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Abstract—Speech Emotion Recognition (SER) is the task of
recognizing a speaker’s emotional state from speech. SER plays a
significant role in Human-Computer Interaction and psychological
assessment. Several kinds of time-frequency representations like
spectrograms, mel-frequency cepstrum coefficients (MFCCs), and
mel-spectrograms are commonly used to develop an SER system.
These representations use the Fast Fourier Transform (FFT) to
convert the time domain signal to the frequency domain. However,
the FFT has one fundamental limitation due to the uncertainty
principle, which does not simultaneously allow a good resolution in
both time and frequency domains. On the other hand, the multires-
olution property of wavelets can provide a good localization in both
time and frequency domains. Therefore, this article investigates
the competency of the wavelet transforms for SER. We propose
a Wavelet based Deep Emotion Recognition (WaDER) method
using an autoencoder and 1D convolutional neural network (CNN)
and long short-term memory (LSTM) networks. The autoencoder
is used to perform the dimensionality reduction of the wavelet
features then the latent space is used to classify the emotions using
the 1D CNN-LSTM model. We conducted a Monte-Carlo K-fold
validation using the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) dataset. For speaker-dependent (SD)
experiments, we achieved an unweighted accuracy (UA) of 81.45%
and a weighted accuracy (WA) of 81.22%. The results of the exper-
iments on the RAVDESS dataset show that the proposed method
performs better than the state-of-the-art methods, which use other
time-frequency representations.

Index Terms—Speech emotion recognition, wavelets, long short-
term memory (LSTM), convolutional neural networks (CNN),
autoencoders, dimensionality reduction.

I. INTRODUCTION

EMOTION recognition plays a vital role in Human-
Computer Interaction. We can use speech emotion recog-

nition (SER) to make the conversation between machines
and humans more intelligent. SER also has applications in
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healthcare. It can be used to identify psychological disor-
ders which can mitigate the risk of suicidal behaviors. Vir-
tual Emotion AI chatbots can provide personalized therapy by
interacting with patients online. SER can be used for emo-
tional speech generation as well. A London-based company,
DeepZen, partnered with NVIDIA to develop a deep learn-
ing model that can generate human-like emotional speech for
audiobooks.

Speech emotions have a tremendous amount of acoustic vari-
ance. Therefore, the first step is to identify distinguishable and
salient features in a voice segment to get a better recognition
rate in SER. Traditionally, researchers use features like mel-
frequency cepstrum coefficients (MFCC) [1], spectrograms,
mel-spectrograms, energy, fundamental frequency (F0), spectral
centroid, and zero-crossing rate. Additionally, many features can
be handcrafted using the time-domain features’ statistics. Over
the past several decades, Hidden Markov Models (HMM) [2],
[3], Gaussian Mixture Models (GMM), and Support Vector
Machines (SVM) [4], [5], [6] have been used for SER. Various
researchers have leveraged the combination of different features
to get a better recognition rate. Yogesh et al. [7] extracted
biospectral and biocoherence features from glottal and speech
waveforms. Seehapoch et al. [4] used features like fundamental
frequency, energy, zero-crossing rate, and linear prediction co-
efficients (LPC) to train an SVM model. Although these models
require fewer parameters and are highly interpretable, they have
a few limitations when capturing complex non-linear patterns
from data.

Deep learning has made a significant improvement in this
field. Researchers have developed variations of CNNs and
LSTMs to model the spatial and temporal dependencies from the
input features. Deep learning can extract salient and discrimina-
tive information from the input features to perform an accurate
classification. Spectrograms, Chromagrams, and MFCCs can be
fed to a CNN or LSTM network as inputs. In 2018, Zhang
et al. [8] proposed to use 3-channel log-mel spectrograms as
features to train their Deep Convolutional Neural Network.
The 3-channels of the mel-spectrogram were static, delta, and
delta-delta. The delta and delta-delta are the first and second
derivatives of the signal. This representation resembles an RGB
(red, green, and blue channels) image. In 2019, Zhao et al. [9]
used a local feature learning block (LFLB) and an LSTM model
to learn features from raw audio and log-mel spectrograms.
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Similarly, Khorram et al. [10] proposed a dilated CNN-based
model [11] to capture the long-term dependencies from data
while keeping the number of parameters low.

Recently, the attention mechanism gained much attention as
it can focus on the relevant parts of the input to make a decision.
Initially, the attention mechanism was introduced by Bahdanau
et al. [12] for the machine translation task. However, it has
been widely applied for classification purposes as well. Xie
et al. [13] proposed an attention-based LSTM model for SER to
utilize the difference in emotional saturation between multiple
time frames. Mirsamadi et al. [14] also used a bidirectional
LSTM with an attention mechanism to focus on the emotionally
salient parts of speech. Xu et al. [15] proposed a method called
Head Fusion based on a multi-head attention mechanism for
speech emotion recognition. They used MFCC features after
dividing each sample into multiple fixed-size utterances. They
also experimented with different types of noise injections which
increased the robustness of the model. Yu et al. [16] used IS09
and mel-spectrograms as features and trained them using an
attention-based LSTM model. Some methods used raw audio to
perform SER [17]. Since the human auditory system is designed
to perceive the frequency and amplitude of sound [18], the focus
of this article is to utilize frequency-based features instead of raw
audio.

However, most of these methods utilize spectrograms,
MFCCs, and mel-spectrograms which use the FFT to convert
the time domain signal to the frequency domain. But due to the
uncertainty principle, FFT cannot simultaneously get a good
resolution in both time and frequency domains. FFTs use a
fixed-size window to capture different frequencies. The higher
frequencies require a smaller window and the lower frequencies
require a bigger window. However, the multiresolution property
of the wavelet transforms provides localization in both time and
frequency domains simultaneously. In the early 80 s, orthogonal
wavelets were discovered by Strömberg [19]. In 1982, Alex
Grossman and Jean Morlet developed a continuous wavelet
transform [20], [21] for seismic frequency analysis. With the
advent of deep learning, wavelet transforms once again gained
attention for time series classification. Some researchers have
also investigated wavelets for SER tasks using deep learning
approaches. Wavelet transform features can have very high
dimensionality. Earlier it was challenging to train a neural net-
work using such data due to the computational limits. However,
high-dimensional data can be used more easily nowadays to train
a deep neural network due to the increased computational power.

Zhiyan et al. [22] used wavelet features and an HMM model to
classify Chinese emotional speech. Shegokar et al. [23] used the
continuous wavelet transform (CWT) and prosodic coefficients
as features and classified them using an SVM. They achieved an
accuracy of 60.1% using quadratic SVM. However, they used
principal component analysis (PCA) to reduce the dimensional-
ity of the wavelet features. We found that the continuous wavelet
transform features are highly non-linear. Therefore PCA is not
a suitable dimensionality reduction method. In this article, we
deal with dimensionality reduction using an autoencoder [24].
Hamid et al. [25] used the prosodic, spectral, and wavelet

features to classify Arabic speech emotions. Many researchers
have also utilized critical bands for speech-related tasks like
SER and speaker identification. In 1961, Eberhard Zwicker
proposed a psychoacoustic scale called Bark Bands [26]. The
center frequencies in the bark bands are based on the human
perception of different frequency ranges. Lalitha et al. [27] used
a combination of the mel-scale and the bark-scale to perform
SER and achieved encouraging results. Jiang et al. [28] used bark
bands as a critical band division method and classified different
emotions using a support vector machine. Their results showed
that their proposed method performed better compared to MFCC
features. Similarly, Fernandes et al. [29] also used bark bands
as features and used an LSTM and a Bidirectional LSTM model
for classification.

Several researchers have utilized wavelet packets also for
SER. The wavelet packets is a generalization of multiresolution
decomposition. It divides the frequency bands into several levels.
Additionally, it decomposes the high-frequency portions also
that are not subdivided in multiresolution analysis [30]. In 2020,
Wang et al. [31] used the wavelet packet coefficients for SER and
made a comparison with the MFCC features. They used a Se-
quential Floating Forward Search method for feature selection.
Their experiments showed that the classifiers trained using the
wavelets feature achieved better results than the MFCC features.
Kishore et al. [32] used MFCC and Sub-Band Cepstral (SBC)
features to classify emotions using a GMM. They computed SBC
using the wavelet packet transform instead of the FFT. They
reported that SBC features yielded a 70% accuracy and MFCC
features yielded a 51% accuracy using the Surrey Audio-Visual
Expressed Emotion (SAVEE) dataset.

Feng et al. [33] used wavelet packets and computed the energy
of each sub-band to classify speech emotions. They classified
these features using an LSTM based model. He et al. [34] pro-
posed new features by computing energy entropy from wavelet
packet frequency bands. They classified the features using the
GMM algorithm. Huang et al. [35] proposed sub-band spectral
centroid weighted wavelet packet cepstral coefficients for clas-
sifying emotions. Additionally, they fused the prosody and voice
quality features with the wavelet packet features and classified
them using a Deep belief network. Their results showed that
this method performs SER efficiently even under noisy condi-
tions. The use of wavelet packets proved useful in recognizing
emotions under real-world noise conditions also [36].

As discussed above, researchers often use a combination of
several features to increase the accuracy of an SER system. In
this article, instead of using several kinds of time-frequency rep-
resentations, we aim to use only one kind of robust representation
that can capture distinguishable information. A comparison is
made with other methods using other time-frequency represen-
tations where only one kind of representation is used instead
of the fusion of different representations. Additionally, in many
methods, the wavelets are not utilized efficiently. Therefore, we
aim to revisit the wavelet transforms and explore their usage
in SER. Fig. 3 illustrates the potential of using the wavelet
multiresolution analysis for SER. The main contributions of this
article are highlighted as follows:
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1) We investigate the potential of the wavelet transform as
features for SER by utilizing their multiresolution prop-
erty. The continuous wavelet features are extracted within
a suitable frequency range by analyzing the frequencies
carrying the salient information.

2) We propose a method called WaDER to perform SER,
which consists of two parts. Firstly, due to the high dimen-
sionality of the wavelet features, an autoencoder is used
to reduce the dimensionality of the wavelet features at
each timestep. Secondly, a 1D CNN-LSTM based model
performs classification using the latent space of the au-
toencoder.

3) We found that the wavelet transform features can effi-
ciently distinguish between several emotions and perform
an accurate classification compared to the other time-
frequency representations. We achieved an unweighted
accuracy (UA) of 81.45% and a weighted accuracy (WA)
of 81.22% for speaker-dependent experiments using the
RAVDESS dataset.

A list of nomenclature used throughout this article is provided
in Table I.

II. DATA

The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [37] is used in this research. RAVDESS
dataset is an example of simulated dataset. It contains speech
and song samples with different emotions in a North American
accent. Only speech emotion samples are used in this work. The
16-bit audio files are sampled at 48 kHz and provided in the
Waveform Audio File (WAV) format. The number of utterances
is 1440. There are 24 professional actors and 60 trials per actor.
Out of the 24 professional actors, 12 are female, and 12 are
male. Each actor is asked to speak two different sentences with
different emotions. The two sentences are “Dogs are sitting by
the door” and “Kids are talking by the door”.

The speech emotions categories include neutral, calm, happy,
sad, angry, fearful, disgust, and surprised. Apart from the neutral
category, each category of emotions is expressed at two levels
of emotional intensity (normal and strong). There are 192 utter-
ances of each emotion except the neutral state. The neutral state
only has 96 utterances.

III. PROPOSED METHOD: WADER

A. Preprocessing

The audio files are sampled at 16 kHz to reduce the size of data
without affecting the speech quality and intelligibility. Firstly,
each audio clip’s leading and trailing silence is trimmed because
it contains no useful information. However, the silence occurring
between words is not removed. It provides information about the
speaking rate and helps distinguish between weak and strong
emotions. For example, people tend to speak faster when they
are angry; therefore, the duration of the silence will be less.
However, when people speak with a calm emotion, the duration
of silence can be longer. Secondly, each clip is normalized such
that the mean is 0 and the standard deviation is 1.

TABLE I
LIST OF NOMENCLATURE USED IN THIS PAPER

B. Data Augmentation

Since there are fewer samples in the RAVDESS dataset, most
SER algorithms tend to overfit. Therefore, data augmentation is
performed to generate new samples and make the SER system
more robust to noise. Additive White Gaussian Noise (AWGN)
is the most widely used noise addition method. It can model
the random processes that naturally occur in nature. Therefore,
new samples are augmented from each trimmed audio sample
using AWGN. The AWGN can be represented by (1) and (2).
The noise is added with a Signal-to-Noise Ratio (SNR) between
15 dB and 30 dB.

Zt ∼ N (0, σ2) (1)

where t is a discrete timestep, σ2 is the variance of the noise,
and Z is the noise that is drawn from a normal distribution.

Yt = Xt + Zt (2)

where t is a discrete timestep, Y is the output/ augmented signal,
and X is the input signal.



2046 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Fig. 1. Morlet mother wavelet.

C. Wavelet Feature Extraction

After data augmentation, each audio sample’s continuous
wavelet transform (CWT) is computed. The CWT of a signal
is represented by (3).

W(a, b) =
1√
a

∫ +∞

−∞
f(t)ψ̃

(
t− b

a

)
dt (3)

where a is the scale parameter, b is the translation parameter,
ψ(t) is the mother wavelet, ˜ψ(t) is the complex conjugate of
the mother wavelet, and t is time. The scale and translation
parameters in the CWT must be discretized to implement the
algorithm. Different wavelet frequencies, Fa, are given by Fc

aδ ,
where δ is the sampling period, and Fc is the central wavelet
frequency which is set to 1 Hz. If the sampling period is 1

16000
seconds, the scales 1, 2, and 3 correspond to 16 kHz, 8 kHz,
and 5.33 kHz. Different discrete scales, a, are obtained by
setting their values to positive integers, a ∈ {1, 2, 3, . . .N}. N
is chosen such that the frequency corresponding to the scale N
is more than 20 Hz because the lower limit of human hearing
is 20 Hz. Similarly, the translation values, b, in the CWT are
discretized to positive integer values, which are the timesteps.
b ∈ {1, 2, 3, . . ., T}, where T is the total number of timesteps in
the signal.

As parameters a and b change, different wavelets can be
generated from the mother wavelet, which are called daugh-
ter wavelets. There are several kinds of mother wavelets like
Daubechies, Mexican Hat, Symlet, Ricker, Haar, Morlet, etc.
Different kinds of wavelets are used for different tasks. Morlet
wavelet is well suited for speech and image processing tasks
because it is closely related to human perception of hearing and
vision. Over the past decade, it has been used for Voice Activ-
ity Detection (VAD), speaker recognition, and speech emotion
recognition (SER).

The real-valued Morlet wavelet is used in this article and is
shown in Fig. 1. The real-valued Morlet wavelet is given by (4).

ψ(t) = cos (ξt) e
−t2

2σ2 (4)

where σ is the width of the Gaussian, ξ controls the time and
frequency resolutions trade-off, and t is time. The values of σ2

and ξ are usually set to 1 and 5, respectively [23].
As the scale parameter increases, the daughter wavelet dilates/

expands and captures lower frequencies. If the scale decreases,
the daughter wavelet captures higher frequencies. If the mother
wavelet is dilated by a factor of 2, it signifies that the frequency
content is shifted by an octave. The number of octaves deter-
mines the number of frequencies being investigated.

For our experiments, the absolute values of the CWT features
are taken. Now the crucial part is the selection of frequencies or
scales. The human ear can hear frequencies between 20 Hz and
20,000 Hz. However, most speech lies between the 20 Hz and
4000 Hz range [38]. Therefore, selecting frequencies outside
this range is not helpful. Additionally, to observe the difference
in the distribution of the frequencies present in the male and
female voices, the following approach is used:
� Firstly, each audio clip is standardized in the time domain

(the mean is 0 and the standard deviation is 1).
� Secondly, the spectrogram of each audio clip is computed.
� Thirdly, all the frequencies are weighted by their ampli-

tudes, and a histogram is computed as shown in Fig. 2. This
process is repeated for both males and females separately.

In the histograms, the frequencies between 80 Hz and 2000 Hz
show a distinct pattern for males and females. Therefore, 125
frequencies in the range 80 Hz and 2000 Hz are extracted using
their corresponding closest scales.

The CWT of all the emotions is shown in Fig. 3. The CWT
of several emotions looks distinguishable. In Fig. 3, it can be
seen that the CWT features of the “neutral”, “calm”, and “sad”
emotions look similar. They have higher amplitudes in both
lower and higher scales. However, the CWT features of emotions
like “angry” and “disgust” show a higher amplitude in the lower
scales (higher frequencies) only. It is due to a higher pitch
when speaking loudly or angrily. The CWT of some emotions
show a similar pattern, and it is difficult to differentiate between
them visually. However, deep learning models should be able
to uncover the complex underlying patterns from these CWT
features to classify them accurately.

D. Fixed Size Segments Generation

Now we have the CWT features of all the audio samples.
However, the duration of the audio samples is variable (between
3 and 5 seconds). To generate fixed-sized segments, one-second
long segments are extracted from each sample with an overlap of
60%. The reason behind choosing one-second long segments is
to capture multiple words and the pauses between them. Usually,
some words are spoken in a more neutral manner than others.
When we consider multiple words, we can estimate the emotion
in that segment more accurately. Additionally, choosing long
segments ensures that the segment’s target emotion will not dif-
fer significantly from the whole utterance. The pauses between
the words indicate how two words are connected, which helps
distinguish between weaker (calm, neutral, sad) and stronger
(angry, disgust, happy, surprised) emotions.

The ground truth label of the original utterance is assigned to
its segments also. However, some portions of speech can carry a
different (mostly neutral) emotion than the whole utterance. To
address this issue, some methods dynamically generate pseudo
labels for each segment [39]. However, in this article, the original
utterance’s label is also assigned to all its segments. During
testing, the majority vote of the prediction of each segment is as-
signed to the whole utterance. Since the sampling rate is 16 kHz,
one-second long segment corresponds to 16000 samples. There-
fore, the dimensionality of each segment is (16000, 125), where
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Fig. 2. A histogram of male and female audio samples’ frequencies weighted by their amplitudes using the RAVDESS dataset is shown in (a) and (b), respectively.
Each audio sample is standardized in the time domain before computing its spectrogram. The histogram shows the difference in the distribution of frequencies
present in the male and female voices. Most speech lies between the 20 Hz and 4000 Hz range. However, the region between 80 Hz and 2000 Hz (shown in gray)
specifically shows the difference in the distribution of frequencies; therefore, the wavelet features in this frequency range are extracted.

the number of timesteps is 16000, and the number of scales is
125.

Currently, one major issue with the CWT features is the
requirement of large-sized arrays, which makes it difficult to
load the entire data during training. Therefore, the temporal
resolution is decreased by a factor of 4 by treating the CWT
features like images using inter-area interpolation.

Now, the dimensionality of each segment is (4000, 125),
where the number of timesteps is 4000, and the number of scales
is 125. All the CWT features are standardized to have a mean of
0 and a standard deviation of 1.

E. Feature Compression

Currently, the number of features is significantly high at
each timestep. Due to high dimensionality and fewer samples,
the deep learning model is prone to overfitting. Therefore, a
dimensionality reduction technique is applied.

Firstly, the most popular and simple dimensionality reduction
technique, PCA, is explored. Currently, the CWT features form
a (N × 4000× 125) matrix, whereN is the number of samples
(segments). The CWT features are reshaped to (N × 4000 ∗
125) to apply PCA.

A scatter plot of the first two principal components is shown
in Fig. 4. It is evident from the scatter plot that the data is highly
non-linear. But the PCA performs a linear transformation. There-
fore, PCA is not a suitable dimensionality reduction method in
this case.

Hence, the autoencoder is chosen to perform dimensionality
reduction as it can also model non-linear data.

F. Deep Learning Architecture

The proposed deep learning architecture consists of an autoen-
coder and a classifier module. The autoencoder is used to reduce
the dimensionality of features while keeping the number of
timesteps the same. The classifier takes the latent space as input
and classifies different emotions. The deep learning architecture
is shown in Fig. 5.

Let the input CWT features be X , where X ∈ RT×D, where
T is the number of timesteps and D is the dimensionality of
features. The encoder and decoder are represented by e(.) and
d(.), respectively. The latent space, z, is represented by (5).

z = e(X) (5)

where z ∈ RT×D1 , and D1 < D.
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Fig. 3. The standardized Continuous Wavelet Transform (CWT) features of different emotions. A sample of each emotion is taken from the RAVDESS dataset.
The sentence spoken in all the samples is “Kids are talking by the door”. For convenience, the features from a 1 s long clip are extracted from each sample. The
sampling rate is 16 kHz. Therefore, the number of timesteps shown is 16000× 1 = 16000. In each emotion, only the words “Kids are talking” are uttered during
the 1 s duration, which are annotated. The x-axis shows the time in seconds. The y-axis shows 125 scales, and the z-axis shows the amplitude. The scales are
inversely proportional to frequencies. Note that the color axes vary by the plot to show the differences in amplitude per emotion.

The reconstructed CWT features, X ′, are described by (6).

X′ = d(z) (6)

where X ′ ∈ RT×D.
The encoder and decoder use the time-distributed fully con-

nected and time-distributed Batch Normalization layers. The
time-distributed operation applies a specific layer to every
timestep. This is done because the CWT features are viewed
as a multivariate time series instead of a standard image here.
Additionally, the temporal resolution is kept the same in the
autoencoder. Only the dimensionality of the features at each
timestep is reduced. Therefore, the feature maps are computed
at every timestep using time-distributed layers.

The reconstruction loss, La, to train the autoencoder is given
by (7).

La =

K∑
k=1

(||X −X ′||2) (7)

where K is the number of samples in the training data.
In our experiments, the values of D, D1, and T are 125, 8,

and 4000, respectively.
The classifier takes the latent space, z, as input. The classifier

utilizes 1D CNNs to extract the spatial features at each timestep.
Then, the LSTM layer is used to extract the long-term temporal
dependencies as the input sequence length is 4000.

To extract the spatial dependencies across the scales at each
timestep, three 1D convolutional layers, followed by the ex-
ponential linear unit (ELU) activation, Time-Distributed Batch
Normalization, and MaxPooling layers, are used. The purpose
of each layer is explained below:

1) 1D CNN: 1D convolutional layers are applied to extract
the spatial dependencies from the compressed frequency
information in the latent space at each timestep. Instead
of 2D CNN layers, 1D CNN layers are used because
1D CNNs require less memory during processing and
are less computationally expensive. Moreover, the CWT
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Fig. 4. The scatter plot of the first two principal components. The PCA is
applied on the Continuous Wavelet Transform (CWT) features. It can be clearly
observed that the features are non-linear as there is a significant spread in multiple
directions.

features are considered here as a multivariate time series.
Therefore, 1D CNN layers are utilized to learn the local
features at each timestep.

2) ELU activation: The ELU activation is similar to ReLU
activation but it can produce negative outputs [40]. The
ELU activation is represented by (8).

ELU(x) =

{
x if x > 0

α(ex − 1) if x <= 0
(8)

where α is the hyperparameter that adjusts the saturation
for negative input values.
The ELU activation alleviates the effect of the vanish-
ing gradient problem. Additionally, the ELU activation
produces negative values, which pushes the mean of the
activations closer to zero and results in faster training.
Clevert et al. [40] showed that ELU activations lead to
better generalization performance.

3) Batch Normalization: The distribution of the inputs of
layers keeps changing in the neural network as the pa-
rameters of the previous layers change, which leads to
slower training. This problem is termed “Internal Covari-
ate Shift”. Batch Normalization [41] adjusts the means and
variances of layer inputs by normalizing them. The Batch
Normalization layer reduces the dependency of gradients
on initial parameters and makes the training faster by
allowing higher learning rates [41], [42].
The time-distributed Batch Normalization layer applies
the Batch Normalization at every timestep separately.

4) Max Pooling: 1D Max Pooling is used to reduce the
temporal resolution of the CWT features by taking the
maximum of a pooling region.

Let the input to the 1D CNN layer be a time series X(t). The
input X(t) is convolved with a kernel w(t) of size l to obtain
the output O(t), which is described using (9).

O(t) = X(t) ∗w(t) =
l∑

k=−l

X(k) ·w(t− k) (9)

The weights of the kernel w(t) are initialized using Xavier
normal initialization. Then, the output of the CNN layer can be
represented using (10).

Ol
i = bli +

∑
k

Ol−1
k ∗wl

k (10)

where Ol
i is the ith output feature at lth layer, Ol−1

k is the kth

input feature at the (l − 1)th layer, wk denotes the convolution
kernel at the kth index, and bli is the bias term for the ith output
feature at the lth layer.

The ELU activation function, σ(.), is applied on the convolu-
tion output, Ol

i. A time-distributed Batch Normalization layer,
BNTD, is applied to normalize the output of the activation
function at each timestep, which is represented by (11). The
α parameter in ELU activation is set to 1 (default value).

ali = BNTD

(
σ
(
Ol

i

))
(11)

Now, the outputs are passed into a MaxPooling layer which
is shown in (12).

hl
i = max

∀u∈Ωi

alu (12)

where Ω represents the pooling region with index i, alu is the
input feature of the lth MaxPooling layer at index u, and hli is
the output feature of the lth MaxPooling layer at index i.

After extracting the features using the 1D CNN layers, an
LSTM layer is applied to extract the long-term contextual depen-
dencies from the CWT features. LSTM acts as a global feature
extractor. The output from the LSTM cell, hlt, can be expressed
using (13) to (17) [43].

ft = σg
(
Wfh

l−1
t +Ufh

l
t−1 + bf

)
(13)

it = σg
(
Wih

l−1
t +Uih

l
t−1 + bi

)
(14)

ot = σg
(
Woh

l−1
t +Uoh

l
t−1 + bo

)
(15)

ct = ft 	 ct−1 + it 	
(
σc

(
Wch

l−1
t +Uch

l
t−1 + bc

))
(16)

hl
t = ot 	 ct (17)

where the W , U , and b terms denote the neural network weight
matrices, σg is the logistic sigmoid function. i, o, and f are the
input, output, and forget gates, respectively. it, ot, and ft are
the gate vectors, c is the cell state, the operator 	 represents the
element-wise product of the vectors, σc is the hyperbolic tangent
function, and l and l − 1 denote the index of input and output
features.

Note that our experiments use no activation on the LSTM
layer’s output (17).

The output of the LSTM layer is finally passed through fully
connected layers, and a softmax activation is used on the final
layer. The softmax output, ŷ is represented by (18) and (19).

h1 = BN
(
σe

(
W1h

l + b1

))
(18)

ŷ = σs (W2h1 + b2) (19)

where hl is the output of the LSTM layer, W1 and W2 are the
neural network weight matrices,BN is the Batch Normalization
layer, σe is the ELU function, σs is the softmax function, h1 is
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Fig. 5. The deep learning model consists of two parts: (a) The Autoencoder architecture. It reduces the dimensionality of the Continuous Wavelet Transform
(CWT) features. The number of timesteps is kept the same, and only the number of features is reduced. (b) The Classifier model. The latent space of the autoencoder
is used to classify all eight emotions from the RAVDESS dataset. T is the number of timesteps. D and D1 are the dimensionality of CWT features and latent space,
respectively.

the output of the first fully connected layer, and b1 and b2 are
the bias matrices.

Using the softmax probabilities, the predicted class, yclass, is
given by (20).

yclass = argmax
i

ŷi (20)

where ŷi is the probability of the ith class.
The classifier is trained using the categorical cross-entropy

loss, Lc, which is represented by (21).

Lc =

K∑
k=1

yk log(ŷk) (21)

where K is the number of samples in the training data, yk is the
ground truth of sample k, and ŷk is the prediction of the sample
k.

After predicting the labels of segments, the majority vote,
yvote, of the labels of all the segments is assigned to the whole
utterance.

The pseudo-code of the entire method is presented in
Algorithm 1.

IV. EXPERIMENTS

A. Evaluation Metric

The most widely used evaluation metrics for SER are
weighted accuracy (WA) and unweighted accuracy (UA). WA is
the average accuracy of all the samples which can be computed
using (22).

WA =

∑K
k=1 nk∑K
k=1Nk

(22)

where k is the number of classes, nk is the number of correctly
classified samples in class k, and Nk is the total number of
samples in class k.

UA is each class’s average accuracy, which can be computed
using (23). When the class distribution is skewed, WA is not a
reliable metric. Therefore, for unbalanced classes, UA is used
primarily.

UA =

∑K
k=1 nk/Nk

K
(23)
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Algorithm 1: Speech Emotion Recognition using the Con-
tinuous Wavelet Transform (CWT) Features.

Input:Y = {Y1, Y2, . . ., YN}: N standardized audio
clips from the RAVDESS dataset after trimming the
leading and trailing silence.

Output:P = {}: The predicted labels of the audio clips.
1: Xall = Training CWT features
2: for i = 1 to N do
3: Read the audio clip, Yi. Augment two new samples,

Y 1
i and Y 2

i by adding Additive White Gaussian
Noise with an SNR between 15 dB and 30 dB.

4: Extract the CWT features from all three samples.
5: Divide the CWT features into fixed sized segments.
6: Decrease the temporal resolution of CWT features,

R16000×125 → R4000×125.
7: Append the CWT features into the array, Xall.
8: end for
Xall is a (N1 × T ×D) matrix, where N1 is the number
of segments, T is the number of timesteps, and D is the
dimensionality of CWT features.

9: Standardize the features array, Xall.
10: Train the autoencoder using features Xall.
11: Train an ensemble of seven classification models. Use

the latent space, z ∈ RT×D1 , of the autoencoder as the
input features for the classification model. D1 is the
dimensionality of the latent space and D1 < D.

12: Segment-level prediction: Make prediction, yclass, for
each segment using the ensemble of models.

13: Utterance-level prediction: Compute the majority
vote, yvote, of the predicted labels of segments to
make prediction at the utterance level

14: Append yvote into the array P .
15: return P
For the experiments, the value of T, D, and D1 are 4000,
125, and 8, respectively.

where k is the number of classes, nk is the number of correctly
classified samples in class k, and Nk is the total number of
samples in class k.

B. Experimental Setup

A speaker-dependent (SD) speech emotion recognition is
performed here. A Monte Carlo experiment is conducted to get
a robust estimate of performance. The Monte Carlo simulation
involves seven experiments overall. At the beginning of each
experiment, data is randomly split into training and testing. 85%
of the samples from each class are used for training, and 15%
of the samples from each class are used for testing.

Note that the same training data is used for both autoencoder
and classifier models to prevent data leakage.

1) Autoencoder: The autoencoder is trained using 5-fold
cross-validation. In each fold, 10% of the data is used
for validation. The model is trained for 40 epochs in each
fold. The batch size is set to 128, and the learning rate
is set to 0.0001. The autoencoder model is trained using

Fig. 6. Confusion matrix of the eight emotions classification from the
RAVDESS dataset. The Continuous Wavelet Transform (CWT) features are
used to classify different emotions. The deep learning model yielded a mean
UA (%) and WA (%) of 81.45± 1.19% and 81.22± 1.31%, respectively. The
highest UA (%) and WA (%) achieved are 83.4% and 83.7%, respectively. A
speaker-dependent (SD) speech emotion recognition is performed here.

TABLE II
THE MEAN SQUARED ERROR, AND THE R2 SCORE OF THE RECONSTRUCTED

CONTINUOUS WAVELET TRANSFORM (CWT) FEATURES FROM THE

AUTOENCODER. THE RAVDESS DATASET IS USED HERE

the Adam optimizer and the mean squared error (MSE)
loss function. The mean UA (%) and WA (%) from the
Monte Carlo experiment are reported. The mean squared
error andR2-score of the reconstructed CWT features are
shown in Table II.

2) Classifier: The classification deep neural network is
trained using 8-fold cross-validation. In each fold, 10%
of the data is used for validation. The model is trained for
25 epochs in each fold. The batch size is set to 64, and the
learning rate is set to 0.0001. The classifier model is trained
using the Adam optimizer and categorical cross-entropy
loss function. An ensemble of 7 classification models is
used to make robust predictions. All the models have the
same architecture but are initialized with different weights.

The autoencoder and the classifier are trained using the CWT
features of segments and not the whole utterance. Therefore,
after predicting the labels of segments, a majority vote of the
predicted labels of all the segments is taken. The label of the
majority of the segments is assigned to the whole utterance. The
tie is broken by selecting a random sample. In the autoencoder
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TABLE III
COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART SER METHODS

and the classifier models, experiments are conducted by switch-
ing the order of the batch normalization and ELU activation
layers, and a similar performance is observed.

C. Results

The mean UA (%) and WA (%) achieved from the Monte
Carlo experiment are 81.45± 1.19% and 81.22± 1.31%, re-
spectively. The confusion matrix of one of the experiments is
shown in Fig. 6. The 95% confidence interval (CI) of UA (%) is
[78.80, 83.11]%. The 95% CI of WA (%) is [79.38, 83.05]%. The
highest UA and WA achieved are 83.4% and 83.7%, respectively.

D. Comparison and Analysis

To validate the effectiveness of the proposed method,
WaDER, a comparison is made with the state-of-the-art methods
in terms of speaker-dependent unweighted and weighted accu-
racy. The comparison is made using the mean accuracy reported
by different methods, [15, Tab. VII], and [48, Tab. IX]. The
proposed method outperforms all the other methods in terms of
unweighted and weighted accuracy. The best unweighted and
weighted accuracies achieved by our method are 83.4% and
83.7%, respectively. Our method is similar to the work done
by Aghajani et al. [49]. One difference is that we have reduced
the dimensionality of the wavelet features using an autoencoder
and chosen the wavelet scales carefully. The classifier feature
extraction blocks are slightly similar to the local feature learning
block (LFLB) by Zhao et al. [9]. Some methods show better re-
sults than our method. However, a direct comparison with those
methods is not possible because either they are classifying only a
few classes from a benchmark dataset or they use a combination
of various features in their method [48]. These methods focus
on increasing SER accuracy by combining different kinds of
features. However, this work aims to explore the potential of the
wavelet transform as features for SER. Additionally, instead of
time-frequency domain features, some methods [50], [51] use
embeddings from a pretrained model as features to train their
SER model. Therefore, a comparison is not made with such
methods. However, Farooq et al. [51] achieved a mean weighted
accuracy of 81.3%, which is only 0.1% more than our method’s
mean weighted accuracy. Farooq et al. [51] used the features
from a pretrained Alexnet, which resulted in a better perfor-
mance. The 95% confidence interval of our model’s weighted

and unweighted accuracies also overlaps with the accuracies
reported by Kwon et al. [46].

The confusion matrix in Fig. 6 shows that the proposed
method shows high accuracy for all the emotions. However,
some confusion exists between “neutral” and “calm” samples.
It is quite challenging to differentiate between “neutral” and
“calm” samples as they both have similar pitch and speak-
ing rates. It is difficult for human listeners also to distinguish
between these two classes with a 100% accuracy. Therefore,
several methods sometimes merge these two classes into a single
class for classification because of their high similarity. Similarly,
there are some ambiguities between “calm” and “sad” samples as
well. Some strong emotions like “angry”, “disgust”, “surprised”,
and “fearful” also have slight confusion as they all possess higher
amplitudes in higher frequencies.

One key point was reducing the dimensionality of the contin-
uous wavelet transform features. The autoencoder compresses
the wavelet features by a factor of 15.6. It can be seen from
Table II that the autoencoder is able to reconstruct the data from
the latent space efficiently. The optimal size of latent space was
found to be (4000, 8) (the original size was (4000, 125)) after
experimenting with different latent space sizes. If the size of the
latent space is further decreased, more information is lost, and
the wavelet features are reconstructed with a higher loss. On
the other hand, if the size of the latent space is increased, the
classifier begins to overfit. The primary reason behind choosing
an ensemble of seven models is to avoid overfitting. Since the
RAVDESS dataset contains fewer samples, new samples are
augmented by adding additive white gaussian noise with an SNR
between 15 dB and 30 dB, which results in a robust performance.
However, the model is still very prone to overfitting. If the model
is trained for more epochs, the model immediately begins to
overfit. Therefore, the training is stopped as soon as the model
begins to overfit. However, the proposed method still outper-
forms the other methods in terms of weighted and unweighted
accuracy.

V. CONCLUSION

This article uses the continuous wavelet transforms as features
to perform speech emotion recognition. The proposed method,
WaDER, firstly uses an autoencoder to reduce the dimensionality
of the wavelet features. Secondly, the latent space is used to
perform classification using an ensemble of seven deep neural
networks. The experiments are conducted on the RAVDESS
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dataset. We observed that the continuous wavelet transform
features are able to distinguish between several emotions and
perform an accurate and robust classification. We showed the po-
tential of utilizing the multi-resolution property of the wavelets
to classify emotions. However, the current methodology still
requires some improvements. Firstly, extracting features from
frequencies that carry the most discriminative emotional infor-
mation could improve the SER performance. A channel-wise
attention mechanism that can extract the salient features from
the frequencies at each timestep can be used to achieve this.
Secondly, a new strategy is required to overcome the severe
overfitting problem. Thirdly, we need to extend the model to
the speaker-independent (SI) scenarios and evaluate the per-
formance. Our future work will focus on overcoming these
challenges and developing a more efficient SER architecture.
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