |yijn|

2

r̃
(G-PoP)
ijn

)
, (58)

where θ
(G-PoP)
ijn :=

{
ηijn, r̃

(NMF)
ijn , r̃

(DNN)
ijn

}
and

r̃
(G-PoP)
ijn := ηijnr̃

(NMF)
ijn + (1− ηijn)r̃

(DNN)
ijn . (59)

Since the source model is based on a complex isotropic Gaussian
distribution, we call it the G-PoP-based source model.

From (59), the source power spectrogram r̃
(G-PoP)
ijn is the

ηijn-weighted sum of the NMF- and DNN-based source models,
which clarifies the relationship between the proposed source
model and the source models of ILRMA and IDLMA, as shown
in Fig. 4. This interpretation is true when r̃(NMF)

ijn and r̃(DNN)
ijn have

values of similar magnitude. During training, r̃(NMF)
ijn and r̃

(DNN)
ijn

change by the parameter updates. The value range of r̃
(DNN)
ijn

tends to be determined by the DNN training data. However,
since t̃ikn and ṽkjn are not normalized and the magnitude of

yijn depends on that of win, the value range of r̃(NMF)
ijn depends

on the to-be-separated data, which may result in increasing the
difference in magnitude between r̃

(NMF)
ijn and r̃

(DNN)
ijn . Since this

difference may change the substantive role of ηijn, we will
examine it in Section V-E.
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B. Parameter Estimation Algorithm

1) Cost Function: By replacing the IDLMA’s source model
with the G-PoP-based source model, we can construct G-PoP-
IDLMA. Its cost function is given as the negative log-likelihood
of {Xm}m:

LG-PoP
c
=
∑
i,j,n

[
|wH

inxij |2
ηijnr̃

(NMF)
ijn + (1− ηijn)r̃

(DNN)
ijn

]

+
∑
i,j,n

log
[
ηijnr̃

(NMF)
ijn + (1− ηijn)r̃

(DNN)
ijn

]

− 2J
∑
i

log | detW i|. (60)

By setting ηijn = 1 and ηijn = 0, LG-PoP reduces to the cost
functions of ILRMA (10) and IDLMA (18), respectively. This
finding clarifies that PoP-IDLMA encompasses the source mod-
els of ILRMA and IDLMA.

Similarly to Section III-C, we describe the DNN training stage
in Section IV-C and the separation stage in this section. In the
following, we derive update rules ofW i, t̃ikn, ṽkjn, and r̃(DNN)

ijn .
Note that ηijn is treated as a hyperparameter.

2) Update Rule of W i: Since the win-related terms of
LG-PoP are only quadratic and log-determinant terms, we can
use the IP algorithm as in t-PoP-IDLMA. Hence, the update
rule of W i is defined as

{W i}i ← IP
(
{Xm}m, {W i}i,

{
R(G-PoP)

n

}
n

)
. (61)

It is identical to the update rule obtained by applying Assump-
tion 1 to (43) because ξijn → r̃

(G-PoP)
ijn as ν(t-PoP)

ijn →∞.
3) Update Rules of t̃ikn and ṽkjn: As in Section III-C3, we

construct an auxiliary function ofLG-PoP and derive update rules
of t̃ikn and ṽkjn. The difficulty in directly minimizing LG-PoP

with respect to t̃ikn and ṽkjn is that the first and second terms of
(60) include the sums over k in the reciprocal and logarithmic
functions, respectively. Applying inequalities (46) and (48) to
these terms yields the following auxiliary function:

L+
G-PoP =

∑
ijn

|yijn|2
∑
k

(
λ
(NMF)
ijkn

)2
ηijnt̃iknṽjkn

+
∑
i,j,n

ηijn
γijn

∑
k

t̃iknṽkjn +D(G-PoP)
−t̃,ṽ , (62)

where D(G-PoP)
−t̃,ṽ denotes terms that do not include t̃ikn or ṽkjn.

By solving ∂L+
G-PoP/∂t̃ikn = 0 and ∂L+

G-PoP/∂ṽkjn = 0 and
substituting the equality conditions into the solutions, we can
obtain

t̃ikn ← t̃ikn

√√√√∑j ηijnṽkjn|yijn|2/(r̃(G-PoP)
ijn )2∑

j ηijnṽkjn/r̃
(G-PoP)
ijn

, (63)

ṽkjn ← ṽkjn

√√√√∑i ηijnt̃ikn|yijn|2/(r̃(G-PoP)
ijn )2∑

i ηijnt̃ikn/r̃
(G-PoP)
ijn

. (64)

Algorithm 3: Parameter Estimation Algorithm of G-PoP-
IDLMA.

Input: {Xm}m, {̂DNNn}n, {ηijn}ijn
Output: {Y n}n
1: for I(G-PoP)

(out) iterations do

2: Update {r̃(DNN)
ijn }ijn by (65) and (66)

3: Update {r̃(G-PoP)
ijn }ijn by (59)

4: for I(G-PoP)
(in) iterations do

5: Update {t̃ijn}ijn and {ṽijn}ijn by (63) and (64)

6: Update {r̃(G-PoP)
ijn }ijn by (59)

7: {W i}i ← IP({Xm}m, {W i}i, {R(G-PoP)
n }n)

8: Update {Y n}n by (5)
9: Update {Y n}n by (15)

10: end for
11: end for

Interestingly, these update rules coincide with (51) and (52)
under Assumption 1.

4) Update Rule of r̃(DNN)
ijn : In G-PoP-IDLMA, the DNN of

thenth source ̂DNNn estimates a source magnitude spectrogram
σ̃ijn from |Y n|·1. As in IDLMA, we update r̃

(DNN)
ijn as

{σ̃ijn}ij ← ̂DNNn(|Y n|·1), (65)

r̃
(DNN)
ijn ← max(σ̃2

ijn, ε1). (66)

5) Entire Procedure of Separation Stage: Fig. 1(b) shows
the overview of the separation process of G-PoP-IDLMA,
where the spatial and source models are iteratively updated.
Algorithm 3 shows the entire parameter estimation algorithm of
G-PoP-IDLMA. It has the inner and outer iterations to balance
the update amount of the DNN and NMF parts similarly to
Algorithm 2.

C. DNN Training

In the DNN training stage, we train ̂DNNn so that it can
estimate a clean magnitude spectrogram |s̆ijn| from a noisy
mixture. Since the NMF part is responsible for the components
not included in the training data, we can set ηijn = 0 during the
DNN training. The resultant cost function is given as

C(n)G-PoP =
∑
i,j

(
|s̆ijn|2 + ε2
σ̃2
ijn + ε2

− log
|s̆ijn|2 + ε2
σ̃2
ijn + ε2

− 1

)
. (67)

It is identical to the cost function for the DNN training in IDLMA
(20). Hence, we can use the same DNN training procedure as in
IDLMA.

It should be noted that (67) does not include ηijn. Thus, once
the DNN is trained, it can be used for any ηijn values, which
is the primary advantage of G-PoP-IDLMA compared with t-
PoP-IDLMA.
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Fig. 5. Recording conditions of stereo mixtures.

Fig. 6. Recording conditions of three-channel mixtures.

V. EXPERIMENTAL EVALUATION

A. Experimental Settings

1) Common Settings: To evaluate the effectiveness of the
proposed PoP-IDLMAs, we conducted experiments on deter-
mined multichannel music source separation using the DSD100
dataset [26]. This dataset consists of dev and test sets (50
songs per set) and separate recordings of vocals (Vo.), bass (Ba.),
drums (Dr.), and other instruments. The recordings of Vo., Ba.,
and Dr. were used as dry sources.

We generated test data by extracting 30- to 60-s segments
of the top 25 songs in the test set in alphabetical order and
convolving them with the E2A impulse response (T60 = 300ms)
in the RWCP database [27]. The test data were composed of
stereo and three-channel mixtures, where the number of channels
equals that of sources, i.e., N = M . The other settings were as
follows:

Stereo mixtures: The stereo mixtures were generated with
two recording conditions for each pair of Vo., Ba., and Dr. (i.e.,
Ba./Dr., Vo./Ba., and Vo./Dr.). The number of mixtures was 50
for each instrument pair. The recording conditions are shown in
Fig. 5.

Three-channel mixtures: The three-channel mixtures were
also generated with two recording conditions, which are shown
in Fig. 6. The sources were Vo., Ba., and Dr. (Vo./Ba./Dr.). The
number of mixtures was 50.

The sampling frequency was set at 8 kHz as in [14]. For STFT,
we used the hamming window of 512 ms (4096 samples) with
a frame shift of 256 ms (2048 samples). The evaluation metric
was the source-to-distortion ratio (SDR) improvement computed
using the BSSEval toolbox [28].

2) Compared Methods: We compared the proposed PoP-
IDLMAs with one BSS method and four source-supervised
methods. The BSS method is ILRMA [8], which is the NMF-only
counterpart of the proposed PoP-IDLMAs. The number of bases
was set to K = 20. The initial values of tikn and vkjn were
drawn from a uniform distribution over [0,1), and W i was
initialized with an identity matrix. We did not use t-ILRMA

Fig. 7. DNN architectures used in experiments.

for the comparison because it showed a similar performance to
ILRMA as shown in [25].

The source-supervised methods were the combination of
the DNN and the Wiener filter (DNN+WF) [29], the com-
bination of the full-rank spatial covariance model with DNN
(FSCM+DNN) [30], IDLMA [14], and t-IDLMA [14]. IDLMA
and t-IDLMA are the DNN-only counterparts of the proposed
PoP-IDLMAs. For these four methods, we used the same DNN
architecture as in [14]. Fig. 7(a) shows this architecture. It
consists of four fully connected (FC) blocks, an FC layer, and
a rectified linear unit (ReLU) nonlinearity [31]. Each FC block
is composed of an FC layer with 2048 hidden units, a ReLU
nonlinearity, and a dropout layer with a drop rate of 0.3. For t-
IDLMA, we set the DoF parameter ν = 500, which provided the
highest separation performance for the stereo and three-channel
mixtures on average. For IDLMA and t-IDLMA, the demixing
matrix W i was initialized with an identity matrix.

The proposed methods are t-PoP-IDLMA and G-PoP-
IDLMA. We set the number of basis K = 20 to match it with
that in ILRMA. The initial values of t̃ikn, ṽkjn, and W i were
set in the same manner as those in ILRMA. The numbers of
inner and outer iterations were set to 10: (I(t-PoP)

(in) , I(t-PoP)
(out) ) =

(10, 10) for t-PoP-IDLMA and (I(G-PoP)
(in) , I(G-PoP)

(out) ) = (10, 10)
for G-PoP-IDLMA. For t-PoP-IDLMA, we used the same DNN
architecture as in [21], which has two heads for ρ(κ)ijn and σ̃ijn.
Fig. 7(b) shows this architecture. We setK = {1, 10, 100, 1000}
and varied ν

(NMF)
ijn = 1, 10, 100, and 1000. For G-PoP-IDLMA,

we varied ηijn as ηijn = 10−2, 10−4, 10−6, 10−8, and 10−10 and
used the same DNNs as those used in the source-supervised
methods. Since the used values of ν(NMF)

ijn and ηijn were inde-
pendent of i, j, and n, we hereafter drop these indices from the
two parameters for the simplicity.

3) DNN Training: For the DNN training, we used all 50
songs in the dev set of the DSD100 dataset as training data
and the bottom 25 songs in alphabetical order in the test set as
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Fig. 8. Average power spectra of training and test data for each musical instrument.

TABLE I
SDR IMPROVEMENTS [DB] OF CONVENTIONAL AND PROPOSED METHODS FOR STEREO MIXTURES

validation data. All DNNs were trained for 2000 epochs using an
Adadelta [32] optimizer with a batch size of 128. The gradient
clipping [33] was applied to the weights of the DNNs so that
their l2 norms were less than or equal to 10. We set ε1 = 10−1/2

and ε2 = 10−5 and the other training conditions were the same
as those in [14].

B. Comparison of Average Spectra Between Training and Test
Data

Before discussing the separation results, we examined the
average spectra of the training and test data to show the timbral
mismatches. Fig. 8 shows the average power spectra of the
training and test data for each musical instrument. The spectra
labeled as Training and Test were computed from the clean
audio signals of the DNN training and the dry sources of the test
data, respectively. For vocals and bass, the spectral differences
between Training and Test were greater in the frequency band
above 2000 Hz. For drums, the average spectrum of Training
was apparently different from that of Test in the frequency
band above around 500 Hz. These results show that the timbral
mismatches were most pronounced in the higher frequency band.

C. Results for Stereo Mixtures

Table I shows average SDR improvements of all methods.
The SDR improvements of DNN+WF and FSCM+DNN were

TABLE II
SDR IMPROVEMENTS [DB] OF CONVENTIONAL AND PROPOSED METHODS FOR

THREE-CHANNEL MIXTURE

greater than those of ILRMA for the Vo./Ba. mixture but smaller
for the other stereo mixtures. IDLMA and t-IDLMA consistently
provided greater average SDR improvements for all stereo mix-
tures, showing the stable performance of IDLMA. Although the
conventional IDLMAs outperformed ILRMA by a large margin
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Fig. 9. FBW-SNRs for Ba./Dr. mixtures.

Fig. 10. FBW-SNRs for Vo./Ba. mixtures.

Fig. 11. FBW-SNRs for Vo./Dr. mixtures.

(more than 2 dB) for the Vo./Ba. and Vo./Dr. mixtures, their
differences in SDR were moderate (0.4 dB for IDLMA and 1 dB
for t-IDLMA) for the Ba./Dr. mixtures. This may be because the
spectrograms of bass and drums tend to be of low rank and are
easier for NMF to represent.
t-PoP-IDLMA with all ν(NMF) achieved greater and compa-

rable SDR improvements to the conventional methods. G-PoP-
IDLMA with all η achieved greater SDR improvements than
the conventional methods for the Ba./Dr. and Vo./Dr. mixtures.
For the Vo./Ba. mixture, it had greater SDR improvements with
η = 10−8 and 10−10. Interestingly, the proposed PoP-IDLMAs
outperformed the other methods by a large margin for the Ba./Dr.
mixtures, where the SDR differences between ILRMA and
IDLMAs were moderate. This result shows the effectiveness
of unifying the NMF- and DNN-based source models.
t-PoP-IDLMA exhibited a greater separation performance

than G-PoP-IDLMA, but their differences in SDR were slight.
This result shows that the unification of the NMF- and DNN-
based source models has a greater impact on SDR than the
difference in probability distribution.

We observed a correlation between η values and the sig-
nificance of the timbral mismatches. The smaller η provided
slightly higher SDR improvements for the Ba./Dr. mixture,
whereas the greater η had the higher SDR improvements for the
Vo./Ba. mixture. This tendency correlates with the significance
of the spectral differences between the training and test data
as described in Section V-B. Although a clear tendency was
not observed for the Vo./Dr. mixture, this result suggests that
the greater η should be used as the timbral mismatches become
more significant.

D. Results for Three-Channel Mixtures

Table II shows average SDR improvements for the three-
channel mixtures. The SDR improvements of t-PoP-IDLMA
monotonically increased in the range of ν(NMF) used in
Section V-C and we increased ν(NMF) until they started to
decrease. The IDLMA family consistently worked well com-
pared with the other methods as in Section V-C. t-PoP-
IDLMA (ν(NMF) = 104, 105, and 106) and G-PoP-IDLMA (η =
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10−6, 10−8, and 10−10) outperformed the conventional methods,
showing the effectiveness of the proposed methods for more
severe situations.
t-PoP-IDLMA achieved the highest SDR improvement with

ν(NMF) = 105. However, it had lower SDR improvement than
conventional IDLMA when ν(NMF) = 100, which was the best
hyperparameter for the stereo mixtures. By contrast, G-PoP-
IDLMA worked stably with η = 10−8 and 10−10 for the stereo
and three-channel mixtures. This performance stability is an-
other advantage of G-PoP-IDLMA.

E. Effect of η

As described in Section IV-A, the G-PoP-based source
model is identical to the DNN-based source model of IDLMA
when η = 0. However, we experimentally observed that G-PoP-
IDLMA behaved differently with IDLMA, although η decreased
to a value close to zero 10−10. To examine this phenomenon,
we compared

∑
i,j,n r̃

(NMF)
ijn and

∑
i,j,n r̃

(DNN)
ijn along with the

iterations. We hereafter call the two quantities the energies of
the NMF and DNN parts, respectively.

We experimentally found that the energies of the NMF and
DNN parts automatically became balanced as the iteration pro-
ceeded. At the early iterations, the energy of the NMF part was
small and the DNN part dominated the demixing matrix updates.
At the late iterations, the energy of the NMF part gradually
became the same as that of the DNN part. This observation
indicates that η practically determines how confident the NMF
part is only at the early iterations. At the early iterations, since
the NMF part is still in convergence, r̃(DNN)

ijn is frequently more

accurate than r̃
(NMF)
ijn . By contrast, at the late iterations, the NMF

part converges well. Hence, r̃(NMF)
ijn and r̃(DNN)

ijn are equally useful
for the demixing matrix estimation. Even when η is small, the
NMF part affects the separation performance after a sufficient
number of iterations were performed. This result clarifies the
role and effectiveness of the NMF part.

If η was affected uniformly in all iterations, we needed to
precisely control η along with the iterations. However, owing to
the automatic energy balancing, the proposed methods are free
from such painstaking tuning. This is another advantage of the
PoP-based source model.

F. Effect of PoP-Based Source Model

To assess the effect of using the PoP-based source model, we
compared G-PoP-IDLMA with IDLMA in terms of frequency-
band-wise source-to-noise ratio (FBW-SNR). The FBW-SNR is
defined as

SNRω,n =
1

#Bω

∑
i∈Bω

10 log10

∑
j |ainmrefsijn|2∑

j |yijn − ainmrefsijn|2
,

(68)

where ω = 1, . . . , 7 is the frequency band index, Bω is given
as Bω = {250(ω − 1) + 1, . . . , 250ω}, #Bω is the number of
elements inBω , and ainmref is the (mref, n)th entry of the mixing
matrix Ai.

Fig. 9 shows the average FBW-SNRs over 50 mixtures for the
Ba./Dr. mixtures, where G-PoP-IDLMA was withηijn = 10−10.
The FBW-SNRs of G-PoP-IDLMA were higher than those
of IDLMA in all the frequency bands and the improvements
from IDLMA were remarkable in the frequency bands above
500 Hz, which is consistent with the average spectral difference
shown in Section V-B. In these frequency bands, the DNN
outputs had many zeros, whereas the NMF part succeeded in
the source power estimation. We observed the same trends for
the other stereo mixtures, as shown in Figs. 10 and 11. The
FBW-SNR gaps between G-PoP-IDLMA and IDLMA were
large particularly for drums and bass. This should be because the
spectrograms of these instruments tend to match the low-rank
assumption of NMF. These results show that the NMF part
can compensate for the source power estimation in the fre-
quency bands where the DNN part failed in power spectrogram
estimation.

VI. CONCLUSION

We proposed two source models that encompass NMF- and
DNN-based source models used in ILRMA and IDLMA, re-
spectively. The proposed source models use the PoP, a prior
distribution of the source power spectrogram, which is con-
structed by multiplying the probability distributions based on
NMF and DNN in accordance with the PoE concept. Since the
PoP can be written as an inverse gamma distribution, we can
introduce the PoP-based source models into the IDLMA frame-
work without violating the generative modeling. The resultant
IDLMA extensions are t- and G-PoP-IDLMAs. For the proposed
PoP-IDLMAs, we derived efficient parameter estimation algo-
rithms on the basis of the MM algorithm. Experimental results
showed the effectiveness of the proposed PoP-IDLMAs and
the importance of unifying the NMF- and DNN-based source
models. Furthermore, the assessment of the results clarified that
the NMF part can compensate for the source power estimation in
the frequency bands where the DNN part failed in the estimation.
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