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Detection in Orchestral Music Recordings
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Abstract—Instrument activity detection is a fundamental task in
music information retrieval, serving as a basis for many applica-
tions, such as music recommendation, music tagging, or remixing.
Most published works on this task cover popular music and music
for smaller ensembles. In this article, we embrace orchestral and
opera music recordings as a rarely considered scenario for auto-
mated instrument activity detection. Orchestral music is particu-
larly challenging since it consists of intricate polyphonic and poly-
timbral sound mixtures where multiple instruments are playing
simultaneously. Orchestral instruments can naturally be arranged
in hierarchical taxonomies, according to instrument families. As
the main contribution of this article, we show that a hierarchical
classification approach can be used to detect instrument activity
in our scenario, even if only few fine-grained, instrument-level
annotations are available. We further consider additional loss terms
for improving the hierarchical consistency of predictions. For our
experiments, we collect a dataset containing 14 hours of orchestral
music recordings with aligned instrument activity annotations.
Finally, we perform an analysis of the behavior of our proposed
approach with regard to potential confounding errors.

Index Terms—Hierarchical classification, instrument activity
detection, orchestral music, music processing, music information
retrieval.

I. INTRODUCTION

INSTRUMENT recognition is a long-studied task in the
field of music information retrieval (MIR), which aims at

identifying the musical instruments that are playing in an audio
excerpt. It is a difficult task, since many instruments produce
sounds in overlapping pitch ranges and may exhibit similar
timbral characteristics, especially those from the same instru-
ment family. Furthermore, in real music recordings, multiple
instruments may be active simultaneously (also called poly-
phonic instrument recognition). The task is closely related to
instrument activity detection (IAD), where the aim is to identify
the active instruments in a frame-wise fashion, over the course
of an entire music recording. IAD can be useful to inform music
recommendation or auto tagging systems, as well as aid in music
editing and remixing.
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In this article, we are concerned with IAD in complex orches-
tral and opera recordings. Orchestral music in general constitutes
a very challenging scenario for instrument detection, as many
individual instruments are playing simultaneously, creating a
highly complex sound mixture. In addition to the high degree
of polyphony, orchestral music is also polytimbral, i.e., sounds
from various instrument groups merge to create a single texture
of sound. To approach this scenario, we utilize the hierarchical
relationships that exist between orchestral instruments and in-
strument families, as illustrated in Fig. 1. In this context, we show
that hierarchical classification improves results of a deep neural
network for IAD, especially when fine-grained, instrument-level
annotations are unavailable, but coarse, family-level annotations
exist. Moreover, we investigate the consistency of predictions
across hierarchy levels and demonstrate how additional training
losses can promote consistent predictions, while preserving
detection quality.

In contrast to popular music settings, public datasets with
instrument activity annotations for orchestral or opera music
rarely exist. For our experiments, we thus collect a dataset based
on a combination of existing multi-track datasets and semi-
automatically annotated commercial recordings. In total, our
dataset consists of 14 hours of real-life orchestral recordings and
covers 18 different classes. We make the instruments annotations
for these recordings publicly available.1

A common pitfall of music classification systems is over-
reliance on confounding factors in training and test data, which
may lead to poor generalization ability. A system for genre
classification may, for example, make decisions based on inaudi-
ble artifacts rather than musical content [1]. Such confounding
effects may also arise for our IAD system by, e.g., affecting
predictions for classes that are often active simultaneously (such
as brass and woodwinds). To explore the impact of such effects
on our system, we perform an analysis of model predictions with
regard to classes that composers often use in conjunction.

We now summarize the main contributions of this article.
First, we introduce a challenging new setting for IAD, for which
no standard datasets exist. Second, we show how one can im-
prove detection results and reduce the need for instrument-level
annotations by exploiting the hierarchical class structure of our
scenario. Third, we show how the consistency of predictions
made by our model can be improved through additional loss
terms. Fourth, we perform an analysis of our model’s behavior
and uncover confounding effects for certain instrument classes.

1[Online]. Available: https://www.audiolabs-erlangen.de/resources/MIR/
2023-TASLP-HierarchicalInstrumentClass
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Fig. 1. Class hierarchy as used in this paper. The number of hierarchy levels is H = 3. Level h = 2 corresponds to instrument families, while level h = 1
corresponds to fine-grained instrument classes.

In a previous work [2], we explored hierarchical classification
for detecting singing activity, singer gender and voice type
in orchestral recordings. In terms of the hierarchical classifi-
cation techniques used, this article is an extended version of [2].
Here, we go beyond [2] by considering an instrument detec-
tion scenario, involving a different and larger class hierarchy
compared to [2]. Furthermore, we present additional technical
details, use different datasets and models, and provide extensive
additional experiments and analyses.

The remainder of the article is organized as follows: Section II
discusses related work on instrument recognition, hierarchical
classification, and analysis of orchestra recordings. In Sec-
tion III, we formalize our problem statement, outline our main
classification approach, and describe evaluation measures used.
Sections IV and V cover our dataset and model architecture,
respectively. Section VI contains the main experimental results.
In Section VII, we describe and evaluate losses for improving
the consistency of predictions. In Section VIII, we analyze our
model with regard to confounding effects among instrument
classes. Finally, Section IX concludes the article with an outlook
on possible future work.

II. RELATED WORK

Our article draws upon related work from several fields,
including the vast field of music instrument classification. In
our review of these fields, we focus on key references relevant
to the present paper and relate our contributions to the state of
the art.

A. Instrument Detection

Early work on automatic musical instrument classification
dealt with recordings of isolated note events and used classical
machine learning techniques [3], [4], [5]. Other works consid-
ered real music recordings, but restricted themselves to a single
instrument playing [6], [7], [8], a scenario called monophonic in-
strument recognition. In contrast, polyphonic instrument recog-
nition attempts to recognize instruments within mixtures where
several instruments are playing simultaneously. This has been
approached with classical machine learning techniques [8], [9],
[10], [11], [12], [13], [14] and, more recently, with deep learn-
ing [15], [16], [17], [18], [19], [20].

Works on instrument recognition can also be categorized
according to whether only the predominant instrument in a
mixture (e.g., [13], [15]) or all active instruments (e.g., [16])

are to be recognized. Furthermore, some works classify activity
for an entire audio excerpt lasting several seconds (e.g., [13],
[14], [15], [18], [19], [20], [21]) whereas more fine-grained
approaches yield predictions on a frame-level (e.g., [16], [17]).
Such frame-level outputs can be used to obtain instrument pre-
dictions for every time step in a music recording—also called
instrument activity detection (IAD). The scenario considered
in this article is polyphonic IAD and considers all instruments
playing. In contrast to prior work on this scenario, which usually
examines popular music or works for small ensembles, we
consider complex orchestral and opera music.

B. Hierarchical Classification for Audio

Some previous works have used hierarchical class structures
for classification of audio data. For example, the authors in [22]
propose a specialized network architecture for classifying bird
calls, based on bird taxonomies. They perform classification on
an excerpt- and not on a frame-level. In [23], a network for sound
event detection is iteratively pretrained on successive hierarchy
levels. Some papers [24], [25] employ tree hierarchies for audio
representation learning (but not for classification). These works
also usually do not take into account audio inputs where several
classes may be active at the same time.

Fewer works use hierarchical structures for music audio
classification. In [26], hierarchical classification is used in the
context of singing transcription. Essid et al. [7] use hierarchies
for instrument classification, but their scenario involves only
synthetic audio data and their system does not yield predictions
on a frame-level (which are necessary for IAD). In our previ-
ous work [2], which we extend here, we explored hierarchical
classification for singing detection (see also Section I).

Hierarchical structures have also been exploited for other
tasks in MIR, including musical instrument separation [27]. Gar-
cia et al. [28] use instrument hierarchies for few-shot detection,
where the model requires examples of the target class at test time
(see also [29]). In contrast, we use a classification approach
with a fixed set of classes, since the instruments in orchestral
recordings are known a-priori. Nolasco and Stowell [30] employ
instrument hierarchies for audio representation learning (not for
classification).

Incorporating hierarchical structures in machine classifiers
has also been a topic in the wider machine learning literature,
see, e.g., [31], [32], [33], [34], [35]. These works typically
evaluate their proposed methods on small and artificial datasets.
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In contrast, we perform hierarchical classification on a dataset
of real orchestra and opera recordings.

C. Orchestra and Opera in MIR

Only few works in MIR have focused on opera and orchestral
music. Among these are works on singing detection [2], [36],
[37], emotion identification [38], predominant melody estima-
tion [39], as well as source separation informed by multichannel
recordings [40] or by score information [41]. Taenzer et al. [42]
performed instrument family classification on classical music
recordings, but they only considered monotimbral pieces (i.e.,
works for ensembles consisting of one family only). To the
best of our knowledge, there rarely is work in MIR on IAD in
real-world, polyphonic and polytimbral recordings of orchestra
and opera.

III. HIERARCHICAL INSTRUMENT DETECTION

In this article, we aim to utilize the hierarchical relationships
among orchestral instruments. To this end, we now formalize
the hierarchical class model, classification approach, and eval-
uation measures used throughout this work. In this section, we
follow [2], where we introduced the concepts and notation.

A. Hierarchical Class Model

We write C for the set of all classes in our detection problem.
We can partition these classes across a total of H hierarchy
levels, where Ch ⊆ C are the sets of classes at hierarchy level
h ∈ {1, . . . , H}. Thus,

C =
⋃̇

h∈{1,...,H}C
h. (1)

In our setting, we consider 18 different classes, corresponding
to the nodes of the tree illustrated in Fig. 1. We use H = 3
hierarchy levels, with the lowest level h = 1 corresponding to
fine-grained instrument classes, level h = 2 containing coarse
instrument families, and the highest level h = 3 signifying any
kind of instrument activity (as opposed to silence or noise).
Thus, C1 = {Fl, Ob, Cl, . . . },C2 = {WW, BR, . . . }, and C3 =
{INST}. It should be noted that the hierarchy could also be
constructed in alternative ways. Our choice here is motivated
by practical considerations, i.e., simplicity and the availability
of sufficient data for each class c ∈ C. Generally, construct-
ing appropriate instrument hierarchies can be a challenging
problem, especially for electronic or non-standard instruments
[43], [44].

B. Classification Approach

To approach IAD using a deep network, we pose the problem
as a frame-wise, multi-label classification task. Thus, several
instrument classes may be active simultaneously and we want
to produce predictions for every frame in a music recording.
Formally, we model both reference annotations and predictions
as families of subsets of frames. We writeI for the set of all audio
frames in our test recordings. Now, our instrument annotations
are given as families (IRef

c )c∈C of subsets IRef
c ⊆ I, with IRef

c

containing all frames where class c ∈ C is active. Note that
the sets IRef

c are generally not disjoint, e.g., in cases where
instruments are playing at the same time. Frames with silence
or noise are not contained in any IRef

c .
In a similar fashion, we model the estimates made by our

IAD system as families of sets (IEst
c )c∈C. These outputs are

obtained from a deep network that takes an audio excerpt as
input and yields predictions for the center frame of that excerpt.
These estimates are values in [0, 1] for every class c ∈ C, which
are subsequently thresholded to obtain the sets IEst

c . Since this
approach jointly considers all hierarchy levels 1 ≤ h ≤ H , we
will refer to it as HC (hierarchical classification).2 More details
on the network architecture used are provided in Section V.

C. Evaluation Measures

With our formulation above, we can define some classical
metrics used for evaluating detection systems, such as frame-
wise precision, recall, and F-measure for each class c ∈ C:

Pc =
|IRef

c ∩ IEst
c |

|IEst
c | , Rc =

|IRef
c ∩ IEst

c |
|IRef

c | , Fc =
2 · Pc ·Rc

Pc +Rc
.

(2)
Intuitively, Pc is the fraction of frames that are correctly pre-
dicted as belonging to class c, Rc refers to the fraction of ground
truth frames of class c that are correctly identified, and Fc is an
average of the two. Note that the three measures may be overly
optimistic if c is a very common class that is active in most frames
(as is the case, e.g., for c = INST). In this case, it is important
to additionally consider the specificity for class c, i.e., the recall
of non-active frames, defined as

Sc =
|(I \ IRef

c ) ∩ (I \ IEst
c )|

|I \ IRef
c | , (3)

where \ denotes the set difference operator.
A classification approach that is aware of class hierarchies

should not produce predictions that are hierarchically incon-
sistent. For example, a frame i may be classified as trumpet
(Tpt), so i ∈ IEst

Tpt, but at the same time may not be classified as
brass (BR), so i /∈ IEst

BR . We will refer to this as a bottom-up
inconsistency. Such an inconsistency makes the output of a
detection system difficult to interpret, since it is unclear whether
the frame was erroneously classified as trumpet or whether it
does indeed contain brass, but the system failed to identify BR.
Similarly, we may have a frame i ∈ IEst

BR that is classified as brass
but at the same time is neither classified as horn nor trumpet,
thus i /∈ IEst

Hn ∪ IEst
Tpt. We call this a top-down inconsistency.

Fig. 2 gives an illustration of these inconsistencies. Ideally, a
detection system produces no inconsistencies, making its output
straightforward to interpret.

We now define additional measures that capture different
kinds of inconsistencies. For a class c ∈ C, we write c↑ for
the parent of c in the hierarchy (e.g., Fl↑ = WW). Similarly,
c↓ contains the set of children of c (e.g., BR↓ = {Hn, Tpt}).
Additionally, for a subset C′ ⊆ C, we use the notation IC′ =
∪c∈C′Ic. Now, for any h > 1 and c ∈ Ch, we define measures

2This approach is called Strategy D0,0 in [2].
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Fig. 2. Illustration of (a) bottom-up and (b) top-down inconsistencies. Filled
and empty circles correspond to classes predicted as active or inactive, respec-
tively. Red circles indicate inconsistencies.

of bottom-up consistency, top-down consistency, and overall
consistency as:

γ↑
c =

|IEst
c ∩ IEst

c↓ |
|IEst

c↓ |
, γ↓

c =
|IEst

c ∩ IEst
c↓ |

|IEst
c | , γc =

|IEst
c ∩ IEst

c↓ |
|IEst

c ∪ IEst
c↓ |

.

(4)
All measures have values in the range [0, 1]. Intuitively, if there
are no bottom-up inconsistencies, thenγ↑

c = 1. Likewise, if there
are no top-down inconsistencies, then γ↓

c = 1. Finally, γc = 1 if
and only if IEst

c = IEst
c↓ . γc is also called intersection-over-union

or Jaccard index. Note that the consistency measures can trivially
be maximized by setting, e.g., IEst

c = I or IEst
c = ∅ for all c ∈

C. However, obtaining good detection results (e.g., in terms
of F-measure) while simultaneously preserving consistency is
non-trivial.

IV. ORCHESTRAL DATASETS

As mentioned in Section II, orchestral and opera music are
seldom explored in MIR. In particular, no standard datasets for
IAD on real orchestral recordings exist. The instrument classes
commonly considered in IAD datasets for popular music (e.g.,
[47], which contains guitar, drums, base etc.) do not usually
appear in orchestral music. We thus assembled our own datasets
for training and evaluating our system, based on existing datasets
and our own annotation efforts.

For effectively training our deep learning system, we require
a dataset of several hours length. For such a size, manually
annotating instrument activity for all 18 classes in our hierar-
chy would be prohibitively expensive. We thus consider two
ways of obtaining orchestral recordings with aligned instrument
annotations:

1) Use multi-track recordings of orchestral pieces, where
activity annotations can easily be obtained from the in-
dividual tracks.

2) Use music synchronization techniques to align a score
representation to an audio recording of a piece. Instrument
activity in the recording can then be transferred from the
aligned score.

A third possible option would be to use artificial recordings
of pieces based on synthesized score representations. Recently,
Sarkar et al. [48] released a dataset of synthesized, multi-track
recordings of classical pieces. However, their dataset contains,
for the most part, chamber music rather than full orchestra
pieces. Their work also demonstrates that synthesizing con-
vincing renditions of classical music is a challenging task in
itself. Here, rather than creating artificial recordings of orchestral
scores, we instead collect multiple real recordings per score for
synchronization (option 2).

A. Multi-Track Datasets

Due to the challenges of recording orchestra pieces in a multi-
track fashion3, only a few such datasets have been released.
One of these is Phenicx Anechoic [40], which contains clean
multi-track recordings of four orchestral excerpts by different
composers with note on- and offsets manually annotated for
each track. We derive instrument activity from these annotations.
Böhm et al. [46] provide multi-track recordings for three move-
ments of Beethoven’s Symphony No. 8, resulting in the longest
multi-track dataset we use. The individual tracks are mostly free
of cross-talk. We therefore use a simple energy thresholding
procedure on the tracks to obtain instrument activity annotations.

Since both datasets are annotated based on clean multi-track
recordings, we expect the derived activity labels for Phenicx
and Beethoven Anechoic to be highly reliable. Nevertheless,
there remains some ambiguity in defining note on- and offsets,
especially for strings and woodwind instruments [49].

Prätzlich et al. [45] provide multi-track audio for three num-
bers from Carl-Maria von Weber’s opera “Der Freischütz”.
However, due to their recording setup, the individual tracks incur
a large amount of cross-talk coming from other sources. We ob-
tained annotations for this dataset using music synchronization,
see below.

B. Music Synchronization

Audio-to-score alignment techniques are used to temporally
align a recorded music performance with the corresponding
musical score. Once an alignment is obtained, information
about instruments or pitches played can be transferred from
the aligned score to the recorded performance. Here, we use
audio-to-score alignment to transfer instrument activity from
a symbolic score to several recorded performances of a piece.
A popular dataset annotated in this fashion is MusicNet [50],
which contains chamber rather than orchestra pieces. Note that
automatic audio-to-score alignments may introduce annotation
errors. We thus expect the resulting activity labels to be less
reliable compared to those obtained from multi-track data.

Even though a large amount of MIDI files for classical music
pieces can be found online, only few correspond to full orchestral
scores with separate MIDI tracks per instrument. The lack of
available score-data represents a big bottleneck for this approach
to obtaining instrument annotations. For this work, we manu-
ally encoded a score representation of the first act of Richard
Wagner’s opera “Die Walküre” (requiring several months of
work for musically trained annotators). For some other musical
works—namely, several movements of Beethoven’s Symphony
No. 3, Dvorak’s Symphony No. 9, and Tschaikowsky’s Vio-
lin Concerto—we obtained clean orchestral scores from the
Mutopia project.4 We choose these works because they each
contain many instruments from the hierarchy we employ. Fur-
thermore, they belong to the classical and romantic periods and
are thus stylistically similar to the remaining pieces we use. We

3Orchestra musicians usually perform within the same room and in close
proximity, making it very difficult to obtain clean tracks without cross-talk
coming from other instruments playing simultaneously.

4[Online]. Available: https://www.mutopiaproject.org/

https://www.mutopiaproject.org/
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TABLE I
RECORDINGS OF ORCHESTRAL AND OPERA WORKS USED IN THIS PAPER

then obtained six orchestral audio versions (i.e., performances,
recordings) of these pieces from commercial CD releases and
created instrument activity annotations using a state-of-the-art
score-to-audio synchronization pipeline [51], [52]. Care had to
be taken to verify that there are no structural differences between
score and recorded versions, which would corrupt the alignment
results. Thus, the annotation process can be considered as a
semi-automatic approach, where one must expect alignment
errors in the order of 0.2 s [53]. Such errors need to be kept
in mind when interpreting evaluation results.

C. Dataset Overview and Split

An overview of all recordings used in this work is given
in Table I. The multi-track datasets we use each contain one
recording per piece and contribute a total duration of around
50 minutes of orchestral music. For the pieces annotated via
music synchronization, we have several versions per piece. In
total, our dataset contains roughly 14 hours of orchestral music,
making it amenable to deep learning. We make all instrument
activity annotations publicly available on our accompanying
website.5

Note that not all instrument classes are present in every
recording and that there is a large imbalance among activity
of different classes. We define the fraction δc of frames where
class c ∈ C is active as

δc =
|IRef

c |
|IRef| ∈ [0, 1] . (5)

Additionally, for any h < H and c ∈ Ch, we denote the fraction
of items where both c and some other class c′ ∈ Ch of the same

5Link provided in Section I.

Fig. 3. Activity (δc, upper matrix) and multi-labeledness (λc, lower matrix)
of instrument classes for subsets of our dataset, relative to the total length of
recordings in that subset.

hierarchy level are active by

λc =
1

|IRef|
∣∣∪c′∈Ch\{c}IRef

c ∩ IRef
c′

∣∣ . (6)

Note that 0 ≤ λc ≤ δc. Intuitively, λc captures the amount of
“multi-labeledness” for class c. Fig. 3 shows the values of δc
and λc for each class c in the different subsets of our dataset. We
can observe that strings and woodwind instruments are the most
common classes. Only “Die Walküre” and Freischütz Digital
contain singing. For most classes and pieces, there is a large
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amount of joint activity among classes on the same hierarchy
level, indicated by λc being close to δc. A notable exception is
Vn in the Tschaikowsky recordings (δc = 0.92, λc = 0.35), due
to the many solo parts of the violin in this concerto.

To train and evaluate our IAD system, we split our dataset into
train and test recordings. We put different movements into train
and test in order to investigate whether our models are capable
of generalizing to new musical content or whether they overfit to
specific compositions (see also [54]). We also choose different
versions in train and test to control for varying recording charac-
teristics and aspects of interpretation (reducing the impact of the
so-called album-effect [55]). Among the multi-track datasets,
we select No. 6 of Freischütz Digital, the second movement of
Beethoven’s Symphony No. 8, and all recordings in Phenicx
Anechoic for our test set. From the remaining pieces, we choose
the first movement of Beethoven’s Symphony No. 3, the fourth
movement of Dvorak’s Symphony No. 9 and the third movement
of Tschaikowsky’s Violin Concerto for testing. Since we do not
have multiple opera works that could be distributed into train and
test sets, we choose an excerpt of the Wagner opera act (measures
697 to 955, corresponding to around twelve minutes of music),
omit this excerpt during training, and use it for testing. In all
cases, we choose one version for testing and use the remaining
five versions for training.

V. MODEL ARCHITECTURE

In this section, we give details on the architecture of our model
for hierarchical classification. Note that the main technical focus
of our work is on hierarchical structures and consistency losses
rather than a particular architecture and alternative architectures
(e. g., based on ResNets [56]) could also be used here. We employ
a convolutional neural network (CNN) inspired by standard
VGG-like CNN architectures [57]. The architecture is illustrated
in Table II. The network takes a harmonic CQT representation
(HCQT, [58]) of an audio excerpt as input and outputs a vector
of 18 values in [0, 1], corresponding to activity of the 18 classes
in C predicted for the center frame of the input excerpt.

The HCQT input consists of 201 frames (roughly 4.7 sec-
onds), computed using a hop-size of 512 on recordings sampled
at 22 050 Hz (i. e., frame rate of 43 Hz). The constant-Q spectrum
ranges from C1 to B7 with three bins per pitch, meaning 252 bins
in total. For the harmonic CQT, five harmonic representations
(including one subharmonic) are stacked in channel dimension.
The final input tensor has a size of (201, 252, 5).

The network consists of three stages, separated by doubled
lines in the table. Inspired by [59], [60], we first process each
input tensor with a large pre-filtering kernel of size (15, 15)
and strides (1, 1), followed by a kernel of size and stride
(1, 3), i.e., the kernel is applied in pitch direction only. The
resulting intermediate feature map has a pitch axis with a single
bin per pitch. The second stage of our network applies three
conv-conv-pool processing blocks, as in [57], [61]. In the final
stage, we use a convolutional filter of size (5, 1) and stride
(1, 1) to aggregate temporal context (as in [59]) and apply
several dense layers to obtain the final output. We further use
batch normalization after each learnable layer and apply dropout
before dense layers. All layers are followed by a leaky ReLU

TABLE II
NETWORK ARCHITECTURE USED FOR OUR IAD SYSTEM

activation, except for the final dense layer, which is followed by a
sigmoid.

We train our network by minimizing a binary cross-entropy
loss for a maximum of 1000 epochs (with 320 batches per epoch,
each containing 32 input excerpts) using the Adam optimizer
with a learning rate of 0.002. We additionally use early stopping
by terminating training after the validation loss (evaluated on
a randomly selected subset of the training set) has not de-
creased for 15 epochs. We further half the learning rate after
10 epochs without improvement of the validation loss. We use
label smoothing inside the cross-entropy loss as regularization
(thus, 0-labels are replaced with 0.02 and 1-labels are replaced
by 0.98).

Each of the 252 bins in the input excerpts is individually
normalized to be zero-mean and unit-variance (for this, mean
and standard deviation per bin are estimated on the training
set). As is common practice [42], [62], [63], [64], we augment
training excerpts by randomly applying time warping, pitch
shifting, masking of time-frequency bins, adding random noise,
or applying random equalization. Training the model on our
dataset takes around 14 hours on an RTX 2080 Ti

At test time, we evaluate our network for every frame in the
test recordings, apply a median filter of length 0.5 seconds on
the sequence of predictions for each class, and then downsample
to a feature rate of 5 Hz. This is common practice in musical
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TABLE III
RESULTS FOR OUR HC (HIERARCHICAL CLASSIFICATION) APPROACH TO IAD

ON OUR ORCHESTRAL DATASETS

activity detection systems (e. g., [63], [65]) and makes our
evaluation results more robust to annotation errors introduced
by music synchronization (see Section IV). We finally binarize
these predictions using a threshold of 0.5. Inference requires
3.5 seconds per minute of input audio (given pre-computed
HCQT representations).

VI. MAIN RESULTS

In this section, we present the main evaluation results for
our IAD system and, additionally, demonstrate that hierarchy
information reduces the need for fine-grained labels during
training.

We begin with our main experiment. We train the model
described in Section V on the training subset of our dataset
and subsequently evaluate it on the test set (according to the
split described in Section IV). Recall that we choose a joint
classification approach HC (short for hierarchical classification),
i. e., the network outputs predictions for all 18 classes in C, see
also Section III.

Evaluation results on the test set are shown in Table III.
Columns contain different metrics, computed over the entire
test set (note that the consistency metrics γ are only defined for
classes in Ch for h > 1). Rows correspond to different classes
in C, and the last three rows show averages over classes. In
particular, we report averages for families (C2) and instruments
(C1).6

Overall, evaluation results are moderately high with an av-
erage F-measure of 0.81 and specificity of 0.83. For com-
parison, Hung and Yang [16] achieve an average F-measure
of 0.89 for IAD on recordings of small classical ensembles

6These are macro averages, i. e., computed as the arithmetic mean of the
results for the individual classes. As such, both common and uncommon classes
contribute equally to these averages.

with seven different instrument classes. However, our results
vary across classes. We can observe that classifying instrument
families works better on average (F = 0.82) than classifying
fine-grained classes (F = 0.79). For example, for woodwinds
(WW), the family F-measure of 0.87 is much higher than the
detection results obtained for the individual woodwind instru-
ments (e. g., for clarinets: FCL = 0.72). Some very common
classes yield high F-measures, but low specificity (e.g., for
strings: δST = 0.87, FST = 0.95, and SST = 0.65), indicating
that our system produces many false positive predictions for
these classes. In Section VIII, we will conduct some additional
analyses to better understand these detection results with regard
to possible confounding effects.

For singing activity (VOC), we obtain a family F-measure of
0.90 and the difference to the results for individual vocal classes
female (Fe) and male (Ma, for both: F = 0.88) is small. For
reference, one obtains accuracies of around 0.91 for singing
voice detection on popular music [61], [63]. With regards to
consistency, γ↑ is always high. Therefore, predictions on a fine-
grained class are almost always accompanied by a prediction
for the parent class. However, γ↓ is lower for some classes such
as WW (γ↓

WW = 0.92). Thus, for about eight percent of frames
where the woodwind family is predicted as active, neither of
the woodwind instruments is identified. In Section VII, we will
consider loss terms for improving these consistency issues.

To demonstrate the impact of our hierarchical classification
approach HC, we now analyze whether utilizing the instrument
hierarchy during training can reduce the amount of fine-grained
labels required. To this end, we compare HC with a flat classifi-
cation baseline FC. There, our model is trained to only produce
predictions for classes in C1 (i. e., instrument-level). At test
time, we obtain predictions for classes inC \C1 by aggregating
predictions from lower levels in a bottom-up fashion.7 For
example, VOC is predicted if and only if the model has classified
the input as Fe or Ma. By construction, the predictions obtained
in this way are always consistent, so γc = γ↑

c = γ↓
c = 1 for all

classes c. The FC baseline allows us to determine the detection
quality that can be achieved without informing the model about
the class hierarchy.

We now reduce the amount of fine-grained instrument labels
that are available during training. For FC (flat classification
baseline), we do so by reducing the size of the training set,
since this approach does not utilize class labels at higher levels
for training. For HC (hierarchical classification), we disable the
cross-entropy loss associated with classes in C1 on a portion
of the training items, but we still use the instrument family
and activity labels for these items.8 This experiment setup is
illustrated in Fig. 4.

Fig. 5 shows the results of this experiment. The upper plot
shows results for higher-level classes (families and instrument

7This baseline is referred to as Strategy B in [2]. Note that we cannot obtain
predictions for timpani (TMP) using this baseline and thus omit TMP from
consideration in the following discussion.

8Disabling the cross-entropy loss for learning from partial labels was sug-
gested in [66]. Gururani and Lerch [19] used this technique in the context
of polyphonic instrument classification. They did not consider hierarchical
information.
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Fig. 4. Experiment setup for reducing the amount of instrument-level labels
available for training. Boxes correspond to training items and circles indicate
class annotations. Crossed-out circles correspond to missing annotations. For
the FC (flat classification) approach, we can only use training items for which
fine-grained labels are given. For HC (hierarchical classification), we can utilize
higher-level information even if instrument labels are unavailable.

activity), whilst the lower plot contains results for fine-grained
classes. When utilizing all fine-grained labels of the training
dataset, we observe almost identical average F-measures for C1

with both FC and HC (lower plot, leftmost point). For C \C1

(upper plot), HC yields slightly higher average F-measures at
0.89 (compared toF = 0.87 forFC). When reducing the amount
of C1 labels used, HC outperforms FC on both fine-grained and
higher-level classes. For example, at 10% of labels used, we
obtain an average F-measure of 0.84 on C \C1 for FC, which
drops to F = 0.60 for 0.1% of labels. Meanwhile, the results
for HC on C \C1 stay roughly constant at around F = 0.88.
HC also yields higher F-measures for C1, with F = 0.76 at 1%
of labels used as opposed to F = 0.55 for FC.

We have seen that, by utilizing higher-level structure when
fine-grained labels are scarce, our hierarchical classification
approach HC can still yield good results, even for small amounts
of instrument-level labels. This opens up the possibility of incor-
porating partially labeled data for training, where the instrument
family is known, but fine-grained labels are unavailable (e.g.,
monotimbral recordings of brass or string ensembles).

VII. CONSISTENCY LOSSES

As discussed in Section VI, our hierarchical IAD approach
HC outperforms the flat classification baseline FC in terms of F-
measures. However, the predictions of FC are always consistent,
making the output of that system easier to understand compared
to HC, which may produce inconsistent outputs. In this section,
we will investigate additional loss terms for HC that can address
this shortcoming.

In our previous work [2], which this article extends, we
describe two loss terms for improving bottom-up and top-down
consistency of predictions, respectively. In the following, we

Fig. 5. Results for reducing the amount of instrument-level (i.e., C1) labels
available for training. Average F-measures are plotted separately for instrument
classes (lower plot) and higher-level classes (C \C1, upper plot). Lines corre-
spond to hierarchical classification (HC) and flat classification (FC), respectively.

write pc for the probability predicted by a model for class c on a
given training item. In order to improve bottom-up consistency,
we minimize the following loss term, which is adapted from [32]:

L↑ =
1

|C \CH |
H∑

h=2

∑
c∈Ch

∑
c′∈c↓

max{0, pc′ − pc}2 (7)

This sum contains terms for every pair (c, c′) of a parent class
c and a child class c′, where the model incurs a loss when-
ever pc′ > pc. Thus, the model is penalized for any bottom-up
inconsistency. Similarly, to improve top-down consistency, we
introduced the following loss term in [2]:

L↓ =
1

|C \C1|
H∑

h=2

∑
c∈Ch

max

{
0, pc −max

c′∈c↓
pc′

}2

, (8)

Here, the model incurs a penalty whenever the output pc for a
parent class c is larger than pc′ for any of the child classes c′

(e.g., in case of a top-down inconsistent output). These losses
are combined with the standard cross entropy loss LBCE using
weights α, β ∈ R, yielding the final loss

L = LBCE + αL↓ + βL↑ (9)

for our model. We will denote the hierarchical classification
approach trained with these additional losses as HCα,β

Results for training with these additional consistency losses
are shown in Table IV. Here, we setα = β = 10 (as in [2]). With
regard to the detection evaluation measures like F-measure and
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Fig. 6. Results for different choices of α (coefficient for the top-down loss L↓) and β (coefficient for the bottom-up loss L↑). The upper row shows classification
results in terms of F-measure (F) and specificity (S). The lower row shows measures of top-down (γ↓), bottom-up (γ↑) and overall consistency (γ). In the first
column β = 0, and in the second column α = 0. Measures are averaged over all classes.

TABLE IV
RESULTS FOR THE HCα,β STRATEGY THAT INCLUDES HIERARCHY

INFORMATION AND CONSISTENCY LOSSES DURING TRAINING. HERE, WE SET

α = β = 10

specificity, we obtain similar results as in our previous experi-
ments that did not employ consistency losses (see in Table III).
For example, we get an average F = 0.82 and S = 0.82 for
HCα,β compared to F = 0.81 and S = 0.83 for HC. However,
the top-down consistency scores γ↓ have improved (e.g., γ↓

BR =

1.00 and γ↓
WW = 0.98 for HCα,β compared to γ↓

BR = 0.94 and
γ↓
WW = 0.92 for HC). Thus, the additional loss terms can improve

consistency while retaining the overall quality of results.

A more detailed analysis of the impact of the loss weights
α and β is provided in Fig. 6. Here, we either use solely L↓
(by setting β = 0 and increasing α, first column), use solely
L↑ (setting α = 0 and increasing β, second column), or use
both losses simultaneously (α = β, third column). The up-
per row shows classification results in terms of average F-
measure (F) and specificity (S), while the lower row shows
average consistency scores. As expected, by using solely L↓, we
are able to improve γ↓. However, γ↑ decreases for large values
of α. The opposite behavior can be observed for using only
L↑. In both cases, γ decreases while F-measure and specificity
remain roughly constant. By utilizing both L↓ and L↑, we are
able to improve γ. However, F and S are reduced for large
values of α = β. We conclude that both L↓ and L↑ are required
to increase consistency, while α = β should be chosen small
enough in order not to deteriorate detection results.

Overall, our results suggest that, while consistency is a neces-
sary condition for interpretable system outputs, it is not sufficient
to achieve good classification results. Our losses can be used to
induce more consistent detection outputs for our model, but high
consistency needs to be balanced with preserving classification
results.

VIII. ANALYSIS OF CONFOUNDING FACTORS

In this section, we aim at a deeper understanding of the behav-
ior of our model. In particular, we analyze how the detection of an
instrument class is affected by the presence of other instruments
playing simultaneously. To this end, we systematically evaluate
our model on audio inputs for which we can calculate the
relative salience of different classes within the overall mixture
(concretely, we use the multi-track orchestral datasets discussed
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Fig. 7. Average probabilities output by our model for brass depending on the
salience of woodwinds within the orchestral mixture. Here we only consider
frames where no brass is active at all, i. e., the ideal probability output would
be 0.

in Section IV). In this way, we can reach conclusions about
confounding effects exploited by our model.

A representative example of an analysis result is shown in
Fig. 7. In this example, we are interested in the interactions be-
tween brass (BR) and woodwind (WW) instruments. In orchestra
music, brass and woodwinds are often active simultaneously.
For this analysis, we select frames for which no brass (BR) is
active and then observe the predictions for BR depending on
the salience of woodwind (WW) instruments. The vertical axis
shows average probabilities predicted by our model for BR. The
probabilities are averaged over all frames where woodwinds
have a certain salience within the orchestral mixture (horizontal
axis). Here, salience is measured as a signal-to-noise ratio, with
woodwinds considered as signal and all other instrument sounds
considered as noise. We observe that the model outputs low
probabilities of around 0.1 for BR if WW is inactive. However,
these outputs gradually increase as woodwinds become more
salient in the input. We conclude that brass detection is highly
sensitive to woodwind instruments, even if no brass instrument
is active in the mixture. This is a confounding effect.

We can reach a number of similar conclusions by performing
systematic analyses:

1) The model also exploits the presence of woodwind instru-
ments for detecting brass if brass instruments are present
in the mixture.

2) Our model is biased towards predicting string activity,
even when no strings are active in the input. Thus, the
model exploits the fact that strings are active in most
frames of the recordings in our dataset (see also Fig. 3).

3) Predictions for strings are not affected much by the pres-
ence of other instrument families.

4) Looking at the model behavior for woodwind instrument
classes, we find that detection of flutes is improved by
the simultaneous activity of other woodwind instruments,
similar to the behavior observed for BR.

It is important to note that it may indeed be desirable for
our model to use these confounding factors for detection, since
these are strong cues for IAD on many orchestral works from

the classical and romantic periods (as present in our dataset). Yet,
use of these confounding factors may also limit the generaliza-
tion ability of our model to music with other instrument statistics,
e. g., works with many brass-only sections. To reduce the impact
of these effects, one may collect additional training data (which
is cumbersome, see Section IV). Entirely removing confounding
effects from our system may be impossible, however, as we also
discuss in the next section.

IX. CONCLUSION

In this article, we investigated instrument activity detection
in the context of complex orchestral music recordings. We
showed that utilizing information about hierarchical relation-
ships between instruments is helpful, especially when only few
fine-grained instrument-level labels are available. Furthermore,
we demonstrated how one can increase the consistency of pre-
dictions across hierarchy levels using additional consistency
losses, while preserving detection quality. To perform these
experiments, we collected a large dataset of real-world opera and
orchestra recordings with aligned instrument activity annota-
tions. Finally, we analyzed the behavior of our detection system
and identified confounding effects exploited by our model.

Future work may make use of more complex instrument
hierarchies (e.g., hierarchies that incorporate knowledge about
different sound production techniques), train more complex
detection models, collect additional data for training and testing
(e.g., using music synchronization or synthesizers), or extend the
scenario considered here towards orchestral music from other
epochs (e.g., Baroque).

However, even when collecting additional data, it is likely that
our model will continue to exploit confounding effects arising
from the training data, as shown in our analysis in Section VIII.
This may be desirable (in case that training and test conditions
are very similar) or undesirable (when generalizing to music
from different styles). Our analysis results mirror those obtained
for other systems for music classification. For example, Kelz and
Widmer [67] found that a neural network for piano transcrip-
tion trained on combinations of notes struggles with correctly
classifying unknown note combinations. The system performs
transcription for certain notes by considering other, unrelated
notes as well. The confounding effects exploited in MIR systems
can often be even less intuitive. In [68], for example, a system for
recognizing Latin music styles (which are usually characterized
by their rhythms) was shown to exploit tempo information.
Similarly, the authors in [69] found that a system for genre
recognition is sensitive to sounds outside the human hearing
range. In [70], a deep learning system for leitmotif detection
in opera recordings is introduced. It is shown to rely heavily
on spectral statistics as opposed to melody or rhythm. Such
problems are amplified when evaluating a system on music styles
not seen during training. For example, the authors in [71] showed
that off-the-shelf music classifiers perform poorly on a large
and diverse music database and are highly sensitive to encoding
artifacts.

In order to tackle this challenge for IAD, one may consider
using source separation as pre-processing, thereby reducing the
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impact of unrelated instruments on detection outputs. However,
due to the small amount of multi-track orchestral data avail-
able, no off-the-shelf systems for source separation in orchestra
recordings are currently available, leaving this as an avenue for
future work.
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