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Abstract—Previous studies have confirmed that by augmenting
acoustic features with the place/manner of articulatory features,
the speech enhancement (SE) process can be guided to consider the
broad phonetic properties of the input speech when performing
enhancement to attain performance improvements. In this article,
we explore the contextual information of articulatory attributes as
additional information to further benefit SE. More specifically, we
propose to improve the SE performance by leveraging losses from
an end-to-end automatic speech recognition (E2E-ASR) model that
predicts the sequence of broad phonetic classes (BPCs). We also
developed multi-objective training with ASR and perceptual losses
to train the SE system based on a BPC-based E2E-ASR. Exper-
imental results from speech denoising, speech dereverberation,
and impaired speech enhancement tasks confirmed that contextual
BPC information improves SE performance. Moreover, the SE
model trained with the BPC-based E2E-ASR outperforms that with
the phoneme-based E2E-ASR. The results suggest that objectives
with misclassification of phonemes by the ASR system may lead to
imperfect feedback, and BPC could be a potentially better choice.
Finally, it is noted that combining the most-confusable phonetic
targets into the same BPC when calculating the additional objective
can effectively improve the SE performance.

Index Terms—Speech enhancement, broad phonetic classes,
articulatory attribute, robust automatic speech recognition, end-
to-end.

I. INTRODUCTION

S PEECH enhancement (SE) systems improve the intelli-
gibility and quality of speech signals by searching for

mapping between distorted speech signals and their clean coun-
terparts. SE has been widely adopted as a front-end processor
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in various real-world applications such as assistive listening
devices [1], [2], speech coding [3], [4], speaker recognition [5],
and automatic speech recognition (ASR) [6], [7], [8], [9], [10].
With recent breakthroughs in deep learning (DL), DL-based
SE methods have been extensively investigated and have exhib-
ited outstanding performance [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23]. A DL-based SE model
with nonlinear processing can learn complex transformations
for the denoising process. Accordingly, they can considerably
outperform conventional SE methods, particularly in extremely
low-SNR scenarios and/or non-stationary noise environments.
Furthermore, alternative signal processing approaches allow
end-to-end DL-wise neural networks to incorporate speech sig-
nals with heterogeneous data. For instance, previous studies have
confirmed the effectiveness of leveraging face/lip images [24]
and symbolic sequences for acoustic signals [25] in SE systems.

To enhance the performance of SE systems, researchers
have explored the use of additional losses, including perceptual
losses [26], [27], [28], [29] and losses from acoustic models
(AM) [30], [31], [32]. The former group of studies typically
computes losses between clean speech and the corresponding en-
hanced speech in subsequent networks. For instance, in [26], an
audio classification network is constructed, and the feature loss
function is computed based on the difference between the feature
activations of the clean reference signal and the denoised output
in an intermediate layer of the classification network. In [27], the
dynamic perceptual loss is calculated as the difference between
the classification results of clean speech and enhanced speech
from the discriminative network, which is then used to update
the SE model. Moreover, [28], [29] employ pre-trained models
that provide phonetic and acoustic information of audio signals
to compute the loss between the acoustic features of clean speech
and enhanced speech.

Phoneme information in acoustic models (AM) has also been
used to improve SE performance. In [30], a variety of perceptual
losses were tested using pre-trained AMs for different tasks,
including acoustic event detection, automatic speech, speaker,
and emotion recognition. Both [31] and [32] add a perceptual
loss by passing both clean and denoised spectral features to a
pre-trained AM and computing the L2 distance of the respective
outputs. With the emergence of end-to-end speech recognition
(E2E-ASR), joint training of SE and E2E-ASR has been studied
for the development of robust speech recognition systems [33],
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[34]. The E2E-ASR loss has also been shown to help improve
SE metrics in [35].

These works have demonstrated the benefits of deep features
and phonetic features for the SE task. However, the perfor-
mances are limited by the accuracy of phoneme identification
task. This motivated our prior work using broad phonetic class
(BPC) posteriorgrams [36]. We also demonstrated that speech
signals within the same BPC share the same noisy-to-clean trans-
formation. Moreover, the SE model to be learned may combat
the noise effect when the original training set has contextual in-
formation (desired redundancy) among speech signals. Based on
these observations, the contextual information of BPCs, which
was not explicitly used in our earlier work [36], will benefit SE.
Therefore, we proposed an SE architecture incorporating con-
textual articulatory information acquired by an end-to-end BPC–
ASR system, which is expected to further boost SE performance.

The proposed architecture has an SE model and a BPC-based
end-to-end ASR (E2E-ASR) module. The bidirectional long
short-term memory (BLSTM) encoder and connectionist
temporal classification (CTC)/attention hybrid decoder served
as the E2E-ASR module, with its phoneme targets replaced
by BPCs. Compared with characters and mono-phonemes,
selecting BPCs as labels reduced the prediction difficulty. This
study derives two losses from the pre-trained AM, which are
used for multi-objective training to train the SE system: the
ASR classification loss and the perceptual loss. To compute
the losses, we selected ESPnet as the toolkit for the E2E-ASR
model and connected it to the output of the SE model to establish
an end-to-end SE–ASR system.

The deep-feature embeddings in the ASR model were ex-
tracted for perceptual loss training, and the distance between the
deep features of clean and enhanced speech signals was used as
the extra loss for learning the SE model. We considered three
types of BPCs: the manner of articulation (BPC(M)), place of
articulation (BPC(P)), and data-driven BPC (BPC(D)).

The proposed system was first evaluated on a speech
denoising task with TIMIT (English) and TMHINT (Mandarin
Chinese) datasets with two standard objective evaluation
metrics: perceptual evaluation of speech quality (PESQ)
and short-time objective intelligibility (STOI), subjective
listening tests, and ASR performance. Further experiments
were conducted on the denoising-and-dereverberation task
using the TMHINT dataset. Finally, the system was evaluated
on an impaired speech task, and a set of subjective evaluations
was conducted to test its performance.

The rest of this article is organized as follows: Section II
introduces the criteria used to define the BPC and E2E-ASR
systems in ESPnet. Section III describes the proposed
end-to-end BPC SE–ASR system. Section IV presents the
experimental setup, evaluation results, and analyses. Finally,
Section V concludes this article.

II. BACKGROUNDS

This section introduces the BPC and end-to-end speech recog-
nition model, which serve as the primary components of our
proposed architecture.

A. Broad Phonetic Classes

BPC categorizes all phonemes into several groups according
to the articulation of each phoneme. Acoustic characteristics
are similar among phonemes of the same group, such as the
manner/place of obstruction of airflow that passes through
the mouth. This study adopted three BPC grouping methods:
knowledge-based and data-driven.

1) Knowledge-Based BPC: This study used two knowledge-
based BPCs: place and manner of articulation. The place of
articulation indicates where the air stream is obstructed/modified
in the vocal tract when a sound is uttered. The manner of articula-
tion indicates how the air stream is obstructed/modified. Similar
characteristics appear in phonemes with the same manner and
place of articulation, and the type of articulation manner can
be discerned by observing the shape of its waveform [37].
Phonemes with the same manner/place of articulation have
similar spectral characteristics and may generate significant con-
fusion when performing ASR [38]. Nevertheless, this problem
can be alleviated using contextual articulatory information [39],
[40], [41], [42].

Different native languages have different articulatory char-
acteristics, and divergence of the manner/place of articulation
enables them to produce distinct sounds and prosody. This
study used the International Pronunciation Alphabets (IPAs) to
represent the target sentences in any language and characterize
each IPA label into BPCs. Eighty-seven phones in IPAs were
clustered into nine articulatory manner classes: vowel, plosive,
nasal, trill, trap or flap, fricative, lateral fricative, approximant,
and lateral approximant. The vowel class includes diphthongs
and semi-vowels, as suggested by [38]. Each language uses
only a portion of the IPAs to represent all its phonemes. For
instance, in the TIMIT dataset, 60 IPAs were used to represent
all phonemes in English, and they were clustered into five groups
based on articulation manner: vowels, stops, fricatives, nasals,
and silence.

For the place of articulation, we used 10 clusters in Mandarin
by classifying 87 IPAs: vowels, bilabial, labiodental, dental alve-
olar posteroalveolar, retroflex, palatal, velar, ular, pharyngeal,
and glottal. Comparatively, only nine clusters have been used
in English [37]. In both manner and place articulations, vowels
constituted a distinct group from the others. This is because
these two classification criteria mainly focus on consonants,
whereas uttering vowels do not block the air stream as much
as pronouncing consonants.

2) Data-Driven BPC: The similarity between phonemes can
also be evaluated in a data-driven manner, derived from the
recognition result of a pre-trained AM. In a previous study [43], a
confusion matrix M for phonemes was created, where its entry
Mij was defined by the number of events for phoneme i to
be misidentified as phoneme j. This matrix was assumed to
reflect the similarities between each pair of phonemes. When
clustering phonemes through the similarity metric, a merging
process was performed until the cluster number reached nine, as
recommended in [43].

B. CTC/attention E2E-ASR

The applied recognition model adopted two major E2E-ASR
implementations: CTC and attention. It provided a single neural
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network architecture to perform speech recognition in an E2E
manner [44]. The attention-based method used an attention
mechanism to align acoustic frames and recognize symbols.
CTC uses Markov assumptions to solve sequential problems
efficiently using dynamic programming. Multi-task learning
based on CTC and attention allows E2E-ASR to resolve the
misalignment issues encountered in ordinary attention-based
E2E-ASR.

Compared to conventional ASR models that require various
modules, such as AMs, language models, and lexicons, the
E2E network eliminates the need for linguistic resources. It
enables an optimization of front-end processors that precede
the ASR component in an end-to-end manner. Furthermore,
the complexity of the E2E-ASR building process is notably
reduced, as it does not require GMM/HMM construction, DNN
pre-training, lattice generation, and complex searches during
decoding, compared to the conventional ASR. Simplifying a uni-
fied deep learning framework in E2E-ASR enables researchers
to develop or use an ASR system for new applications without
extra efforts, such as preparing the linguistic resources of new
languages.

In the E2E-ASR model, a shared BLSTM encoder trans-
forms the input sequence into high-level features and undergoes
multi-objective learning. When training the E2E-ASR model,
the objective functions for the attention and CTC frameworks
were applied to improve the robustness and achieve fast conver-
gence. The CTC objective function is an auxiliary task to train
the encoder of the attention model. Compared with the single
attention model, combining the forward-backward algorithm in
CTC accelerates the process of finding the desired alignment
in a monotonic manner and mitigates the prediction from a
letter-wise attention objective to a sequence-level CTC objec-
tive. Through joint decoding, attention- and CTC-based scores
were combined in a one-pass beam search algorithm to obtain
the ASR results and further eliminate irregular alignments.

III. PROPOSED MODEL

The proposed model connected and trained the CTC/attention
E2E-ASR for ASR and a transformer for SE in an E2E manner
to improve SE performance with BPC recognition.

A. SE With AM and E2E-ASR Multi-Objective Training

We hypothesize that the SE model can be further promoted
through learning to generate enhanced speech signals with a
more precise transformation guided by BPC information. To
validate this hypothesis, we set up two SE systems that are
estimated by multi-objective training with two different losses.
Fig. 1(a) connects the SE model with a DNN-based AM from the
conventional hybrid DNN-HMM ASR system, and both BPCs
and phonemes can be HMM states in the AM. Here, the SE model
was independently updated in each time frame because the AM
only predicts one HMM state at one forward step without con-
sidering the long-term context. By contrast, the newly proposed
architecture shown in Fig. 1(b) connects the SE model with an
E2E-ASR model, predicting consecutive BPC labels instead of
phoneme/word sequences. Since the E2E model predicts all the

Fig. 1. Training approach with DNN-HMM hybrid AM model and E2E-ASR
model. Training targets of DNN-HMM hybrid AM are phonemes or BPCs, and
the training targets of E2E-ASR model are words, phonemes, or BPCs.

BPC labels at once, the SE model can learn information for a
longer period and generate results with better transformation
of articulatory information. We also conducted SE-E2E-ASR
multi-objective training for the sequences of phonemes and
words instead of BPCs for comparison, as shown in Fig. 1(b).

The training of conventional DNN-HMM hybrid acoustic
models typically has two steps. First, the GMM-HMM acous-
tic models for different tri-phones were trained using the
expectation-maximization (EM) algorithm, which infers the
state emission probabilities in the HMM. We then used DNN
instead of GMM and trained it to model the HMM states
more precisely. We conducted our experiments based on the
TIMIT recipe in Kaldi [45] and built a four-layered DNN using
PyTorch-Kaldi [46] with dimensions [1024, 1024, 1024, states],
where “states” denotes the number of states in the HMM. We
connected the DNN-based AM after the SE model and used
cross-entropy loss from the predicted results of the HMM states
to update the SE model.

B. SE-E2E-ASR Model Architecture

Fig. 2 shows the proposed SE-E2E-ASR architecture, which
has a feature extractor, SE model, and BPC-based pre-trained
ASR model, which uses the overall loss of both models for
back-propagation in training. The SE model is arranged as a
transformer, which is an attention-based deep neural network
originally proposed for machine translation [47] and later ap-
plied in numerous other natural language processing tasks. The
transformer has shown considerable improvements over com-
mon recurrent neural networks (RNNs) and has been further
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Fig. 2. Architecture of the proposed combination of SE model and E2E BPC-
ASR Network.

exploited in SE tasks. The E2E-ASR model in ESPnet was ini-
tially set to recognize the acoustic waveform into character-level
sequences, while its output labels were modified into the desired
BPC labels in our ASR model.

1) Transformer-Based SE Model: Transformers have been
investigated extensively in SE studies [48], [49], [50]. Following
a sequence-to-sequence learning structure, the transformer com-
prises encoder and decoder networks. This method preserved
only the encoder part of the transformer for the SE process
because the input distorted signal and output enhanced signal
share the same length. The transformer has four convolutional
layers for encoding the spectrum of the input signals and eight
attention blocks. Each attention block comprises multi-headed
self-attention and two fully connected layers as the feed-forward
network. Residual connections and layer normalization were
performed in each layer [51].

2) Transformer-Based ISE Network: In addition to speech
denoising, we also enhanced impaired speech as an alternative
SE task. We adopted a voice conversion (VC) model [52]
based on a transformer as the fundamental architecture of the
ISE model. We applied a sequence-to-sequence (seqASRseq)
model based on transformer architecture with text-to-speech
(TTS) pre-training. By transferring knowledge from learned
TTS models trained by the large TTS dataset, we could satisfy
the need for large-scale corpora to train the transformer. This
ISE model was primarily based on the transformer-TTS model,
consisting of encoder and decoder stacks. The encoder layer
has a multi-head self-attention sub-layer followed by a fully
connected feed-forward network, and the decoder layer contains
another sub-layer, which performs multi-head attention over the

output of the encoder stack. Each layer comprises a residual
connection and layer normalization. This ISE model takes the
source log-Mel spectrogram as input and outputs a converted
log-Mel spectrogram. Before training with the ISE objective,
the decoder in the transformer was first pre-trained using the
TTS-objective tasks. Subsequently, the decoder was fixed to
preserve its ability to robustly capture speech features, such as
articulation and prosody, and the encoder was trained with TTS
speech input to learn the effective hidden representation. Finally,
the ISE model was trained by initializing the model using the
pre-trained parameters of the encoder and decoder. The models
initialized with the TTS-pre-trained model parameters generated
effectively hidden representations for high-fidelity and highly
intelligible converted speech.

3) Mel-Filters Processing: To make the whole SE-E2E-ASR
system differentiable, we replaced the Kaldi feature extractor in
the original ESPnet with a filter-bank extractor, creating speech
features of the enhanced waveforms from the SE module. The
original ESPnet uses Kaldi feature extraction, for which most
recipes use 80-dimensional logarithmic Mel-spectra with the
pitch feature (83 dimensions in total). By contrast, the filter-bank
extractor applies 26 triangular Mel-scaled filters to the power
spectrum of an input signal to extract the filter-bank feature.
Compared with the original Kaldi feature extractor, the filter-
bank extractor connects the SE module with the ASR model and
ensures that the whole SE-E2E-ASR system is differentiable.
After feature extraction, we prepared the data for the SE-E2E-
ASR system with all the information included in the Kaldi data
directory (transcriptions, speaker and language IDs, and input
and output lengths) and pre-trained the E2E-ASR model using
the clean filter-bank features as input. The ISE task used the
Kaldi feature extractor and preserved the processes in the ESPnet
toolkit, where 80-dimensional logarithmic Mel-spectra features
(with 1024 DFT points and 144-point frameshift) are used.

4) E2E BPC-ASR Network: To obtain BPC context informa-
tion, we changed the original output word labels of E2E-ASR
to the desired BPC labels. Accordingly, the BPC–ASR model
predicted the BPC label sequence that corresponds to each utter-
ance. We pre-trained the BPC–ASR model using the filter-bank
features of clean utterances as the input for the overall E2E model
training. In order to avoid the SE model from producing distorted
signals while being used as new features for training the ASR
model during joint training, the parameters of the pre-trained
BPC-ASR model were kept fixed or “frozen” during the training
of the connected SE model.

C. Multi-Objective Training Methods

1) SE-ASR Multi-Objective Training: Optimization of the
E2E-ASR objective function was treated as an auxiliary task to
train the transformer-based SE model. We combined the losses
of both the SE and E2E-ASR models with a tuning parameter α
to form the total loss for multi-objective training, as shown in (1).

losstotal = (1− α)× lossSE + α× lossASR, (1)

The L1 loss function was used to calculate the SE loss and the
combined CTC and attention losses from the E2E-ASR model
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was used as the ASR loss. Parameter α was tuned to make
the two losses (SE and ASR losses) contribute almost equally
to the total loss in (1) and was set in the range [0.001, 0.002]
because the ASR loss is usually exceedingly larger than the SE
loss. Furthermore, since the ASR model was pre-trained, the
parameter α was set to 0 in the first stage of the multi-objective
training to learn the SE model alone without considering the
ASR loss. This arrangement yielded better SE performance in
our preliminary experiments.

2) SE Optimization Integrating Perceptual Loss: In addition
to the recognition error used as the ASR loss, we exploited the
ASR model to create another objective function that considered
the perceptual loss to train the SE model. The respective model
architectures are shown on the right side of Fig. 2. The E2E-
ASR model extracted the features in the last layer (320) of the
encoder from both clean and enhanced utterances, known as
deep features. Subsequently, the L1 loss between the clean and
enhanced deep features was set as another form of loss (lossPL),
which was combined with the spectrum-wise SE loss (lossSE)
for multi-objective training, as shown in (2). The perceptual
loss evaluated the distance between clean and enhanced signals
at the layer level inside the ASR model; thus, it is considered as
another SE loss for the ASR. During training with the perceptual
loss, only the pre-trained ASR model is required without the
corresponding transcriptions for the enhancement training data.

losstotal = (1− α)× lossSE + α× lossPL, (2)

where α is a tuning parameter.
3) SE Optimization Integrating Three Losses: Both the ASR

loss (lossASR) and the perceptual loss (lossPL) can be used
for training simultaneously. lossASR guides the SE model to
generate enhanced speech with better prediction results in the
recognition model, while lossPL can make the model generate
enhanced speech with prediction results that are closer to the
clean speech by leveraging a pre-trained ASR. The combined
loss of all three losses is:

losstotal = (1− α1 − α2)× lossSE + α1

× lossASR + α2 × lossPL, (3)

where α1 and α2 are the weights for lossASR and lossPL.

IV. EXPERIMENT

Two datasets were used to evaluate the proposed architecture:
the TIMIT corpus [53] and the Taiwan Mandarin version of
hearing in noise test (TMHINT) sentences [54]. The following
section introduces the experimental setups and presents the
evaluation results and respective analyses and discussion.

A. Experiments on the TIMIT Dataset

For the experiments conducted on the TIMIT database with
multiple noise sources, 10,000 noisy-clean paired training ut-
terances were used, comprising 3,696 utterances in the training
set with an average duration of 4 seconds and their noisy coun-
terparts containing 102 noise types from [55] at six different
SNR levels (20, 15, 10, 5, 0, and −5 dB). The core test set of

TABLE I
AVERAGED PESQ AND STOI SCORES FOR SE-AM SYSTEMS WITH BPC(M)

AND PHONEME, AND SE-E2E–ASR SYSTEMS WITH BPC(M), PHONEME, AND

WORD. THE SCORES FOR THE UNPROCESSED AND SE BASELINE ARE LISTED

FOR COMPARISON

TIMIT (including 192 utterances) was mixed with five unseen
noise types at four SNR levels (5, 0, −5, and −10 dB) to build
the test set in our experiments. The training and test sets did not
share common speakers.

The speech waveforms were recorded at a 16 kHz sampling
rate and converted into 257-dimensional spectrograms using
the short-time Fourier transform with a Hamming window
size of 32 ms and a hop size of 16 ms. The log1p function
(log1p(x) = log(1 + x)) was adopted on the magnitude spec-
trogram to ensure non-negative outputs [56], and normalization
was performed on the waveform. The test stage combined the
enhanced magnitude spectral features and original phases from
the noisy signals to synthesize the enhanced signals.

As previously mentioned, two-stage training was applied to
train the SE model. The SE model was first trained for 70 epochs
without considering the ASR results (by setting α = 0 in Eqs.
(1)) and (2)), and was further updated with the combined objec-
tive loss, as in (1)) and 2 (by setting α = 0.001 for the ASR loss
and α = 0.05 for the perceptual loss) for the next 80 epochs. For
the experiment that combines all three losses, we have reduced
the weightage of α to half for both the ASR loss and perceptual
loss. Specifically, we set α1 = 0.0005 and α2 = 0.025. This
was done to balance the contribution of each loss and ensure
that the SE model is trained to produce enhanced speech that is
not only better for ASR tasks but also closer to clean speech.
The ASR model was pre-trained with the clean dataset, and its
parameters were fixed (frozen) when learning the SE model.
To prevent overfitting, we performed early stopping based on
validation performance. We used the Adam optimizer [57] with
a fixed learning rate of 5× 10−5 for all of our experiments. The
SE model and ASR model had sizes of 33.8 MB and 30.4 MB,
respectively. Our experiments were conducted on a GeForce
RTX 2080 Ti, with an average training time of 0.88 milliseconds
per frame. Please note that the ASR model was only used in the
training phase but not in the testing phase.

Based on the model architecture illustrated in Fig. 2, we
implemented three systems using three types of BPCs, namely
BPC(M), BPC(P), and BPC(D), as the acoustic units in the ASR
model. In the following, we refer SE by leveraging AM only and
E2E-ASR as SE-AM and SE-E2E-ASR, respectively.

1) Results for the Multi-Objective Training Models: Table I
presents the PESQ and STOI scores of some baseline models and
the proposed SE scenario. In the following experiments, unless
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otherwise specified, we train SE systems using a combined E2E-
ASR and L1 loss ((1)). In addition to the unprocessed baseline
(denoted as Noisy), we considered the transformer-based SE
without ASR loss and perceptual loss as the first advanced
baseline for comparison (denoted as SE baseline). Subsequently,
the SE-AM applied the multi-objective training of the SE model
and the DNN-HMM-based AM model with phoneme, BPC(M),
and BPC(D) as the acoustic unit individually. For the proposed
SE-E2E-ASR system, three kinds of acoustic units, namely
word, phoneme, and BPC(D), were individually used for the
E2E-ASR module to evaluate the corresponding SE results.

The initial experiments compared the performance of the
SE-AM system using BPC(M) and BPC(D) as acoustic units.
The results, as shown in Table I, revealed that while BPC(M)
provided scores similar to phonemes, BPC(D) outperformed
phonemes in terms of both PESQ and STOI scores, indicating
that using BPC(D) as the target for the multi-objective training
in the SE model is a better choice. Additionally, when using
phonemes as the acoustic unit, SE-E2E-ASR outperformed
SE-AM in PESQ but had a similar performance in STOI. The
word-level SE-E2E-ASR model outperformed the SE baseline in
STOI but performed worse in PESQ. Overall, the phoneme-level
approaches improved the SE baseline, BPCs-level approaches
outperformed the phoneme-level approaches, and the SE-E2E-
ASR approaches outperformed the SE-AM approaches.

In contrast to the other methods evaluated, the proposed
BPC(D)-level SE-E2E-ASR model showed the best perfor-
mance, with improvements of 0.114 and 0.019 for PESQ and
STOI, respectively, compared to the SE baseline. Wilcoxon sign
rank tests were performed to measure the performance difference
between the BPC(D)-level SE-E2E-ASR and all other methods
listed in Table I, including the SE Baseline, three SE-AM
strategies, and the Word/Phoneme SE-E2E-ASR approaches.
These comparisons were conducted using all 3840 test samples
(made up of 192 utterances, 5 unseen noise types, and 4 SNR
levels). All the computed p-values were less than the adjusted
significance level of 0.01 after applying a Bonferroni correction
for multiple tests (0.05/5 = 0.01), providing strong evidence of
the superiority of the BPC(D) approach. These results support
the hypothesis that incorporating contextual information about
the articulation transition between consecutive BPC labels can
effectively enhance the quality and intelligibility of processed
speech.

Furthermore, we compared these systems in different SNR
scenarios, which are shown in Fig. 3. Based on the SE baseline
as a reference, Fig. 3 illustrates the improvements in PESQ and
STOI achieved by these systems. From this figure, we observe
that both the phoneme- and BPC-level SE-AMs work well in
PESQ and STOI for the three higher SNR cases (−5 dB, 0 dB,
and 5 dB), but perform worse when the SNR is as low as −10
dB. This is because it is difficult for the DNN-HMM AM to
recognize severely distorted speech and hence it fails to guide the
connected SE model. However, the three SE-E2E-ASR systems
can enhance the −10 dB SNR utterances exceedingly well,
showing that E2E-ASR performs better than DNN-HMM AM in
promoting SE in low-SNR cases. The BPC-level SE-E2E-ASR
provided higher STOI scores, verifying our hypothesis that

Fig. 3. Average PESQ and STOI improvements of the two SE-AM and three
SE-E2E-ASR systems over the SE baseline on different SNR ranges of the
TIMIT corpus.

Fig. 4. Spectrogram plots of an utterance at different situations: (a) clean
noise-free, (b) noise-corrupted, (c) noise-corrupted and enhanced by the SE
baseline, (d) noise-corrupted and enhanced by the BPC(D)-level SE-E2E-ASR.

contextual broad phonetic information helps in the learning of
the SE model.

2) Spectrogram for SE-E2E-ASR: In addition to the quanti-
tative evaluations, we presented the spectrogram plots for the
tested utterance in Fig. 4 to demonstrate the differences in the
SE methods. It shows that the spectrogram of clean speech is
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TABLE II
AVERAGE PESQ AND STOI SCORES FOR THE SAME BPC-LEVEL SE-E2E-ASR

SYSTEMS WITH THREE LOSSES: ASR,PERCEPTUAL AND COMBINED LOSSES.
SCORES OF THE SE BASELINE ARE LISTED FOR COMPARISON

severely distorted by noise, while it can be markedly enhanced
by the two SE methods. However, there are still moderate
residual noises/artifacts in the case of the SE baseline, while
they are considerably suppressed by the presented BPC(D)-level
SE-E2E-ASR.

3) Results for the SE-E2E-ASR With ASR Loss and Perceptual
Loss: In this subsection, we intend to explore the effects of
different losses reported in (1), (2), and (3) and thus use the
same SE model architecture throughout the experiments. Table II
presents the PESQ and STOI scores of the proposed BPC-level
SE-E2E-ASR models employing the ASR and perceptual losses,
as shown in Fig. 2. Three types of BPC, namely BPC(M),
BPC(P), and BPC(D), were individually used as the target for the
E2E-ASR model. When using (1) and (2) to train the SE model,
we denoted the results as “ASR Loss + L1” and “Perceptual Loss
+ L1”, respectively. For the “Combined Losses” case, the two
losses (perceptual loss and ASR loss) from ASR were both used
during training as (3). Based on the Table I and II, the following
observations were made:

1) Compared with the results of the phoneme-level SE-AM
and SE baseline shown in Table I, almost all the BPC-level
SE-E2E-ASR systems achieve better PESQ and STOI
scores (except for the BPC(P)-level system with percep-
tual loss). Integrating SE loss with either ASR loss or
perceptual loss (as in (2) and (3)) exhibited superior SE
performance. Thus, we verified the effectiveness of these
contextual and articulatory features in SE.

2) As for the three types of BPCs used in the SE-E2E-ASR
with the ASR loss, BPC(P) performed worse than BPC(M)
and BPC(D), BPC(D) achieved the optimal PESQ score,
and BPC(D) and BPC(M) achieved similar STOI scores.
Therefore, the combination of confusion phonemes per-
formed in BPC(D) facilitates the SE module to pro-
vide better speech quality, and the clustering methods
used in BPC(M) and BPC(D) help to improve speech
intelligibility.

3) Regarding the system using the perceptual loss and com-
bined losses, BPC(D) and BPC(M) performed better than
BPC(P) in PESQ and STOI metrics, which agreed with
the results for the system with the ASR loss. Accordingly,
we verified that the performance of the proposed SE-E2E-
ASR depends on how we cluster the phonemes.

Fig. 5. Averaged PESQ and STOI improvements of various BPC SE-E2E-
ASR systems with ASR and perceptual losses over the SE baseline on different
SNR sets for the TIMIT corpus.

4) The experiments with combined losses showed that while
the majority of the results outperformed the perceptual
loss experiments, they still fell short of the results obtained
from the ASR loss for all types of BPCs. Surprisingly, the
PESQ score for the BPC(M) combined losses experiment
even outperformed the BPC(M) ASR loss experiment,
suggesting that the combination of different loss functions
can complement each other and has the potential to further
enhance speech quality.

Even though the systems with perceptual loss achieved lower
average PESQ and STOI scores than those with ASR loss, this
does not necessarily apply to the individual SNR situation. Fig. 5
shows the PESQ and STOI improvements over the SE baseline
for several BPC-level systems at the four SNRs. From this figure,
we observe that the three systems with ASR loss exhibit similar
trends of improvement with the different SNRs, whereas the
BPC(D)-level system with perceptual loss performs quite well
in STOI for the high-SNR case (5 dB), outperforming the three
systems with ASR loss. On the other hand, the BPC(D)-level
system with combined losses performs the best in both PESQ
and STOI for the low-SNR case (−10 dB). Furthermore, Note
that the ASR loss and the perceptual loss are two types of losses
that serve different purposes. The ASR loss aims to improve the
accuracy of ASR results, while the perceptual loss measures the
difference between clean and enhanced speech at an intermediate
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level of the ASR model. The results from Table II suggest that
when training SE models, the ASR loss might offer additional
and valuable information that complements the L1 loss.

B. Overall Discussion of the TIMIT Experiments

1) Misclassification of Phonemes Causes Poor Feedback:
From the experiments on the TIMIT dataset, we observed that
misclassification of phonemes by the ASR system can lead to
poor feedback, as discussed below:

a) Our experiments shows that BPC-level objectives out-
performed phoneme-level objectives, suggesting that dis-
tinguishing between confusable phonemes may not be
as helpful as correctly classifying groups of phonemes.
When the SE model learns to generate speech that overly
emphasizes the difference between similar phonemes, the
generated speech may not necessarily be an improvement.

b) We also found that correct objective feedback from the
ASR loss performs better than the soft objective from
the perceptual loss. This indicates that misclassification
results from clean speech reduce the improvement from
the ASR feedback, highlighting the importance of accurate
feedback for effective model training.

c) BPC(D) performs the best in almost all the experiments,
indicating that combining the most-confusable targets is
the most helpful for the additional objective. On the
other hand, the place of articulation is not as critical as
the manner of articulation for the shape of the audio
waveform [37], meaning that the phonemes in the same
group of BPC(P) are not confusable and lead to the worst
performance among all the BPCs.

Based on the above observations, we conclude that objectives
with misclassification of phonemes by the ASR system may
lead to inadequate feedback for SE models. Although the ex-
periments were conducted on a relatively small set of training
data (3,696 clean utterances), the performance improvement of
low-resource training conditions is still valuable for practical
application. However, it is worth noting that the advantages of
the knowledge-based approach (BPC(M) and BPC(P)) may be
reduced as the amount of data increases.

2) Contextual Acoustic Feedback From the E2E-ASR Model:
Most previous studies that apply feedback from the ASR objec-
tive for SE use losses from AM, which provides frame-wise
feedback [35], or contextual E2E-ASR with word-level ob-
jective feedback [31], [32]. In contrast, our approach applies
phoneme-level E2E-ASR feedback for the SE system. This
approach has benefits in that the ASR model learns to predict
phonemes as a sequence instead of individually for each time
segment. The benefits of this approach are listed below:

a) Compared to AM feedback like [31], [32],
phoneme/BPCs-level E2E-ASR feedback can guide
the SE model with the level of the whole utterance instead
of individual time segments. One of the advantages of
using phoneme-level E2E-ASR feedback for SE is that it
allows for better modeling of the temporal relationships
between speech features and phonemes. In traditional
ASR systems, phonemes are typically modeled using
hidden Markov models (HMMs), which may not take

into account the temporal structure of the entire speech
utterance. However, in phoneme-level E2E-ASR, the ASR
model learns to predict phonemes as a sequence, which
allows for better modeling of the dynamic relationships
between speech features and phonemes. The consistent
results of Phoneme/BPC(M)/BPC(D)-level E2E-ASR
feedback outperform corresponding AM feedbacks in
Tables I and II, supporting this statement.

b) Another advantage of using phoneme/BPCs-level E2E-
ASR feedback for SE is that it provides more direct and in-
formative feedback to the SE model compared with word-
level E2E-ASR feedback like [35]. As we mentioned ear-
lier, phonemes are closer to the audio features compared
to words, which makes the phoneme-level feedback more
relevant and useful for guiding the SE model. Moreover,
phoneme-level feedback is more fine-grained than word-
level feedback, which allows for better differentiation of
the different phonemes and their acoustic characteristics.
The results of Word-level E2E-ASR feedback perform
the worst among the Word/Phoneme/BPC(D)-levels in
Table I, supporting this statement.

These observations show that incorporating contextual broad
phonetic information to learn the SE model, as in BPC-level
SE-E2E-ASR, is most helpful in reconstructing the original
clean signal and removing the interference. It’s worth not-
ing that while phoneme/BPCs-level E2E-ASR feedback has
several advantages for SE, it also has some potential limita-
tions. For example, phoneme/BPCs-level ASR feedback may
require transcription training labels compared to other types
of feedback such as perceptual loss. This can be a limita-
tion in low-resource settings where obtaining large amounts
of labeled data is challenging. Additionally, the phoneme-level
feedback may not be as effective for languages with complex
phonetic systems. However, the consistent improvement of the
Phoneme/BPC(M)/BPC(D)-level E2E-ASR feedback over the
AM feedback and the Word-level E2E-ASR feedback in our
experiments suggests that phoneme/BPCs-level E2E-ASR feed-
back is a promising approach for improving the performance of
SE systems.

C. Experiments on the TMHINT Dataset

International Phonetic Alphabet (IPA) presents the phones
used in all languages. Therefore, articulation feature
classification methods using BPCs can also be applied to
other languages. For the TMHINT corpus, we transferred the
Chinese characters into IPA phone sequences and categorized
these phones into BPC clusters.

For the training set, we used 10,000 noisy-clean paired train-
ing utterances. The paired training set contained 1,200 clean ut-
terances with an average duration of 3.5 seconds and their noisy
mixed speech using 104 noises with multiple noise sources [55]
(at 31 SNR levels from −10 to 20 dB). For the test set, 640 utter-
ances were mixed with seven unseen noise types at 14 SNR levels
(ranging from −10 to 10 dB). The training set included three
male and three female speakers, and the testing set contained
one male and one female. The SE-E2E-ASR experiments used
various ASR labels, such as phoneme, BPC(M), and BPC(P).
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TABLE III
AVERAGED PESQ AND STOI SCORES FOR SE-E2E-ASR SYSTEM ON TMHINT

CORPUS

Furthermore, we evaluate the ability of the clustering approach
in English used in BPC(D) to generalize to other languages.
Specifically, we apply the BPC(D) clusters trained on English
data to a denoising experiment on TMHINT by mapping the
Chinese phonemes to their corresponding IPA symbols. We
made some adjustments to the original BPC(D) clusters by
removing redundant phonemes and grouping new phonemes
based on their manner of articulation, resulting in a total of nine
groups, as in the English experiment. This evaluation allows us
to test the generalizability of the data-driven approach across
different languages and to assess whether the phoneme clusters
learned from one language can be applied to another language.
The transformer was set as the baseline SE model and learned
jointly with the connected ASR model with extra BPC semantic
information. A BPC(M)-ASR classification model trained with
noisy speech was also examined. To test the SE-E2E-ASR
methods in the experiments for noisy-reverberant utterances, we
selected BPC(M) as the recognition unit.

1) Results for Speech Denoising: The model structure used
here was similar to that described in Section IV-A. As the value
of the ASR loss was larger than the SE loss in this task, we
lowered the parameter α in (1) to 0.0001 to equally weight the
two losses in the total loss function. The resulting PESQ and
STOI scores are presented in Table III. From this table, we first
observe that the BPC-level SE-E2E-ASR model can improve
both the PESQ and STOI scores compared to the SE baseline,
while the mono-phoneme SE-E2E-ASR model compromises the
SE improvement. These results differ from those obtained for the
TIMIT task described in Section IV-A. This might be because
Mandarin Chinese is a tonal language, where the classification of
respective phonemes may be less helpful for the SE model. Sec-
ond, when the English data-driven cluster BPC(D) is applied to
the TMHINT corpus, it produces the lowest PESQ score among
the BPC-level SE-E2E-ASR approaches. Our investigation in
IV-B1 suggests that the inaccurate classification of phonemes
can lead to unsatisfactory results. Considering the distinctive
acoustic properties of Chinese, it is reasonable to assume that
BPC(D) needs further customization, including the incorpo-
ration of tonal features, for Chinese corpora. To validate this
hypothesis, future studies can explore various phoneme groups
specifically designed for the Chinese language. Comparatively,
using BPC(M) as the acoustic unit for SE-E2E-ASR resulted
in the best performance among all selections, including mono-
phonic, BPC(P), and BPC(D). Since BPC(M) (and BPC(P)) is
designed based on the property of IPA-level phones, the cluster is

Fig. 6. PESQ and STOI improvements of SE-E2E-ASR system over the SE
baseline averaged on different SNR sets for the TMHINT corpus.

identical to the BPC(M) we use in English and could potentially
be used for cross-language SE training in the future.

In addition to the experiments, wherein the E2E-ASR model
was trained with clean, noise-free utterances, we used noisy
utterances to train the E2E-ASR model and then conducted the
respective SE-E2E-ASR experiments. We randomly selected
the noise signals within 104 different noise types mixed with
1,200 utterances as the training set to train the CTC/attention
E2E-ASR model. The subsequent SE-E2E-ASR experiments
with the multi-condition trained E2E-ASR model adopted the
same training configuration as those with the clean E2E-ASR
model mentioned above, with BPC(M) as the acoustic unit. The
obtained PESQ and STOI scores, which are listed in Table III
with the label “BPC(M)-MT,” are quite close to those of the clean
BPC(M)-level E2E-ASR model. These results clearly show that
whether the ASR model is trained by clean or noisy utterances
does not considerably influence the average SE performance of
SE-E2E-ASR if BPC(M) is used.

Fig. 6 shows the PESQ and STOI improvements of different
SE-E2E-ASR systems over the SE baseline at different SNR sets
(−10 to −5 dB, −3 to 3 dB, and 4 to 10 dB). As shown in the
figure, almost all systems outperform the SE baseline, except for
the phoneme-level system and the perceptual loss system (at high
SNRs). These results demonstrated the effectiveness of articula-
tory features of BPCs for SE particularly for exceedingly noisy
(low-SNR) situations. By contrast, the phoneme-level E2E-ASR
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Fig. 7. Spectrogram plots of an utterance at different situations: (a) clean
noise-free, (b) noise-corrupted, (c) noise-corrupted and enhanced by the SE
baseline, (d) noise-corrupted and enhanced by the BPC(M)-level SE-E2E-ASR.

may not benefit the connected SE at low SNRs probably due to
its poor recognition accuracy.

Additionally, in Fig. 7, we display the spectrograms of the
clean speech, its noisy counterpart, and their enhanced versions
at an engine noise SNR of −5 dB for qualitative comparison. It
is evident from the figure that the SE baseline fails to entirely
remove the noise in non-speech regions, whereas the proposed
BPC(M)-level SE-E2E-ASR model better suppresses the noise
in these areas, resulting in a spectrogram that more closely re-
sembles clean speech. This finding reaffirms that the contextual
information of the BPCs enhances SE performance.

2) Listening Test: To further evaluate the effectiveness of
the proposed approach, a listening test was conducted for the
TMHINT experiments.The test set included two challenging
noise types - engine and street noises - with two different SNR
levels (−5 and 5 dB). The four processing approaches - the
SE baseline, BPC(M) with perceptual loss (with loss of (2)),
Phoneme, and BPC(M) (with loss of (1))- were tested with each
noise type and SNR level as a total of 16 conditions: 2 SNR level
× 2 noise types × 4 processing approaches, each containing ten
randomly selected sentences. The order of the conditions was
also randomized. The subjective quality of the enhanced speech
utterances was evaluated using mean opinion score (MOS) tests,
with 17 subjects asked to judge the quality of the audio for signal
distortion (SIG), background intrusiveness (BAK), and overall
quality (OVL) using a five-point scale (1: Bad, 2: Poor, 3: Fair,
4: Good, 5: Excellent) [58].

In the SIG test, the subjects were asked to rate the natural
level of the speech signals after listening to an enhanced speech
utterance processed by the four different methods. A higher
score indicates that the speech signals are more natural. The SIG
results are shown in Fig. 8(a). We found that although the percep-
tual loss approach (BPC(M)-PL) performs worse than the results
from the baseline, the ASR objectives (Phoneme and BPC(M))
improve the scores, and BPC(M) provides the best result. This
shows that the E2E-ASR objective alleviates the distortion of the
recovered signal and provides better speech quality. For the BAK
test, the subjects were asked to judge the level of noise artifact
perceived after listening to an utterance, and a higher score

Fig. 8. Listening test results in terms of SIG, BAK, and OVL scores. The
“Phoneme” and “BPC(M)” are the approaches with E2E-ASR objectives, and
the “BPC(M)-PL” is the approach with the perceptual loss.

TABLE IV
WERS (%) OF THREE SE-E2E-ASR SYSTEMS (PHONEME, BPC(M), AND

BPC(M) PERCEPTUAL) AND SE BASELINE IN DIFFERENT SNRS WITH FOUR

NOISE TYPES ON THE TMHINT DATASET

indicated a lower level of noise artifact perceived. In Fig. 8(b),
BPC(M) was the only method that outperformed the baseline in
BAK scores, while Phoneme performed close to the baseline and
the BPC(M)-PL approach decreased the score. Finally, for the
overall quality (OVL) in Fig. 8(c), while the BPC(M)-PL still
compromises the results, the results of the Phoneme approach are
slightly better than the results from the baseline, and the BPC(M)
approach performs the best in the overall quality. The results
indicate that while the perceptual loss approach did not perform
well in subjective evaluations, both Phoneme-level and BPC-
level E2E-ASR objectives yielded less distorted outcomes, and
BPC targets appeared to be more effective in eliminating noise
and providing better speech quality. To supplement our analysis,
we also conducted the Wilcoxon sign rank tests to compare the
four approaches in terms of overall quality (OVL), background
intrusiveness (BAK), and signal distortion (SIG) scores. The test
results show that in terms of OVL and BAK scores, there is a sta-
tistically significant improvement when comparing the BPC(M)
method with the SE baseline and BPC(M)-PL approaches (p <
0.05). However, for SIG scores and the Phoneme approach, no
significant differences were found. One possible reason for the
lack of significant difference in SIG scores and the Phoneme
approach might be due to a high variation among the listeners’
responses, combined with a relatively small sample size. These
factors make it more challenging to reach statistically significant
results.

3) ASR Results: We compared the performance of different
SE approaches on automatic speech recognition (ASR) using
Google Speech-to-Text [59] to compute word error rates (WER)
compared with the SE baseline. We conducted experiments
with four real-world noise types - engine, babble, street, and
three-talker - to simulate practical environments. Table IV sum-
marizes our findings. Specifically, we evaluated the WERs of
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TABLE V
AVERAGE PESQ AND STOI SCORES FOR SE-E2E-ASR SYSTEM WITH

BPC(M) ON TMHINT CORPUS WITH NOISE AND REVERBERATION

speech enhanced using Phoneme, BPC(M), and BPC(M)-PL
objectives. Our results indicate that all Phoneme/BPC-level
objectives (i.e., Phoneme, BPC(M), and BPC(M)-PL) resulted
in a reduced WER compared to the SE baseline. Notebally, the
BPC-based enhancement methods (BPC(M) and BPC(M)-PL)
surpassed the Phoneme-level SE-E2E-ASR approach. Among
all, BPC(M)-PL yielded the best results across all signal-to-noise
ratio (SNR) conditions.

Our experiments demonstrate that BPC-based enhancement
approaches are promising pre-processing modules for speech
recognition in practical settings. Our findings indicate that
the perceptual loss approach, despite some compromises in
subjective evaluation, yields more accurate recognition results
than the Phoneme and baseline approaches. Meanwhile, the
Phoneme/BPC-level E2E-ASR objective approaches strike a
balance between subjective evaluation and recognition results,
achieving improved performance across all evaluation metrics.
Specifically, the BPC(M)-level E2E-ASR objective approach
outperformed all the other approaches in all experiments.

4) Results for Speech Denoising and Dereverberation: In
addition to the denoising task, we evaluated the proposed meth-
ods on utterances further corrupted by reverberation, which is a
more challenging task. For the training set, the clean utterances
from the TMHINT corpus were first mixed with 104 noise types
at 31 SNR levels from −10 to 20 dB and then distorted by
reverberation. The test set had reverberated and noise-corrupted
utterances, where seven unseen noise types were added at 14
SNRs (from −10 to 10 dB). We used the room impulse response
(RIR) generator to create the reverberation, and room impulse
responses were generated using the image method and applied to
the noisy utterances. The reverberation time (T60) was randomly
selected from 0.3, 0.6, and 0.9 s to generate impulse responses
for the training data, and T60 was set to 0.4 s for the testing data.
The RIR had a total of 4,096 samples. The receiver position was
[2 m, 1.5 m, 2 m], the source position was [2 m, 3.5 m, 2 m],
and the room dimensions were [5 m, 4 m, 6 m]. The experiment
aimed to remove both the noise and reverberation; thus, the clean
data was set as the target when training the SE model.

Table V shows the average PESQ and STOI scores of the
original reverberant noisy data and their two enhanced versions.
It is observed from this table that the SE baseline improves
STOI by 0.054 but worsens PESQ by 0.089. The phoneme-level
objective provides slightly better but still degrades the PESQ
score. According to [61], [62], a single DNN-based SE model
may produce limited performance in a composite of noisy and
reverberant condition: the STOI scores can be improved, but
PESQ scores show no improvements, which matches our re-
sults. On the other hand, our proposed approach, BPC(M)-level

Fig. 9. Spectrogram plots of an utterance at different situations: (a) clean
noise-rev-free, (b) noise-rev-corrupted, (c) noise-rev-corrupted and enhanced
by the SE baseline, (d) noise-rev-corrupted and enhanced by the BPC(M)-level
SE-E2E-ASR.

SE-E2E-ASR objective, promotes both STOI and PESQ by
0.073 and 0.011, respectively, on average. Therefore, we have
demonstrated that the proposed system can effectively handle
noise and reverberation issues simultaneously.

The spectrograms of a clean utterance, its noisy-reverberant
counterpart, and their enhanced signals are shown in Fig. 9. We
highlighted two speech regions in the clean utterance and used
them to compare the enhanced versions from the SE baseline
and BPC(M)-level SE-E2E-ASR. We observe from this figure
that the SE baseline does not recover the speech signals in the
regions of the red box, whereas the speech is preserved for
the proposed BPC(M)-level SE-E2E-ASR case.

5) Results for Impaired SE: The impaired utterances used in
this study were based on the TMHINT corpus, which has 1,200
Mandarin Chinese utterances. We used non-impaired utterances
from the TMSV corpus [63] as the target speech data and
dysarthric utterances as the input-impaired data to train the SE
model. The TMSV corpus included 13 males and five female
speakers, from which utterances from 13 male and four female
speakers with better pronunciation accuracy were used in our
task. The speech content in the TMSV corpus is similar to that
in the TMHINT corpus. For each speaker, 240 utterances were
used for training, 40 for validation, and 40 for testing. The
80-dimensional mel-spectrograms with 1024 DFT points and
a 144-point frameshift for the utterances were extracted using
the open-source ESPnet toolkit. The TTS-transformer model
was pre-trained and used for the ISE task. Referring to (1), the
transformer-based SE model was trained for 1000 epochs in
advance with the SE loss (lossSE) and then further trained for
another 1000 epochs by adding the BPC(M)-level E2E-ASR loss
(lossASR) to the SE loss. Parameter α was set to 0.001. Early
stopping was implemented during training.

Subjective evaluations were conducted to evaluate the perfor-
mance of impaired speech experiments. We randomly selected
four utterances produced by 10 speakers (eight males and two
females), which were processed by either the SE baseline or
SE-E2E-ASR. A total of 21 subjects performed the evaluation,
each given 120 samples (four samples × 10 speakers × three
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TABLE VI
SUBJECTIVE PREFERENCE EVALUATION FOR THE IMPAIRED SE

approaches) and requested to choose his/her preference among
the three types of utterances. The listening test was conducted
in a quiet environment, with an SNR level of approximately
55 dB. A Sennheiser HD599 headset was used, and the audio
was played through a Samsung Tab S6 device. The resulting
preference rates are presented in Table VI. It is surprising that
the unprocessed utterances were least preferable at 16.8%, while
both the SE baseline and SE-E2E-ASR with BPC(M) achieved
more than twice the preference rate than the unprocessed speech,
revealing the effectiveness of the SE models in amending im-
paired speech. In particular, the proposed SE-E2E-ASR obtained
a 9.6% higher preference rate than the SE baseline, showing that
the multi-objective training of SE and BPC(M)-level E2E-ASR
can further improve the speech quality of utterances converted
from impaired speech.

V. CONCLUSION

This study proposed a novel architecture that applies a BPC-
based E2E-ASR to guide the SE process with contextual broad
phonetic information to achieve superior speech quality and in-
telligibility. Three BPC clustering methods were investigated for
the English corpus, and the evaluation results confirmed the con-
text information of the BPC SE considerably over a wide range
of SNR conditions. Furthermore, with the word-to-IPA trans-
formation, we have extended the use of this novel approach to
the Mandarin corpus with similar BPC clusters as in the English
corpus experiments. Experimental results on three tasks, namely
speech denoising, speech denoising-and-dereverberation, and
impaired speech enhancement, verified the effectiveness of in-
corporating contextual broad phonetic information into SE to
improve enhancement results. The main contributions of this
study are as follows: (1) This is the first study that employed the
context information of broad phonetic/articulatory phonemes
classes for an end-to-end SE–ASR system. (2) We demonstrated
that using both knowledge-based and data-driven BPCs as en-
hancement targets can further improve the quality and intelligi-
bility of enhanced speech for both English and Mandarin. (3)
We validated that knowledge-based BPCs are generally more
flexible than data-driven BPCs and mono-phonemes, as they can
be used in a wider range of scenarios. The main focus of this
study is to examine the losses prepared by various pre-trained
models, including AM and E2E-ASR systems, to leverage the
SE performance. Our experimental results have validated the
efficacy of including contextual broad phonetic information in
SE training. In the future, we will further utilize the findings of
this study to enhance other DL-based speech processing tasks.
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