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Grouped Feedback Delay Networks With
Frequency-Dependent Coupling
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Abstract—Feedback Delay Networks are one of the most popular
and efficient means of generating artificial reverberation. Recently,
we proposed the Grouped Feedback Delay Network (GFDN), which
couples multiple FDNs while maintaining system stability. The
GFDN can be used to model reverberation in coupled spaces that
exhibit multi-stage decay. The block feedback matrix determines
the inter- and intra-group coupling. In this article, we expand on
the design of the block feedback matrix to include frequency-
dependent coupling among the various FDN groups. We show
how paraunitary feedback matrices can be designed to emulate
diffraction at the aperture connecting rooms. Several methods for
the construction of nearly paraunitary matrices are investigated.
The proposed method supports the efficient rendering of virtual
acoustics for complex room topologies in games and XR applica-
tions.

Index Terms—Feedback delay network, artificial reverberation,
coupled rooms, paraunitary matrices, diffraction.

I. INTRODUCTION

D ELAY network reverberators, such as the Feedback Delay
Network (FDN), are often preferred for flexible, real-time

simulations because of their computational efficiency. Feedback
delay networks are efficient IIR structures for synthesizing room
impulse responses (RIRs). RIRs consist of a set of sparse early
reflections which increase in density over time, building toward
late reverberation where the impulse density is high and sta-
tistically Gaussian. Feedback delay networks are composed of
delay lines in parallel, which are connected through a feedback
matrix (or mixing matrix), which is unitary to conserve system
energy [1]. Schlecht and Habets expanded the set of matrices
that preserve energy in FDNs to unilossless matrices [2]. The
input signal traverses through the delay lines and the mixing
matrix, building echo density over time. Jot proposed adding
decay filters to the delay lines to yield a desired frequency
dependent T60 [3], [4]. Since then, FDNs have become one of
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the most popular structures for synthesizing reverberation due
to the relative efficiency of the approach.

Recent research on FDNs has focused on mixing matrix
design to increase echo density [5], modal analysis [6], [7], time-
varying FDNs [8], allpass FDNs for colorless reverberation [9]
and scattering FDNs for dense reverberation [10]. Grouping of
delay lines to control direction-dependent energy decay, known
as the Directional Feedback Delay Network, was proposed by
Alary et al. in [11].

Coupled spaces with distinctly different reverberation times
exhibit multi-stage decay [12]. Coupled spaces are found in
apartments, offices, concert halls, and churches. Eyring devel-
oped a model for energy decay in coupled rooms and rooms with
distinctly different absorbing surfaces [13]. Xiang’s work [12],
[14], [15] has shed further light on the analysis and statistical
modeling of energy decay in coupled spaces. In [16], a round-
robin study was conducted comparing coupled volume simu-
lations in various geometrical and wave-based room acoustics
software. The simulation of coupled room acoustics with delay
network architectures is less investigated.

We proposed the Grouped Feedback Delay Network
(GFDN) [17] to connect multiple FDNs whilst maintaining
system stability. In a GFDN, groups of delay lines have the
same target T60 response associated with them, compared to
traditional FDNs, in which all delay lines share the same decay
characteristics. The interaction among the different delay line
groups is controlled by a block mixing matrix. The diagonal
sub-matrices of the block mixing matrix control the mixing in
the individual rooms or among walls made of different materi-
als, whereas the off-diagonal sub-matrices control the coupling
among the rooms or wall materials. The GFDN was used to
model coupled rooms and a room made of different materials
where multiple concurrent decay times are observed. The discus-
sion on coupled room modeling was further elaborated in [18]
by comparing the GFDN’s behavior to measurements. Similarly,
a coupled volume extension to the scattering delay network was
proposed recently in [19].

Schlecht has proposed adding delays [5] and filters [10] to the
feedback matrix in an FDN. This has the advantage of increasing
the echo density of the RIR more quickly, leading to dense,
rich-sounding reverberation. Inspired by the idea, we incorpo-
rate frequency-dependent feedback matrices into the GFDN.
Paraunitary matrices constitute a subset of lossless matrices. If
the frequency-dependent feedback matrix is lossless, the overall
T60 is preserved despite introducing filtering effects [10]. This
article describes how filter feedback matrices (FFMs) can be
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incorporated into the GFDN to preserve stability and emulate
wave effects, such as diffraction at the aperture connecting
coupled rooms. The goals of this article are
� To investigate criteria for designing stable, frequency-

dependent feedback matrices in GFDNs.
� Propose the design of paraunitary (or nearly paraunitary)

matrices for coupling multiple FDNs.
� Give applications of frequency-dependent feedback matri-

ces by modeling diffraction in coupled rooms.
Although this article focuses on coupled room modeling,

the paraunitary matrix design principles discussed here have
a broader application area. They can be used to model any
frequency-dependent, lossless energy exchange between cou-
pled systems, such as bridge-string coupling in musical instru-
ments [20] or frequency-dependent scattering from objects [21].

The rest of the article is organized as follows. In Section II-A,
the GFDN architecture is introduced. In Section III, some the-
orems related to paraunitary matrix construction are used to
design a 2-tap FIR paraunitary feedback matrix with controllable
frequency response. The rules of constructing a paraunitary ma-
trix for coupling 2 FDNs are derived in Section III-C, followed
by a general derivation for coupling K FDNs in Section III-D.
Here, a discussion on methods for solving the FIR paraunitary
approximation problem is presented. The design of filter feed-
back matrices to model diffraction at the aperture connecting
coupled rooms is discussed in Section IV. Asymmetric cou-
pling and accurate scaling for level correction are discussed in
Section IV-B. Section V presents GFDN evaluations modeling
2 and 3 coupled rooms. Section VI concludes the article.

II. BACKGROUND

A. Grouped Feedback Delay Network

A standard feedback delay network consists of N delay lines
of length τi samples each, i = 1, 2, . . . , N , with its associated
decay filter, gi(z), z = exp(jω), connected through an N ×
N feedback matrix, M . For a frequency-dependent T60(z) in
seconds, the decay filter gains are related to the delay line length
as [3]

gi(z)dB =
−60 τi
FsT60(z)

(1)

where Fs stands for the sampling frequency. In the grouped
feedback delay network (GFDN), we use multiple sets of de-
lay lines each with a different T60(z). In Fig. 1, a GFDN
with two sets of delay lines is shown. Out of the total of N
delay lines, N1 delay lines have a decay response, T601(z),
and N2 delay lines have a decay response, T602(z), such that
N1 +N2 = N . The two groups of decay filter gains, g1(z)
and g2(z) are calculated according to the different T60(z)s,
see (1). The mixing matrix M is now an N ×N block ma-
trix made of 4 submatrices, M ij ∈ R

Ni×Nj , i, j = 1, 2, where
block diagonal matrices M11,M22 control intra-group cou-
pling and the block off-diagonal matrices M12,M21 control
inter-group coupling. With ci, bi ∈ R

Ni×1, τ i ∈ Z
(Ni×1)
+ and

Λi(z) = Diag(gi(z)z
−τ i) ∈ C

Ni×Ni , the transfer function of

Fig. 1. GFDN block diagram with two sets of delays, K = 2 [18].

Fig. 1, H(z), can be written as

H(z) = d+
[
c1 c2

]([Λ1(z) 0

0 Λ2(z)

]
(
I −

[
Λ1(z) 0

0 Λ2(z)

][
M11 M12

M21 M22

])−1 [
b1

b2

]⎞⎠
(2)

where I is the identity matrix and 0 is a matrix of zeros.

B. Coupled Mixing Matrix Design

The mixing matrix, or the feedback matrix, is an important
property of the FDN, which determines the amount of coupling
between various delay lines and system stability. This matrix
controls the rate at which the echo density increases.

In the GFDN, we can choose different, independent unitary
mixing matrices for each delay line group (the diagonal subma-
trices M11 and M22). The off-diagonal submatrices (M12 and
M21) control how strongly coupled the groups are to each other.
This gives us independent control over the intra- and inter-group
mixing characteristics. To preserve energy in the system, the
coupled mixing matrix needs to be unilossless [2]. Examples of
such lossless matrices are orthonormal or unitary matrices [1],
[2].

For two coupled rooms, each with individual mixing matrices
M2

1 andM2
2, and a coupling coefficient ofα, the coupled mixing

matrix can be characterized as [17],

M =
1√

1 + α2

[
M2

1 αM1M2

−αM2M1 M2
2

]
,

=

[
M2

1 cosφ M1M2 sinφ

−M2M1 sinφ M2
2 cosφ

]
. (3)

Here, φ = arctan(α) is the coupling angle. φ = 0 gives zero
coupling, and φ = π

4 gives maximum coupling between the two
FDNs. Note that for any unitary matrix, M , its square, M2, is
also unitary, since its eigenvalues are the squares of unity.

In [18], the derivation of the orthonormal coupled mixing
matrix was extended to an arbitrary number of coupled rooms.
It was shown that a coupled feedback matrix, parameterized by
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a coupling coefficient matrix and individual unitary feedback
matrices for each room, is unitary if the coupling coefficient
matrix is unitary by design.

III. PARAUNITARY COUPLING MATRIX DESIGN

A. Lossless Coupling Matrix

Let us consider the case ofK coupled rooms with a total num-
ber of N delay lines in the GFDN. With frequency-dependent
coupling coefficients, a polynomial mixing matrix of degree
p,F (z) ∈ R

N×N×(p+1), is defined as,

F (z)[ij] =

{
φii(z)M

2
i , i = j

φij(z)M iM j , i �= j,

where φij(z) =

p∑
n=0

bij(n)z
−n ∀ i, j = 1, . . . ,K. (4)

In the above equation, M i is any unitary matrix that determines
how diffuse the ith room is, and M2

i is its square that is also uni-
tary. Note that M i and M j need to have the same dimensions,
i.e., each group in the GFDN should have the same number of
delay lines. φij(z) is an FIR filter of degree p that determines
the coupling between rooms i and j. We call Φ(z)[ij] = φij(z)
the coupling filter matrix.

The feedback matrix is energy-preserving if it is parauni-
tary [5]. A paraunitary matrix must satisfy the following criteria

F
(
z−1
)H

F (z) = IN×N ,

or, F
(
e−jω

)H
F
(
ejω
)
= IN×N (5)

where ω ∈ [−π, π] denotes frequency in rad/s. The Hermitian

operator F (z)H denotes the transposition of the elements of
F (z) and the complex conjugation of their coefficients.

Theorem 1: F (e−jω)HF (ejω) = IN×N iff Φ(e−jω)H

Φ(ejω) = IK×K .
Theorem 1 states that the feedback matrix is guaranteed to

be paraunitary if the matrix of coupling filters is paraunitary.
The proof of Theorem 1 is included in Appendix A. This gives
us a paradigm for designing lossless frequency-dependent feed-
back matrices for the GFDN by simply designing a paraunitary
coupling matrix.

Paraunitary coupling matrices ensure that the desired T60

is maintained while introducing frequency-dependent effects.
Let us recall that the maximum deviation in the FDN mode
magnitude is given by [6],

σmin(F (z))1/τmin ≤ |Λ| ≤ σmax(F (z))1/τmax , (6)

where Λ represents the FDN modes, σmin(F (z)) and
σmax(F (z)) are the minimum and maximum singular values
of the feedback matrix F (z), and τmin and τmax are the shortest
and longest delay line lengths. In the undamped case, the largest
and smallest singular values of F (z) correspond to the largest
and smallest singular values of Φ(z). In the damped case, the

mode amplitude decays to −60 dB after T60Fs samples.

|Λ|T60(e
jω)Fs = 0.001,

ln 0.001/Fs

ln(σmin g(ejω))1/τmin
≤T60(e

jω)≤ ln 0.001/Fs

ln(σmax g(ejω))1/τmax
, (7)

where g(ejω) is the frequency response of the absorption filter
in the delay lines. The deviation from the desired reverberation
time, T60des(e

jω) is,
γ

lnσmin

τmin
+ γ

T60des (e
jω)

≤ T60(e
jω) ≤ γ

lnσmax

τmax
+ γ

T60des (e
jω)

, (8)

where γ = ln(0.001)/Fs. Since paraunitary matrices have sin-
gular values with unit magnitude, the achieved reverberation
time is equal to the desired reverberation time, T60(e

jω) =
T60des(e

jω). This expression is generally useful for finding the
deviation in the reverberation time from its desired value based
on the feedback matrix.

B. Simplest Paraunitary Matrix Construction

First, we report some theorems related to the construction
of paraunitary matrices [22] in Appendix B. Using these theo-
rems, a first-order (two-tap) paraunitary FIR coupling matrix
is designed for coupling two FDNs. Let us recall the 2× 2
orthonormal coupling matrix, characterized by the coupling
angle φ ∈ [0, π

4 ] (3),

Φ =
[
v1 v2

]
=

[
cosφ sinφ

− sinφ cosφ

]
. (9)

Let P i = viv
H

i , i ∈ [1, 2]. The following paraunitary matrix
can be constructed from this orthogonal set of idempotents,

Φpara(z) = P 1 + exp(jβ)P 2z
−1

=

[
cos2 φ+ z−1ejβ sin2 φ cosφ sinφ(1− ejβz−1)

cosφ sinφ(−1 + ejβz−1) sin2 φ+ z−1ejβ cos2 φ

]
(10)

such that

|Φpara(e
jω)|2i,j =

{
1− 1

2 sin
2(2φ) (1− cos(ω − β)) , i = j,

sin(2φ) (1− cos(ω − β)) , i �= j.

(11)

Since the filter coefficients are complex, the real and imag-
inary parts of the incoming and outgoing signals from the
feedback matrix must be propagated. This increases the com-
putational complexity of the GFDN. However, only the real part
of the signal is used when taking the final output, y(n) in Fig. 1.

The magnitude response of the paraunitary matrix is explicitly
derived in (11). The parameter β controls the position of the
coupling filter notches. The magnitude response and the filter
coefficients in the complex plane for two different values of φ
and increasing values of β ∈ [0, π

2 ] are shown in Fig. 2. The
diagonal filters have an almost flat magnitude response. When
β = 0, the response is a straight line with a 6 dB/octave slope.
The parameter φ controls the radii of the filter coefficients and,
in turn, the average magnitude of the off-diagonal filters.
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Fig. 2. Effect of φ and β on FFM magnitude response. The subplots depict
2× 2 coupling matrix Φpara(z) in (10). The diagonal plots are the self-coupling
filters; the off-diagonal plots are the cross-coupling filters (notch filters).

This provides a method for a very efficient and flexible design
of a parameterized FIR coupling matrix that is paraunitary and
requires only two taps. The diagonal filter response is flat, and the
off-diagonal response is a notch filter whose cut-off frequency
can be controlled by the parameter β. It can be implemented in
real-time and has been incorporated into a GFDN plugin [23].
Higher-order causal filters for more than two coupled FDNs
can be designed by following the rules of Theorem 3 (see
Appendix B).

C. Coupling Matrix for 2 FDNs With Desired Coupling Filter

While the previous section discussed the design of a coupling
matrix for a specific low-pass filter, the general principles of
designing a 2× 2 paraunitary coupling matrix with any desired
coupling filter, α(z), is discussed here. The coupling filter de-
termines the energy exchange between the two FDNs. First, the
coupling filters need to be placed on the off-diagonal elements
of the coupling matrix. Then, the diagonal elements must be
designed so that the resulting matrix is paraunitary. Let us denote
the diagonal elements as β(z), and its in-place time flipped

version as,
�
β (z) = z−Lβ(z−1). We assume that all the filter

coefficients are real. The coupling matrix and its para-hermitian
version are,

Φ(z) =

[
β(z)

�
α(z)

−α(z)
�
β (z)

]

Φ
H (

z−1
)
= zL

[�
β (z) −�

α(z)

α(z) β(z)

]
. (12)

Now, the product of these matrices, which should be identity,
is given by

Φ
H

(z−1)Φ(z) = zL

⎡⎣β�
β + α

�
α 0

0 β
�
β + α

�
α

⎤⎦ , (13)

where we have omitted the dependence on z for brevity. We
desire Φ(z) to be paraunitary, i.e.,

β(z)
�
β (z) = z−L − α(z)

�
α(z). (14)

and equally

β(z)β
(
z−1
)
= 1− α(z)α

(
z−1
)
. (15)

For |z| = 1, α(z)α(z−1) is real-valued and non-negative. If
α(z)α(z−1) ≤ 1, then β(z)β(z−1) is also real-valued and non-
negative. Therefore, the Fejér-Riesz lemma (see Appendix C)
applies, and a filter β(z) can be derived from β(z)β(z−1).

The filterβ(z) is not unique. Note that regardless of the choice
of the phase of the filter, the matrix in (13) is identity. This is
because, for a real filter with an antisymmetric phase, the phase
cancels out in the convolution of the filter with its time-flipped
version. The coupling matrix thus constructed from α(z) and
β(z) is paraunitary if |α(z)| ≤ 1 and |β(z)| ≤ 1.

D. Coupling Matrix for K FDNs With Desired Coupling Filters

In this section, we discuss the design of a paraunitary FIR
coupling matrix to model room-to-room coupling for each pair
of coupled rooms in a K coupled room system. An initial,
non-paraunitary matrix is constructed starting from desired cou-
pling filters. It is preconditioned to be as close to paraunitary as
possible. Then, its closest paraunitary counterpart is found. This
ensures that the coupling matrix is lossless while maintaining
the desired frequency response of the off-diagonal elements (that
represent the coupling filters).

The first part of the solution is to design an initial polyno-
mial matrix based on chosen coupling filters. For K coupled
rooms, the design of an initial, non-paraunitary coupling matrix,
A(z) ∈ R

K×K×P , involves placing the desired coupling filters
in the off-diagonal elements. Note that this matrix is symmetric
due to acoustic reciprocity. Here, P is the degree of the poly-
nomial matrix. Let us denote the Discrete Fourier Transform
(DFT) of this matrix at M discrete frequency bins (M = 2P )
as A(ejωm) ∈ C

K×K ,m = 0, . . . ,M − 1.
We have some freedom in choosing the diagonal elements

and the sign of the matrix elements. We want to precondition this
matrix as close to paraunitary as possible. A necessary condition
of unitary matrices is that the squared modulus of each row and
column sum to one. The diagonal entries are designed so that
the total energy of each row of the matrix is matched to one in
the frequency domain:

Aii

(
ejωm

)
=

√
1−
∑K

j=1,j �=i
A2

ij (e
jωm). (16)
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The only other degree of freedom is the choice of the sign of
each matrix element. For a symmetric K ×K matrix, a total of
2K(K−1) sign combinations of±1 are possible. We represent this
with an K ×K sign matrix, S, Sij ∈ {−1, 1}. We check for all
possible sign combinations and choose the one that minimizes
the distance of the initial matrix from a unitary matrix at each
frequency bin,

min
S

M−1∑
m=0

∥∥∥∥∥∥
⎛⎝√(S �A(ejωm))

H

(A(ejωm)� S)− I

⎞⎠∥∥∥∥∥∥
2

F
(17)

This is equivalent to finding a matrix that has the minimum
Frobenius error from its Procrustes solution at every frequency
bin (see Appendix D).

If K is moderately large, then checking for all possible sign
combinations is computationally expensive. In [24], it has been
shown that a globally optimal solution exists with a positive first
row and column; this reduces the search space to 2(K−1)(K−2)

sign matrices. Furthermore, every pair of sign row vectors (or
sign column vectors) allows orthogonality if neither all signs
are equal nor opposite. These are known as sign potentially
orthogonal matrices [24]. This further reduces the possible S
choices.

The second part of the solution is to find a paraunitary matrix
that is closest to this preconditioned matrix. A solution based
on iterative and greedy optimization has been proposed by
Tkacenko et al. [25]. They minimize a weighted mean-squared
error given by the Frobenius norm of the error between the
magnitude response of a desired polynomial matrix, A(ejω),
and a paraunitary matrix with frequency response Φ(ejω). The
optimization problem is,

min
Φ(ejω)

1

2π

∫ π

−π

‖Φ (ejω)−A
(
ejω
)‖2Fdω,

s.t. Φ
(
e−jω

)H
Φ
(
ejω
)
= I, ∀ ω ∈ [−π, π]. (18)

The authors exploit the complete parameterization of causal
FIR paraunitary systems in terms of Householder-like degree-
one building blocks [26], where a paraunitary matrix can be
constructed from the cascade of degree-one Householder-like
building blocks, and a unitary matrix. The Householder building
blocks and unitary matrix are solved for iteratively with a greedy
approach.

Vouras et al. [27] simplify the problem further by replacing
the integration over all frequencies to be a summation over the
discrete frequency bins,

min
Φm

2π

M

M−1∑
m=0

‖Φ(ejωm)−A(ejωm)‖2F,

s.t. Φ(ejωm)HΦ(ejωm) = I, ∀ m = 0, 1, . . . ,M − 1. (19)

where ωm = 2πk
M , and the weighting function is chosen to be

unity at the desired frequency bins. This reduces to a linear
combination of individual Procrustes problems, which can be
solved separately.

The standard Procrustes problem and its solution are,

Φ̂m = argmin
Φm

‖Φm −Am‖2F s.t. Φ
H

mΦm = I,

Φ̂m = UmV
H

m. (20)

where the subscriptm is the shorthand for ejωm ,Am = UmΣm

V
H

m, i.e., Um and V m are full-rank, square matrices that are
the left and right singular vectors of Am [28] and Φ̂m is the
optimal solution at frequency bin. The matrix thus designed,
Φ̂(ejωm), can be inverted using the Inverse Discrete Fourier
Transform (IDFT) to find its time-domain counterpart. This
matrix is unitary only at discrete points on the unit circle,
and losslessness is not guaranteed in-between frequency bins.
However, if M is large, then the sampling is fine enough to
approximate paraunitarity for many practical applications [27].

IV. NEARLY PARAUNITARY ROOM COUPLING MATRIX TO

MODEL DIFFRACTION

Now that we know how to design paraunitary matrices from
a (preconditioned) desired matrix, we investigate how to design
the desired matrix for a practical case of interest — modeling
diffraction between coupled rooms. In the case of coupled spaces
connected through an aperture, the diffraction of sound waves
around the aperture should be modeled. Neither of the delay
network coupled volume simulators proposed in the literature so
far — GFDNs and coupled-volume SDNs — have considered
diffraction. The net perceptual effect of diffraction is to dampen
some frequencies; frequencies are damped depending on the
ratio between the aperture size and the wavelength. Since diffrac-
tion is a wave phenomenon that exhibits frequency-dependent
effects, it can be modeled in the coupling matrix with filters.

Morse and Ingard were the first to use transmission coeffi-
cients to account for wave effects at the coupling apertures [29].
We rely on the diffraction model proposed by Miles in [30]. The
variations in the power transmission coefficients of the coupling
apertures can affect variations in the shapes of decay curves, as
shown in [31].

A. Transmission Model

The energy transmission coefficient, ζ, through an aperture
connecting two rooms is a function of the angle of incidence with
respect to the normal, η, aperture size, a and the wave number,
k [31]. When the wavelength is comparable to the size of the
aperture, diffraction (bending of waves around the aperture) can
be observed. The model for a circular aperture is [30]:

ζ(η, k) =
σ(η)

σg(η)
=

σ(0)

cos(η)

[
sin(ka sin η)

ka sin η

]2
(21)

where σ is the transmission cross-section, k is the wave number
(= 2πf

c ), f is the frequency of the wave in Hz, c is the speed of
sound in air.

We design an FIR filter from (21) to mimic the frequency-
dependent diffraction effects at the aperture between two rooms.
With increasing mixing in an FDN, reflections from all directions
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TABLE I
TWO-STAGE DECAY T60S AND THEIR DIFFERENCES FOR THE TWO COUPLED ROOM EXAMPLE WITH SFM AND FFM

Fig. 3. Diffraction filter for different values of aperture radius a. Solid lines
show the exact shapes, whereas dashed lines show approximated filters. Increas-
ing the aperture size produces filters of longer lengths.

will be incident on the aperture. Assuming an isotropic diffuse
field, we can integrate the transmission coefficient over all angles
of incidence and elevation angles to find only a frequency-
dependent value [31],

ζavg(k) =
1

π

∫ 2π

φ=0

∫ π
2

η=0

ζ(η, k) cos η sin η dη dφ

Fig. 4. Frequency response of a 2× 2 coupling matrix for two coupled rooms
with increasing aperture size a. All plots have the same y-axis.

=
2σ(0)

ka

∫ π
2

η=0

sin2(ka sin η)

ka sin η
dη. (22)

This integral can be solved numerically for discrete frequen-
cies. The time domain FIR filter coefficients, ζavg(n), can be
found by taking the IDFT of ζavg(k).

This transmission coefficient is only valid for small values of
ka. At high frequencies, the transmission coefficients of all aper-
tures approach the geometrical limit η = 1 [31]. The transition
occurs aroundka ≈ 5 [31]. Therefore, we enforce ηavg(k) = 1 at
ka = 5. To smooth out the discontinuity at ka = 5, an FIR filter
of orderL = 
 4aFs

c �with the magnitude response of ηavg(k) can
be designed using the Parks McClellan (PM) algorithm [32].

The time-domain filters and their magnitude responses for
Fs = 44.1 kHz and varying aperture sizes are shown in Fig. 3.
The frequency response has a band-stop shape. The band edges
are determined by the aperture size. Lower frequency transmis-
sion coefficients for larger aperture sizes have values greater
than one but are attenuated for small apertures. For a slit, the
transmission coefficient values at low frequencies can approach
infinity; for other shapes, the values are limited [31]. Neverthe-
less, this model can give unusually large transmission coefficient
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Fig. 5. Two-stage decay curves with FFMs and SFM for the two-coupled room
example. The curves for different aperture sizes have been offset by 40 dB along
the y-axis. The red line indicates the energy envelope, the yellow line is the
curve fit and the black dotted lines are the 2-stage decay fits. The blue dot is the
turning point.

values for larger aperture sizes at lower frequencies, leading to
instabilities. In fact, (21) is valid only for a small value ofka [30].
Hence, the values of ζavg(k) should be saturated to a maximum
of 0 dB to avoid amplification in the feedback path.

B. Asymmetric Transmission

In coupled room systems, if the connecting aperture size is
much smaller compared to the room surface area, then most of
the RIR’s energy will not be incident on the aperture; hence,
only a fraction of the energy will pass through to the cou-
pled room. A scaling factor must be applied to the diffraction
filter to mimic this energy exchange. This is motivated by
the fact that one of the most prominent perceptual effects of
closing a door between two rooms is the fall in sound pressure
level.

The paraunitary matrices designed so far are symmetric, i.e.,
the coupling filter between rooms i and j, is the same as that
between rooms j and i. Theory by Cremer and Müller [33]
suggests that the coupling factors between the two rooms are
not the same and depend on the relative absorption area in each
room. For 2 coupled rooms, let S1 and S2 be the total surface
areas of two rooms with absorption coefficients α1, α2 and a
be the aperture area connecting the two rooms. The coupling
factors are defined as [34]

ki =
a

αi(Si − a) + a
, i = {1, 2}, (23)

Here, k1 indicates the coupling factor for energy going from
room 1 to room 2, and k2 is the coupling factor for energy going
from room 2 to room 1. The mean coupling factor is defined

as k =
√
k1k2. For simplicity, we denote the denominator (total

absorbing area excluding the aperture, plus the aperture that
does not absorb any sound) for each room as Si, so the coupling
factor becomes ki = a/Si. It has been shown in [2], that pre-
multiplication of the feedback matrix with a diagonal matrix,
and post-multiplication with its inverse preserves the unilossless
property, i.e., conjugation with a non-singular diagonal matrix
preserves energy. Therefore, for a diagonal matrix, E, and a
paraunitary matrix, Φ(z), Φ̃(z) = E Φ(z)E−1 is unilossless.
We use this property to design the appropriate diagonal matrix,
E, to introduce asymmetric coupling.

For connecting N rooms, let us assume an N ×N
diagonal matrix, E = diag(e1, . . . , eN ). Therefore, E−1 =
diag(1/e1, . . . , 1/eN ). The (i, j) th element of Φ̃(z) is given
by

Φ̃ij(z) =
(
E Φ(z)E−1

)
ij
=

ei
ej

Φij(z) (24)

Now, if the diffraction filter of length Lij between rooms i and
j is denoted by FIR(Lij), we want,

Φ̃ij(z) =
ei
ej

Φij(z) =
a

Si
FIR(Lij),

Φ̃ji(z) =
ej
ei
Φij(z) =

a

Sj
FIR(Lij). (25)

Note that the FIR filters between rooms i and j are identical to
those between rooms j and i because the filter only depends on
the connecting aperture size, which is the same between rooms
i and j. On multiplying and dividing Φ̃ij(z) and Φ̃ji(z), we get,

Φij(z) =
a√
SiSj

FIR(Lij),
ei
ej

=

√
Sj

Si
. (26)

From this, the appropriate scaling factor for each off-diagonal
element in the coupling matrix is determined by the ratio of
the aperture area and the mean coupling factor. The diffraction
filters are scaled such that

Φij(z) = Φji(z) =
a√
SiSj

FIR(Lij). (27)

If we fix any element of the diagonal matrix to be unity, say
e1 = 1, then the calculation of the other elements becomes triv-
ial, ei =

√
S1/Si. Therefore, the diagonal matrix is constructed

as,

E = diag

(
1,

√
S1

S2
, . . . ,

√
S1

SN

)
. (28)

This ensures that, (E Φ(z)E−1)ij =
a
Si

FIR(Lij). Hence, the
appropriate asymmetric coupling coefficient is maintained while
maintaining the unilossless property of the feedback matrix.

V. EVALUATION

In this section, we present two examples of the GFDN with
filter feedback matrices. In the first example, we investigate the
case of two coupled rooms and model diffraction for different
aperture sizes connecting the rooms. In the second example, we
explore the scenario of three rooms all coupled with each other.
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Fig. 6. Desiging a 3× 3 paraunitary coupling matrix for 3 coupled rooms with all rooms interconnected and different aperture sizes between each pair of rooms.
Fig. 6(a) and (b) - time domain polynomial matrices. Fig. 6(c) and (d) - 3 singular values per frequency bin, depicted by different shades. A paraunitary matrix
should have unit magnitude (0 dB) singular values at all frequencies.

We investigate the design of an appropriate paraunitary coupling
matrix that maintains the desired T60 of the three rooms while
introducing filtering effects in the RIR1.

A. Two-Room Coupling

We designed a 16 delay line GFDN, with 8 delay lines each
representing the smaller and larger room respectively, with the
source placed in the smaller room and the listener placed in
the bigger room. The relative source and listener locations are
determined by the b1, b2 and c1, c2 coefficients respectively.
In this case, b2 = c1 = 0. The T60 filters of the two rooms
are first-order low-shelf filters parameterized by the DC and
Nyquist gains and transition frequency. The smaller room has a
shorter decay time, T60(0) = 2 s, T60(∞) = 0.5 s and a lower
transition frequency of 1 kHz. The larger room hasT60(0) = 3 s,
T60(π) = 1 s and a transition frequency of 4 kHz. The dimen-
sions of the rooms are 4× 2.5× 3 m3 and 5× 6× 4.5 m3

1The code to reproduce the figures and some sound examples are available at
https://github.com/orchidas/Frequency-dependent-GFDN.

respectively. M1 and M2 are scaled Hadamard matrices for
maximum diffusion. The absorption coefficients are calculated
according to Sabine’s equation [35] using the maximum T60

values and room dimensions.
Assuming a circular aperture connecting the rooms, the aper-

ture radius between the two rooms is increased in steps. This,
along with the room area and absorption coefficients, is used
to calculate the coupling coefficients according to (23). The
frequency response of the Filter Feedback Matrix’s (FFM)
coupling matrix is shown in Fig. 4 for increasing aper-
ture sizes. Apart from the obvious band-stop characteris-
tic, the lower frequencies are amplified as the aperture size
increases.

For the Scalar Feedback Matrix (SFM), the coupling matrix
with asymmetric coupling coefficients is

E ΦSFME−1 =

[
1 a

S1

− a
S2

1

]
. (29)

https://github.com/orchidas/Frequency-dependent-GFDN
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Fig. 7. Magnitude responses of the desired polynomial coupling matrix and
approximately paraunitary matrix found by solving the Procrustes problem at
each frequency bin. All plots have the same y-axis.

The two-stage decay plots of the coupled RIRs as the aperture
size increases are shown in Fig. 5. All RIRs have been generated
with the FDNToolbox [36]. As the aperture increases, the early
decay generally becomes shorter for the RIRs. This is expected,
since the rate of energy exchange between the coupled rooms
increases with larger aperture size. In [31], Summers observes
that for a larger total coupling area, the turning point, which
is the point at which the two slopes intersect, shifts earlier, but
the difference in the two slopes reduces. A larger coupling area
allows faster energy exchange between the two rooms. The T60s
approach each other, and the coupled rooms essentially act as a
single space with single-slope decay when the aperture is large
enough. This behavior can be observed in both the energy decay
curves in Fig. 5. The T60 values of the two slopes and their
differences are reported in Table I. The difference in the T60s
generally reduces with increasing aperture size for both kinds
of matrices. The significant difference is in the late-stage T60,
which is longer for the FFM. The RIRs with the SFM and FFM
have different spectral characteristics depending on the aperture
size.

B. Multi-Room Coupling

We simulate an example of a 3 coupled room system, in which
all rooms are interconnected, with the source in the dryest room
and the microphone in the largest and most reverberant room.
The dimensions of the rooms are 3× 1.8× 2 m3, 4× 3.2×
3.8m3 and6× 5.5× 4.5m3 respectively. Each room is modeled
by 4 delay lines in the GFDN and has M1,M2,M3 equal to
scaled Hadamard matrices.

We designed a coupling matrix with an aperture radius of
0.22 m between rooms 1 and 2, 0.35 m between rooms 2 and
3, and 0.5 m between rooms 1 and 3. The diffraction filters
(with appropriate scaling based on aperture and room area) are

Fig. 8. GFDN example for three coupled rooms. Fig. 8(a) - desired T60 filters
for individual rooms. Fig. 8(b) - T60 error range for the three rooms due to
per-frequency bin Procrustes unitarization. Fig. 8(c) - Spectrograms of the three
rooms and coupled space.
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placed on the off-diagonal elements of the polynomial matrix.
To determine the diagonal elements of the matrix (self-coupling
filters), the energy of each column is matched to one. A pa-
raunitary matrix requires some negative elements — there are
26 possible sign combinations. We choose the most optimal
sign combination described in Section III-D. Starting from this
matrix, the Procrustes problem is solved at every frequency bin to
give us a nearly paraunitary matrix with the desired magnitude
response. The initial polynomial coupling matrix designed is
shown in Fig. 6(a). The matrix given by the per-frequency bin
Procrustes solution is shown in Fig. 6(b).

We also tried Tkacenko’s method with the degree of the
desired FIR PU interpolant as the maximum length of filters
in the initial polynomial matrix. Even for a large number of
iterations, it failed to give us close fits the desired frequency
response, and the singular values did not converge to one. This is
likely because no FIR PU interpolant exists for the given matrix.

The magnitude responses are shown in Fig. 7. The per-
frequency Procrustes solution matches the desired magnitude
response exactly except at positions (1, 2) and (2, 1), where the
desired response is significantly attenuated. In Fig. 6(c) and (d),
we show the magnitude of the singular values per-frequency
bin of the off-diagonal matrix elements with 2x zero-padding.
These magnitudes should be unity for a paraunitary matrix.
The per-frequency Procrustes solution has its singular value
magnitudes within 10−2 dB.

The three rooms’ desired T60 filters are shown in Fig. 8(a).
Room 1 has the shortest T60, and Room 3 has the longest. The
maximum error in the GFDN’s T60 by using a nearly parau-
nitary coupling matrix, calculated according to (8), is shown
in Fig. 8(b) by solid lines. The dashed lines show the the Just
Noticeable Difference (JND) in reverberation time, 5% [37].
These errors are perceptually negligible, and in the worst case,
touch the JND but never exceed it. The spectrograms of the
individual room RIRs and the resulting coupled room RIR when
the source is placed in Room 1, and the receiver is placed in
Room 3 are shown in Fig. 8(c). The net decay time is affected
by all three rooms. The RIR observed in Room 3 has a noticeable
band-stop effect, but the lower frequencies are also attenuated
because of the small aperture sizes.

VI. CONCLUSION

Grouped Feedback Delay Networks consist of multiple FDNs
connected in parallel, each with its own absorption filter and
a block mixing matrix that controls inter- and intra-group cou-
pling. In this article, we have extended the design of the GFDN to
include filter feedback matrices (FFM). We have shown that for
the resulting mixing matrix to be energy-preserving, the matrix
of coupling filters can be designed to be paraunitary. Methods
of designing low-order, causal FIR FFMs that are ideal for
real-time implementation have been discussed. A closed-form
coupling matrix with an FIR coupling filter for coupling 2
FDNs has been derived. Some methods for designing the closest
paraunitary (or nearly paraunitary) matrix to a given polynomial
matrix have been discussed for coupling K FDNs. We have
used FFMs to simulate diffraction in coupled rooms based on

a mid-frequency model by Miles. The inclusion of asymmetric
coupling coefficients for gain adjustment has been proposed.
Numerical examples have been included to exhibit the effects of
including filters in the feedback matrix and how they compare
against scalar feedback matrices.

Including filters in the feedback matrix allows a wide range
of design choices. GFDNs with the proposed filter feedback
matrices can be used to model late reverberation for complex
coupled spaces in video games and XR applications. The theory
related to the design of paraunitary coupling matrices extends
beyond FDNs. It is useful for modeling any energy-preserving
interaction in coupled systems, such as coupling between an
instrument’s bridge and its strings, since losses can be easily
added to an already stable and lossless system. Further studies
should look into diffraction filter design for coupled rooms since
models in the literature are only valid for a small frequency
range or have stability issues for larger aperture sizes. Future
work should also include validating the proposed methods with
perceptual and numerical evaluations, against room impulse
responses obtained with a physically accurate method that can
model diffraction, such as the Finite Difference Time Domain
(FDTD) method.

APPENDIX A
PROOF OF THEOREM 1

Let Φ(ejω) ∈ C
K×K be the matrix of frequency-dependent

coupling coefficients,

Φ(ejω) =

⎡⎢⎢⎢⎢⎣
φ11(e

jω) · · · φ1˜K(ejω)

φ21(e
jω) · · · φ2˜K(ejω)

...
. . .

...

φK1(e
jω) · · · φKK(ejω)

⎤⎥⎥⎥⎥⎦ . (30)

Then, we have(
Φ(e−jω)

H

Φ(ejω)

)
[ij]

=

{∑K
k=1 |φik(e

jω)|2, i = j∑K
k=1 φ

∗
ki(e

−jω)φkj(e
jω), i �= j,

(31)

where ·∗ denotes complex conjugation and(
F (e−jω)

H

F (ejω)

)
[ij]

=

⎧⎪⎨⎪⎩
INi×Ni

(∑K
k=1 |φik(e

jω)|2
)
, i = j,

M
H

i M j

(∑K
k=1 φ

∗
ki(e

−jω)φkj(e
jω)
)
, i �= j.

(32)

As M i and M j are unitary and consequently of full rank,

M
H

i M j �= 0. Therefore, F (e−jω)HF (ejω) = IN×N if and

only if Φ(e−jω)HΦ(ejω) = IK×K , i.e., the matrix of coupling
coefficients has to be paraunitary to ensure that the block feed-
back matrix is paraunitary.
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APPENDIX B
PARAUNITARY MATRIX CONSTRUCTION

Proposition 1: The set of matrices {P 1, · · ·PK} form a
complete symmetric orthogonal set of idempotents iff i) I =∑

k P k, ii) P 2
k = P k and iii) P kP i = 0 ∀ k �= i.

Theorem 2: LetU be a unitary matrix inCK×K with columns

{v1, . . . ,vK}. These columns satisfy v
H

i vi = 1,v
H

i vj = 0∀
j �= i. Define P i = viv

H

i , then {P 1, . . . ,PK} is a complete
symmetric orthogonal set of idempotents in C

K×K [22].
Proof:

1) P
H

k = P k,

2) P 2
k = vk(v

H

k vk)v
H

k = P k,

3) P iP k = vi(v
H

i vk)v
H

k = 0,

4)
∑K

i=1 P i=
∑K

i=1 viv
H

i =

⎡⎢⎢⎢⎢⎣
v

H

1 v1 · · · v
H

1 vN

...
. . .

...

v
H

Nv1 · · · v
H

NvN

⎤⎥⎥⎥⎥⎦=I.

�
Theorem 3: Let {P 1, . . . ,PK} be a complete orthogonal

set of idempotents in a group ring over C. Then, U(z) =∑K
k=1 γkP kz

tk , |γk| = 1, tk ∈ Z is a paraunitary matrix.

Proof: U(z−1)
H

U(z) =

(∑K
k=1 γ

∗
kP

H

k z
−tk

)
(∑K

i=1 γiP iz
ti
)

=
∑K

k=1 |γk|P
H

k P k =
∑K

k=1 P k = I . �

APPENDIX C
FEJER-RIESZ LEMMA

The well-known Fejer-Riesz lemma [38] states that a trigono-
metric polynomial f(z) = f−nz

−n + · · ·+ fnz
n that takes on

nonnegative real values on the unit circle (i.e., f(z) > 0 for
|z| = 1) can be written as the modulus squared of a polyno-
mial of the same degree. That is, there exists a polynomial
p(z) = p0 + · · ·+ pnz

n such that

f(z) = |p(z)|2 = p(z)p(z−1), |z| = 1. (33)

APPENDIX D
MINIMIZATION EQUIVALENCE

We want to choose a sign matrix,S, such thatS �Ak has the
least difference from its Procrustes solution at every frequency
bin, i.e.,

argmin
S

M−1∑
m=0

∥∥∥∥S �Am −UmV
H

m

∥∥∥∥2
F

(34)

where Um,V m are the left and right singular vectors of S �
Am. Let S �Am = Bm = UmΣmV

H

m. The Frobenius norm

of the error becomes,

Tr

⎛⎝(Bm −UmV
H

m

)H(
Bm −UmV

H

m

)⎞⎠
= Tr

(
B

H

mBm − 2V mΣmV
H

m + I

)
= Tr

(
V mΣ

2
mV

H

m − 2V mΣmV
H

m + I

)

= Tr

⎛⎝√B
H

mBm − I

⎞⎠2

=

∥∥∥∥∥∥
√

B
H

mBm − I

∥∥∥∥∥∥
2

F

=

∥∥∥∥√(S �Am)H (S �Am)− I

∥∥∥∥2
F

. (35)

Therefore, it is equivalent to finding a sign matrix that makes
S �Am as close to being unitary as possible at each frequency
bin.
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