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Abstract—There is a need to improve the synthesis quality of
HiFi-GAN-based real-time neural speech waveform generative
models on CPUs while preserving the controllability of funda-
mental frequency (fo) and speech rate (SR). For this purpose,
we propose Harmonic-Net and Harmonic-Net+, which introduce
two extended functions into the HiFi-GAN generator. The first
extension is a downsampling network, named the excitation sig-
nal network, that hierarchically receives multi-channel excitation
signals corresponding to fo. The second extension is the layer-
wise pitch-dependent dilated convolutional network (LW-PDCNN),
which can flexibly change its receptive fields depending on the input
fo to handle large fluctuations in fo for the upsampling-based
HiFi-GAN generator. The proposed explicit input of excitation
signals and LW-PDCNNs corresponding to fo are expected to
realize high-quality synthesis for the normal and fo-conversion
conditions and for the SR-conversion condition. The results of
experiments for unseen speaker synthesis, full-band singing voice
synthesis, and text-to-speech synthesis show that the proposed
method with harmonic waves corresponding to fo can achieve
higher synthesis quality than conventional methods in all (i.e.,
normal, fo-conversion, and SR-conversion) conditions.

Index Terms—Fundamental frequency control, neural vocoder,
speech-rate conversion, speech synthesis.

I. INTRODUCTION

S PEECH synthesis (SS) is one of the most important speech
communication technologies. In recent years, many SS

approaches using deep neural networks have been developed
and their synthesis quality has significantly improved, even
approaching that of natural speech [1], [2], [3]. In particular,
neural speech waveform generative models (neural vocoders
that reconstruct speech waveforms from acoustic features [4],
[5]) have greatly improved synthetic speech quality, compared
with that of conventional digital signal processing (DSP)-based
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source-filter vocoders [6], [7], [8], [9]. To date, many types
of fast neural vocoders that achieve real-time SS have been
proposed. They mainly use lightweight autoregressive (AR)
models [10], [11], [12] or non-AR models [13], [14], [15],
[16], [17], [18], [19], [20]. In particular, HiFi-GAN [21], which
is a non-AR neural vocoder based on generative adversarial
networks (GANs) [22], realizes high-quality SS for both single-
speaker and multi-speaker models. Compared with conventional
models [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], HiFi-GAN can synthesize higher quality speech wave-
forms while achieving real-time inference on CPUs. There-
fore, HiFi-GAN has recently become widely used in text-to-
speech (TTS) [23], voice conversion [24], and singing voice
synthesis [25]. Additionally, extended models—Fre-GAN [26],
UnivNet [27], Multi-stream HiFi-GAN [28], CARGAN [29],
and iSTFTNet [30]—have been proposed to further improve
the synthesis quality and synthesis speed. Furthermore, a HiFi-
GAN-based decoder is used in some end-to-end TTS models
that can directly synthesize speech waveforms from phoneme
sequences using a single neural network [3], [31].

Similarly to conventional DSP-based source-filter vocoders,
neural vocoders are required to be able to flexibly control at-
tributes such as fundamental frequency (fo [32]) and speech rate
(SR), in addition to speech quality. However, the controllability
of neural vocoders is usually inferior to that of DSP-based
source-filter vocoders because most neural vocoders are data-
driven.

To control the pitch of a speech waveform, acoustic features
including fo are extracted from the original speech waveform,
and the fo-converted speech waveform is generated by scaling
the fo values during the inference process. In the case of neural
vocoders, the synthesis quality deteriorates when the input fo
is not included in the range of the training data. Several ap-
proaches have been proposed to solve this problem [33], [34],
[35], [36], [37], [38], [39]. In contrast to AR models [33],
[34], [35], non-AR models [36], [37], [38], [39] can realize
real-time inference. The neural source filter [36] introduces
nonlinear filtering and dilated convolutional layers for paramet-
rically generated source excitation signals corresponding to fo
by source-filter modeling [40]. A method in [41], HiNet [42]
and the neural homomorphic vocoder [43] introduce trainable
linear-time-variant filters for impulse trains corresponding to fo
and noise; these are based on mean squared error-based training
in the time and frequency domains, GANs [22] and differen-
tiable DSP [44]. Quasi-Periodic WaveNet (QPNet) [33] and
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Quasi-Periodic Parallel WaveGAN (QPPWG) [37] introduce
pitch-dependent dilated convolutional neural networks (PDC-
NNs), which flexibly change the dilation size of the dilated
convolution kernel in response to fo fluctuations. The unified
source-filter GAN (uSFGAN) [38] improves QPPWG by intro-
ducing source-filter modeling that explicitly separates the gen-
eration of excitation signals from the filtering. The explicit input
of the excitation signal into a generator based on source-filter
modeling is highly effective for improving the control accuracy
of fo. PeriodNet [39] uses sinusoidal waves and white noise as
excitation signals to explicitly separate the generation of periodic
waveforms from that of aperiodic waveforms. This approach is
particularly effective for singing voice synthesis because the
large fo fluctuations contained in the singing voice can be effi-
ciently captured by the input of the excitation signals. However,
it cannot realize high-fidelity synthesis of normal speech [45].
Although these approaches have achieved high control accuracy
of fo, the synthesis quality tends to be lower than that of the
purely data-driven vocoders, such as HiFi-GAN. Additionally,
most of them consist of very large convolution layers and require
a high-end GPU for real-time synthesis.

SR conversion, which can expand or compress speech wave-
forms while preserving the pitch of the sound, is tradition-
ally realized by signal-processing-based approaches, such as
waveform similarity overlap-add (WSOLA) [46], time domain
pitch synchronous overlap-add (TDPSOLA) [47], and source-
filter vocoders [6], [7], [8], [9]. However, the synthesis qual-
ity of these models is not high. To improve synthesis qual-
ity for SR conversion, a neural-network-based approach with
the multi-speaker AR WaveNet vocoder [48], which can be
realized with time-compressed or stretched acoustic features
by sinc interpolation-based resampling [49], outperforms con-
ventional signal-processing-based models [50]. However, the
AR WaveNet vocoder, even using a GPU, cannot realize real-
time synthesis. Additionally, the synthesis quality for the slow-
SR condition is particularly low, compared with that for the
normal- and fast-SR conditions, because speech waveforms for
slow speech are rarely included in training data. ScalerGAN,
to perform real-time neural SR conversion with HiFi-GAN,
has recently been proposed [51]. In ScalerGAN, input mel-
spectrograms are non-uniformly compressed or stretched by
a GAN, and SR-converted speech waveforms are synthesized
by a multi-speaker HiFi-GAN generator with non-uniformly
compressed or stretched features. In contrast to conventional
neural vocoders, ScalerGAN cannot control fo because mel-
spectrograms are used as acoustic features.

In this article, we propose Harmonic-Net and Harmonic-Net+,
which are real-time multi-speaker neural speech waveform gen-
erative models based on HiFi-GAN. They realize fast and high-
quality SS on CPUs while preserving the controllability offo and
SR. In the design of these models, we introduce two main exten-
sions to the HiFi-GAN generator. First, we propose an excitation
signal network with downsampling layers, which hierarchically
receives multi-channel excitation signals for harmonic waves
corresponding to fo, whereas the conventional methods only
receive single channel sine waves or pulse trains. This explicit
input of excitation signals is expected to improve synthesis

quality when using scaled fo input, similarly to PeriodNet.
Second, we propose layerwise PDCNNs (LW-PDCNNs) for
the upsampling-based HiFi-GAN generator, whereas the con-
ventional PDCNNs are developed for CNN-based models and
cannot be directly applied to the upsampling-based HiFi-GAN
generator. As noted above, PDCNNs can incorporate fo fluctua-
tions into their model structure and we expect that the proposed
method can further improve the synthesis quality when using
scaled fo input. Furthermore, the proposed models are expected
to be used for high-quality and real-time neural SR conversion.
This is because, although the fo value itself is resampled along
the time axis, the input excitation signals corresponding to fo
are not resampled but the number of repetitions of the input
excitation signals is changed, and the direct input of the excita-
tion signals can assist in the synthesis of SR-converted speech
waveforms. The proposed models are expected to be particularly
effective for slow-SR conversion, which corresponds to increas-
ing the number of repetitions of the input excitation signals. The
results of experiments for unseen speaker synthesis, full-band
singing voice synthesis, and single-speaker TTS demonstrate
that the proposed models with multi-channel harmonic waves
can realize higher synthesis quality than conventional methods
in all (normal, fo-conversion, and SR-conversion) conditions.
The contributions of this article are as follows:
� An excitation signal network with downsampling layers,

which hierarchically receives multi-channel excitation sig-
nals for harmonic waves corresponding to fo, is proposed
to improve the fo controllability for HiFi-GAN-based real-
time neural vocoder on CPUs.

� LW-PDCNNs for the upsampling-based HiFi-GAN gen-
erator is additionally proposed to further improve the fo
controllability.

� We show that the proposed methods with explicit input of
excitation signals are also effective for SR conversion.

The rest of this article is organized as follows. HiFi-GAN [21]
is briefly introduced in Section II. Harmonic-Net and Harmonic-
Net+ are then proposed in Section III. Section IV describes
experiments to compare Harmonic-Net and Harmonic-Net+
with several conventional methods: WORLD [8], WaveNet [50],
HiFi-GAN [21], uSFGAN [38], and PeriodNet [39]. Finally,
conclusions are presented in Section V.

II. RELATED WORK: HIFI-GAN

HiFi-GAN is a GAN-based neural vocoder that consists of
a high-speed generator with transposed convolution layers and
two sophisticated discriminators. Similarly to Tacotron 2 [2],
band-limited mel-spectrograms are used as input acoustic fea-
tures. In contrast to typical neural vocoders with white noise
input [13], [14], [15], [17], [18], HiFi-GAN directly upsam-
ples input acoustic features and synthesizes speech waveforms
without white noise input, similarly to MelGAN [16], [19]. The
main component of the generator is an upsampling network
with a few transposed convolution layers. The generator up-
samples input acoustic features through transposed convolutions
until the length of the output sequence matches the temporal
resolution of the speech waveforms. After each transposed
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Fig. 1. Architecture of Harmonic-Net generator with only an excitation signal
network.

convolution, multi-receptive field fusion (MRF) is performed.
MRF is the aggregation of convolution layers with various
receptive fields for efficiently capturing the various frequency
components in speech waveforms. In contrast to typical neural
vocoders, which have a large number of convolution layers, the
HiFi-GAN generator achieves high-speed synthesis with only
a few convolution layers, similarly to MelGAN [16], [19]. The
two discriminators are a multi-scale discriminator (MSD) and
a multi-period discriminator (MPD). The architecture of MSD,
which was used in MelGAN [16], [19], is a mixture of several
sub-discriminators operating on different sampling frequencies.
In MPD, input audio samples of length T are sampled for each
period p and reshaped into two-dimensional features of shape
(T/p)× p. Multiple values of p are used, and sub-discriminators
are prepared and trained for each one. MSD and MPD also
efficiently capture the various frequency components. In ad-
dition to adversarial training, mel-spectrogram loss [21] and
feature matching loss [16], [52] (which is defined as the distance
between the intermediate features of the discriminators) are used
in MSD and MPD to train the generator effectively.

By using these sophisticated neural network models, HiFi-
GAN has achieved high-quality and real-time SS, even for
unseen speaker synthesis, using only a single CPU [21], and
the synthesis speed can be further increased by using multiple
CPU cores [28], [53]. HiFi-GAN can also be driven by acous-
tic features for source-filter vocoders instead of band-limited
mel-spectrograms [53], such as features based on LPCNet [11].

III. PROPOSED MODELS

A. Harmonic-Net With Excitation Signal Network

Fig. 1 shows the architecture of the proposed Harmonic-Net
generator with only an excitation signal network; this gener-
ator is a simple extension of the HiFi-GAN generator. The
Harmonic-Net generator takes acoustic features that consist of
mel-cepstra (melcep), binary-coded aperiodicity components
(BAP), voiced/unvoiced vector (VUV), and glottal closure in-
stants (GCI) in the training or fo value in the synthesis; these are

used for controlling fo instead of mel-spectrograms. The upsam-
pling network receives only melcep and BAP,1 and upsamples
them using transposed convolution blocks until the temporal
resolution of the output sequence matches that of the audio
waveform. The transposed convolution blocks (T.Conv blocks)
consist of a transposed convolution layer and an MRF module,
as used in HiFi-GAN.

In the training, the excitation generator receives GCI and
generates the sinusoidal waves corresponding to the locations
of GCI, similarly to PeriodNet [39]. These sinusoidal waves are
then input to the downsampling layers. The purpose of using
GCI is to input excitation signals that are in phase with the
target speech waveforms, similarly to PeriodNet [39]. In the
inference, we use fo instead of GCI, as proposed in [39]. The
explicit input of fo features as time-domain waveform signals is
expected to reduce the burden of modeling vocal fold vibration
and improve the controllability of fo. The downsampling net-
work consists of five convolution layers with the same kernel
size and stride as the transposed convolution layer of each
T.Conv block (Fig. 1). In each layer, the excitation signals are
converted to an intermediate feature whose temporal resolution
corresponds to that of the output of the T.Conv blocks, and
these features are added together.2 This process was inspired
by Fre-GAN [26], which uses a hierarchical output structure in
the generator to maintain the consistency of the output audio
at multiple resolutions. By introducing this process, we expect
efficient training to be performed so that the generated speech
waveforms maintain consistency with the excitation signals at
various temporal resolutions.

B. Generation of Multi-Channel Excitation Signals Including
Harmonic Wave Components

In most previous studies that introduced source-filter model-
ing to neural vocoders, sinusoidal waves or summational signals
of harmonic components with fixed weighting values were used
as excitation signals [36], [38], [39]. In contrast, we propose
multi-channel excitation signals up to Ith harmonic waves that
consist of sinusoidal waves corresponding to GCI or tofo (i = 1)
and their harmonic components (i = 2, 3, . . . , I), where i is
the magnification rate of the harmonic signal. Then, the input
channel of the proposed excitation signal network is I , and each
ith harmonic wave is input to each ith channel of five trainable
convolutional layers in a data-driven manner instead of using
fixed weighting values [36]. Therefore, the proposed excitation
signal network with multi-channel harmonic waves is expected
to synthesize and control the harmonic components of output
speech waveforms more accurately than the previous methods
using simple sinusoidal waves [38], [39] or summational signals
of harmonic components with fixed weighting values [36].

GCI can be defined as a sequence that collects the time
points at which the most basic phases of the speech waveform

1Although fo values were also input to the upsampling network in preliminary
experiments, they caused the controllability of fo to degrade. Therefore, in the
final design, only melcep and BAP are input to the upsampling network.

2Although a downsampling network with one or two convolutional layers was
initially investigated, the synthesis quality could not reach that achieved with
five convolutional layers (Fig. 1).
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Fig. 2. (a) Non-causal dilated convolutional neural network and (b) Non-causal pitch-dependent dilated convolutional neural network.

match. Let g = [g1, . . . , gq, . . . , gQ] be the sequence obtained
by multiplying each value of the GCI sequence by the sampling
frequency fs. g is the index sequence of time points at which
the phases of natural speech match. v = [v1, . . . , vt, . . . , vT ] is
a one-hot vector sequence that indicates voiced/unvoiced speech
at time step t. In the training, the ith harmonic excitation wave
sequence et,i is generated as follows:

l = arg min
{q:gq<t}

(t− gq), (1)

et,i =

⎧⎨
⎩sin

(
2πi

t− gl
gl+1 − gl

+ φ

)
vt = 1,

0 vt = 0,
(2)

where φ denotes the initial phase of the excitation signal at t.
Conversely, in the inference, et,i is generated using the fo value
sequence fo = [fo,1, . . . , fo,t, . . . , fo,T ] as follows:

et,i =

{
sin

(∑t
t′=1 2πi

fo,t′
fs

)
fo,t > 0,

0 fo,t = 0.
(3)

HiFi-GAN-based fo-controllable SS can be realized by control-
ling fo,l in (3).

Additionally, arbitrary I channel waveform signals can be
input to the excitation signal network with input channel I .
For example, single channel excitation pulse sequences used in
source-filter vocoders or single channel waveforms synthesized
by DSP-based source-filter vocoders (e.g. WORLD) can be
input with input channel I = 1. These input waveforms were
investigated in the experiments reported in Section IV.

C. Pitch-Dependent Dilated Convolution Network

As the results of experiments conducted Section IV shown
in Fig. 5, the Harmonic-Net generator with only an excitation
signal network could realize high-fidelity SS while preserving
the controllability of fo for male speakers. However, the syn-
thesis quality for female speakers with higher fo conditions was
degraded because the controlled fo value was outside the range
of the training data. However, collecting higher fo speech data to
extend the fo range of the training data is costly and impractical
due to the burden on the speakers compared to collecting normal
fo speech data. Therefore, investigating neural speech waveform
generative models to extrapolate fo component outside the range
of the training data is important. To further improve the synthesis
quality and controllability of fo for female speaker synthesis,
whose fo range is quite large, we introduce PDCNNs, which

were previously used in QPPWG and uSFGAN. The causal PD-
CNN was initially proposed for use in the AR model QPNet [33],
as a sophisticated network to directly reflect fluctuations of fo in
the model structure. The non-causal PDCNN was subsequently
proposed for use in non-AR models, such as QPPWG [37],
and the synthesis quality was improved by combining it with
source-filter modeling in uSFGAN [38]. Because of its higher
synthesis quality, we incorporate the non-causal PDCNN into
the Harmonic-Net generator.

Fig. 2 shows the architectures of the non-causal dilated con-
volutional neural network (DCNN) and non-causal PDCNN, in
which DCNN has gaps between input samples; the length of
each gap is a predefined hyperparameter called the dilation size.
The non-causal DCNN can be formulated as follows:

y
(o)
t =

K∑
k=0

(
W (k) ⊗ y

(i)

t−(K
2 −k)d

)
, (4)

where y(o)
t is a 1D vector of the DCNN at sample t, y(i)

t is a 1D
vector of the DCNN input at sample t,⊗ is the Hadamard product
operator, d is the dilation size andK is the kernel size.W (k) is a
1D vector of the kth trainable 1× 1 convolution filter. Although
d is the time-invariant constant in the DCNN, the PDCNN
extends d to the fo-dependent dilation size d′. Specifically, the
fo-dependent dilated factor Et and d′ are formulated as

Et = �fs/(fo,t × a)�, (5)

d′ = Et × d, (6)

where �·� is the floor function, fo,t is the fo at time step t, and
a is the hyperparameter (named dense factor) that specifies the
number of samples (in one cycle) that are taken as the inputs of
a PDCNN. The model parameters are kept unchanged because
only the dilation size d′ changes according to fo,t and the same
filter W (k) is used as shown in Fig. 2.

D. Harmonic-Net+ With Excitation Signal Network and
Layerwise Pitch-Dependent Dilated Convolution Neural
Networks

The PDCNN has been proposed for CNN-based neural
vocoders, such as Parallel WaveGAN [15], in which the temporal
resolution is the sampling frequency of the speech waveforms.
However, the PDCNN cannot be directly applied to the HiFi-
GAN generator. In HiFi-GAN, the temporal resolution gradually
increases as the number of transposed convolutions increases.
Therefore, the PDCNN needs to be designed so that the density
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Fig. 3. Network architecture of Harmonic-Net+ generator with layerwise PDCNNs.

of the convolution networks increase in the same manner and all
of them have the same receptive field. To introduce PDCNNs
into the upsampling-based HiFi-GAN generator, we propose
LW-PDCNNs. Fig. 3 shows the architecture of the proposed
Harmonic-Net+ generator with LW-PDCNNs. Specifically, it is
designed such that the PDCNN of the first T.Conv block has only
one layer, and the number of layers of each PDCNN increases as
the number of stages of the T.Conv block increases. This means
that thenth T.Conv block has a PDCNN that consists ofn layers.
The temporal resolution of thenth T.Conv blockFs,n, the kernel
size of the jth layer of PDCNN kn,j , and the dilation size dn,j
are defined as follows:

fs,n = fs,0

n∏
m=1

Am, (7)

kn,j =

{
Aj j �= 1,
3 j = 1,

(8)

dn,j =

⎧⎪⎨
⎪⎩
dn,2

∏j−1
m=2 Am j > 2,

2dn,1 j = 2,

�fs,n/(fo,t × a)� j = 1,

(9)

where fs,0 is the temporal resolution of the acoustic features
and An is the upsampling factor of the nth T.Conv block. We
set dn,2 = 2dn,1 in accordance with the results of preliminary
experiments. The kernel size and dilation size of the first layer
of the PDCNN are designed in the same manner as those of
the conventional PDCNN. In the second and subsequent layers,
these values are defined according to the upsampling factor.

The proposed LW-PDCNNs enable the upsampling-based
HiFi-GAN generator to incorporate fo fluctuations into its
model structure, and the synthesis quality when using scaled
fo input is expected to be further improved. HiFi-GAN with
only LW-PDCNNs but without an excitation signal network was
also investigated in preliminary experiments. However, it could
not outperform either Harmonic-Net or Harmonic-Net+ for fo
conversion conditions. Therefore, the proposed excitation signal
network is important for fo conversion.

E. Speech-Rate Conversion

To control SR, the acoustic features (melcep, BAP, and fo
including VUV) extracted from target speech waveforms are
resampled with a speech rate of r along the time direction
as proposed in [50]. The excitation signals are then generated
from the resampled fo,resampled = [fo,1, . . . , fo,t, . . . , fo,rT ] by
the excitation generator (3) and input to the Harmonic-Net
and Harmonic-Net+ generators. Although melcep and BAP are
smoothed by resampling, the excitation signals are not resam-
pled but the number of repetitions of the input excitation signal
is changed. Therefore, the direct input of the excitation signals is
also expected to improve the synthesis quality for SR conversion,
compared with the quality of the conventional method that uses
resampled mel-spectrograms.

IV. EXPERIMENTS

A. Experimental Setup

We conducted three experiments to evaluate Harmonic-Net
and Harmonic-Net+ in comparison with several conventional
methods: WORLD [8] as a reference, HiFi-GAN [21], Period-
Net [39], WaveNet [50], and uSFGAN [38].3 These experiments
were conducted using a multi-speaker normal speech dataset,
a single-speaker full-band singing voice dataset, and a single-
speaker normal speech dataset for TTS. For fo conversion with
low and high fo, 0.5× fo and 1.5× fo were used, as in [37].
For SR conversion with fast and slow SRs, 0.8× T and 1.5× T
were used, as in [50].4 All the neural network models were
implemented in PyTorch [54] and trained on an NVIDIA Tesla
V100 GPU. Some of the speech samples used in the experiments
are available online.5

3WSOLA [46] was not included in the experiments because it could not
outperform WaveNet, Harmonic-Net and Harmonic-Net+ in the SR-conversion
condition in preliminary experiments as [50].

4Although only uniform resampling of acoustic features was performed for
SR conversion, non-uniform resampling will be investigated in future work by
introducing the ScalerGAN framework [51] into the proposed method. This will
further improve the quality of SR conversion.

5https://ast-astrec.nict.go.jp/demo_samples/harmonic-net/index.html

https://ast-astrec.nict.go.jp/demo_samples/harmonic-net/index.html
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1) Dataset: The following open-source corpora were used
in all the experiments to ensure reproducibility. For unseen
speaker synthesis with multi-speaker models, we used the JVS
corpus [55], a Japanese multi-speaker corpus with fs = 24 kHz.
In the training, we used 12,447 utterances by 96 speakers (jvs005
to jvs100). For evaluation, we used 120 non-parallel utterances
by four speakers (jvs001 to jvs004), which were not included in
the training. For full-band singing voice synthesis, we used 50
acapella songs (about 1 h) by a Japanese female singer, from
the Tohoku Kiritan corpus [56] with fs = 96 kHz. We then
downsampled the audio to 48 kHz and clipped it into segments
of appropriate length. We separated all 50 songs into phrases
by using the provided labels and used two songs (05.wav and
30.wav), each of which includes 10 phrases, for evaluation;
the remaining 48 songs, constructed from 376 phrases, were
used for training, as in [45]. For single-speaker TTS, we used
7,497 utterances from the JSUT corpus [55], a Japanese single-
speaker corpus, downsampled to fs = 24 kHz, to train neural
vocoders, and used the remaining 50 utterances (Basic5000-
0001 to Basic5000-0050) and 150 utterances (Basic5000-0051
to Basic5000-0200) for evaluation and validation sets. To train
a neural TTS model, we used 4,800 sentences (Basic5000-
0201 to Basic5000-5000) from JSUT for which HTS-style
context labels (based on manual annotation) were available,6

as in [45].
2) Neural Vocoders: The network architecture of our imple-

mentation of HiFi-GAN was the same as that of the official
implementation [21];7 we used the V1 model in which the
number of initial channel is 512 [21]. As input features, we
used 50-dimensional melcep coefficients with warping coeffi-
cient α = 0.455, three-dimensional BAP, and log-scaled con-
tinuous fo for unseen speaker synthesis and single-speaker
TTS with fs = 24 kHz. For full-band singing voice synthesis
with fs = 48 kHz, we used 50-dimensional melcep coefficients
with warping coefficient α = 0.55, five-dimensional BAP, and
log-scaled continuous fo, as in [45]. These features were ex-
tracted by cheaptrick [57], D4C [58], and Harvest [59] (based on
WORLD [8]), respectively. 50-dimensional melcep coefficients,
which are not affected by fo, can be extracted from smooth vocal
tract spectra analyzed by cheaptrick, while those based on the
short time Fourier transform are affected by fo. The window
and shift lengths were set to 42.7 ms and 10 ms, respectively.
Additionally, we used HiFi-GAN models with 80-dimensional
log-mel spectrograms, HiFi-GAN (melspc), as used in [21], to
compare the input features.8 The window and shift lengths were
also set to 42.7 ms and 10 ms: the same as those of the WORLD
features. Although the original HiFi-GAN used 256-fold upsam-
pling [21], we applied 240- or 480-fold upsampling to obtain
a resolution of 24 kHz or 48 kHz from input features with a
frame shift of 10 ms. Therefore, we set the upsampling rates of
the transposed convolution layers to (5, 4, 3, 4) and the kernel
sizes to (11, 8, 7, 8) for 24-kHz synthesis, as in [53], and set

6https://github.com/sarulab-speech/jsut-label
7https://github.com/jik876/hifi-gan
8Although we have initially investigated to introduce fo and mel-

spectrograms as input for controlling fo, it could not control fo accurately
because mel-spectrograms include fo components.

the upsampling rates to (10, 6, 2, 2, 2) and the kernel sizes to
(20, 12, 4, 4, 4) for 48-kHz synthesis.

The network structure of the PeriodNet was the same as
that of the non-AR series model in [39]. Its implementation
was based on that of Parallel WaveGAN [15],9 as in [45], and
we added two generators (to generate periodic and aperiodic
signals) and discriminators that operate at multiple sampling
frequencies. As input features, we used WORLD features, as
used in HiFi-GAN. The network architecture of the uSFGAN
was the same as that of the official implementation [38].10 As
input acoustic features, we used the same WORLD features
as used in HiFi-GAN. The network structure of the WaveNet
vocoder was based on [60] with an additional GRU unit for
multi-speaker training, as in [61]. As input features for WaveNet,
we also used WORLD features as used in HiFi-GAN. We
also applied time-invariant noise shaping [60] to suppress the
perceptual noise components caused by the prediction error; 35-
dimensional melcep were used and a parameter to control noise
energy in the formant regions was set to 0.5 for noise shaping,
as in [60].

The network architecture of the proposed Harmonic-Net
generator was based on the official implementation of HiFi-
GAN [21], with the addition of the proposed excitation signal
network. For the Harmonic-Net+ generator, the LW-PDCNNs
were based on the official PyTorch implementation of QP-
PWG [37].11 The dense factor a in (9) was set to 4.0 for the
Harmonic-Net+ generator. The configuration of other modules,
such as discriminators, was the same as that of the correspond-
ing components of HiFi-GAN. As input features, we used 50-
dimensional melcep coefficients, three-dimensional BAP, and
GCI extracted by REAPER.12 In the inference, we used linear
fo extracted by Harvest [59] instead of GCI. We investigated
four types of excitation signals: single-channel sine wave (sine)
with I = 1, pulse sequence (pulse) with I = 1, speech wave-
form synthesized by WORLD vocoder (world) with I = 1 as a
reference, and harmonic waves up to the fifth harmonic (harm)
with I = 5,13 as explained in Section III-B. Although the ex-
citation signal network using 1-channel convolutional layers
for summational signals of 5 harmonic components with fixed
weighting values as [36] combined with LW-PDCNNs was
initially investigated, it was not included in the experiments
because the results of preliminary experiments indicated that
it underperformed the proposed excitation signal network using
5-channel convolutional layers for 5-channel harmonic waves
combined with LW-PDCNNs, especially for high fo conversion
condition.

3) Text-to-Speech: As an acoustic model for TTS, we used
a FastSpeech-based acoustic model [62] with full-context la-
bel input for Japanese, which was complemented by ESPnet-
TTS [63]. We used simple 47-dimensional vectors constructed

9https://github.com/kan-bayashi/ParallelWaveGAN
10https://github.com/chomeyama/UnifiedSourceFilterGAN
11https://github.com/bigpon/QPPWG
12https://github.com/google/REAPER
13The number of harmonic waves was decided in accordance with the results

of preliminary experiments

https://github.com/sarulab-speech/jsut-label
https://github.com/jik876/hifi-gan
https://github.com/kan-bayashi/ParallelWaveGAN
https://github.com/chomeyama/UnifiedSourceFilterGAN
https://github.com/bigpon/QPPWG
https://github.com/google/REAPER
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Fig. 4. Distribution of fo in training dataset and fo ranges of evaluation
speakers for 0.5× fo, 1.0× fo, and 1.5× fo.

from 38-dimensional phoneme one-hot vectors and nine-
dimensional accentual label vectors, as in [45]. For TTS, we fine-
tuned HiFi-GAN-based neural vocoders using acoustic features
(80-dimensional mel-spectrograms or 55-dimensional WORLD
features) estimated by the trained acoustic models, as in [21].
The HiFi-GAN-based models were trained with 1,000,000 steps
and fine-tuned with 200,000 steps.

4) Objective Evaluation Criteria: As objective evaluation
criteria, we used signal-to-noise ratio (SNR), spectral distortion
(SD), mel-cepstral distortion (MCD), root-mean-square error of
linearfo (fo-RMSE), and real-time factor (RTF) in the inference.
To measure RTFs, we used an Intel Xeon 6152 CPU (with
one core). To calculate fo-RMSE with fo-scaled conditions, we
applied constant scaling to the fo extracted from natural speech
and used it as the reference.

5) Histogram of fo for Multi-Speaker Models: Fig. 4 shows
a histogram of the fo included in the training data, and the fo
ranges of the evaluation set for multi-speaker models. The figure
shows that fo values outside the training range are included for
0.5× fo in male speech and 1.5× fo in female speech.

B. Evaluation of Unseen Speaker Synthesis With
Multi-Speaker Models

Table I shows the results of the objective evaluations for
unseen speaker synthesis in the normal condition (1.0× fo and
1.0× T ).14 The uSFGAN showed the best performance with
respect to SD, MCD and fo-RMSE, and both Harmonic-Net and
Harmonic-Net+ performed slightly better than HiFi-GAN. With
respect to SNR, both Harmonic-Net and Harmonic-Net+ models
except for sine excitation outperformed the other methods. With

14As explained in Section I and [45], PeriodNet was not evaluated for normal
SS because it cannot synthesize normal speech well.

TABLE I
RESULTS OF OBJECTIVE EVALUATIONS FOR UNSEEN SPEAKER SYNTHESIS IN

NORMAL CONDITION

TABLE II
RESULS OF OBJECTIVE EVALUATIONS FOR UNSEEN SPEAKER SYNTHESIS IN

fo-CONVERSION CONDITION

respect to RTF, all the proposed methods were able to perform
real-time synthesis using a CPU, in contrast to WaveNet and
uSFGAN. Although the synthesis speed of Harmonic-GAN+
with LW-PDCNNs was low because of the use of LW-PDCNNs,
in comparison with the HiFi-GAN-based models without LW-
PDCNNs, it could realize real-time inference with a CPU. PD-
CNN takes more computation time than normal CNN because it
adaptively calculates the dilation size of CNN according to the
input fo. The detailed implementation of PDCNN in PyTorch
can be found in the source code of QPPWG. Although the
inference speed of Harmonic-GAN+ with PDCNNs could be
increased by making the number of initial channels small (e.g.,
256 or 128), this impaired the synthesis quality in preliminary
experiments. Therefore, in future work, it is necessary to develop
a lightweight PDCNN optimized for the HiFi-GAN structure.
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Fig. 5. Results of MOS test for unseen speaker synthesis in normal and fo-conversion conditions to compare excitation signals of Harmonic-Net and Harmonic-
Net+. Confidence level of the error bars is 95%.

Table II shows the results of the objective evaluations for un-
seen speaker synthesis in the fo-conversion condition. WaveNet
was not included in the evaluations because a synthetic error oc-
curred when scalingfo. Overall, the proposed methods improved
the controllability of fo, compared with HiFi-GAN, particularly
for the 1.5× fo condition. The results show that the introduction
of the excitation signal network contributed to the improvement
of the controllability of fo. Except for the 1.5× fo condition for
male speakers, the controllability of fo of the proposed methods
was comparable to that of uSFGAN. Comparing the excitation
signals, harm excitation achieved the best performance in most
cases, particularly for the 1.5× fo condition.

A mean opinion score (MOS) test with a five-point scale
(5 for excellent, 4 for good, 3 for fair, 2 for poor, and 1 for
bad) [64] was conducted to evaluate the subjective perceptual
quality of the synthesized speech waveforms. First, Harmonic-
Net and Harmonic-Net+ with sine, harm and pulse excitation
signals were directly compared in 1.0× fo for the normal con-
dition, 0.5× fo and 1.5× fo for the fo-conversion condition to
compare the differences among the excitation signals. Twenty
adult native Japanese speakers without hearing loss listened
to the synthesized speech samples using headphones. Fig. 5
shows the results of the MOS test. Both Harmonic-Net and
Harmonic-Net+ with pulse outperformed those with sine in all
the fo conditions. Harmonic-Net+ with harm was comparable
to both Harmonic-Net and Harmonic-Net+ with pulse except
for 1.5× fo condition of female speech. In 1.5× fo condi-
tion of female speech, Harmonic-Net+ with harm significantly
outperformed the other models. The results indicated that the
proposed excitation signal network using trainable 5-channel
convolutional layers for 5-channel harmonic waves combined
with LW-PDCNNs was more suitable for high fo conversion
condition than that using 1-channel convolutional layers for
pulse trains, which is regarded as summational signals of infinite
harmonic components with fixed weighting values, combined
with LW-PDCNNs. As a result, only LW-PDCNNs with har-
monic waves can extrapolate fo component outside the range of
the training data while keeping the synthesis quality for high fo
conversion condition. Therefore, Harmonic-Net+ with harm was

introduced in the following MOS tests. Although the results in
Fig. 5 indicate that Harmonic-Net with harm slightly lower than
that with pulse except for 1.5× fo condition of female speech,
the results of preliminary experiments for full-band singing
voice synthesis suggested that Harmonic-Net with harm sig-
nificantly outperformed that with pulse for 1.5× fo condition.
The results indicated that the proposed excitation signal network
using trainable 5-channel convolutional layers for 5-channel har-
monic waves without LW-PDCNNs was also more suitable for
highfo conversion condition in full-band singing voice synthesis
than that using 1-channel convolutional layers for pulse trains
without LW-PDCNNs.15 Therefore, Harmonic-Net with harm
was also introduced in the following MOS tests to match the
type of excitation signal to Harmonic-Net+.

For unseen speaker synthesis with multi-speaker models,
1.0× fo for the normal condition, 0.5× fo and 1.5× fo for
the fo-conversion condition, and 0.8× T and 1.5× T for the
SR-conversion condition were evaluated.16 Twenty adult native
Japanese speakers without hearing loss also listened to the syn-
thesized speech samples using headphones. There were 20 utter-
ances for each model and each condition, where five sentences
were randomly selected from each speaker of the evaluation
set (jvs001, jvs002, jvs003, and jvs004). The total number of
sentences evaluated by each listening subject was therefore 600
(= 20 utterances × (8 + 5 + 5 + 6 + 6) models). Fig. 6 shows
the results of the MOS test for unseen speaker synthesis in the
normal and fo-conversion conditions. According to the results
of the normal condition (Fig. 6(a) and (b)), Harmonic-Net+
achieved the highest quality synthesis for male speaker synthesis
although it could not outperform WaveNet, which cannot realize
real-time inference, for female speaker synthesis. Comparing the
HiFi-GAN and Harmonic-Net models, both the excitation signal
network and the LW-PDCNNs contributed to the improvement

15As described in Section IV-C, Harmonic-Net+ with LW-PDCNNs could
not outperform Harmonic-Net without LW-PDCNNs for full-band singing voice
synthesis due to the lack of training data.

16WaveNet was not evaluated in the0.5× fo and1.5× fo conditions because
the fo controllability of AR WaveNet is lower than that of QPNet [33].
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Fig. 6. Results of MOS test for unseen speaker synthesis in normal and fo-conversion conditions. Confidence level of the error bars is 95%.

Fig. 7. Results of MOS test for unseen speaker synthesis in SR-conversion condition. Confidence level of the error bars is 95%.

of the synthesis quality for unseen speaker synthesis in the
normal condition.

In the fo-conversion condition (Fig. 6(c) to (f)), although the
conventional HiFi-GAN and uSFGAN could not always out-
perform WORLD, Harmonic-Net with harm excitation signals
improved the synthesis quality, compared with the conventional
methods, except for the case of 1.5× fo with female speech.
This means that the excitation signal network worked effectively
in low-fo synthesis and interpolation of high fo, but it was
unable to improve the extrapolation of high fo. Conversely,
Harmonic-Net+ with harm excitation signals further improved

the synthesis quality and achieved the best score even in the case
of 1.5× fo with female speech.

Fig. 7 shows the results of the MOS test for unseen speaker
synthesis in the SR-conversion condition. In the 0.8× T con-
dition, although the conventional WaveNet and HiFi-GAN out-
performed WORLD, Harmonic-Net+ achieved a significantly
higher synthesis quality than the conventional methods. In the
1.5× T condition, the conventional HiFi-GAN models could
not outperform WORLD, and WaveNet could not achieve high-
quality synthesis for female speakers. Conversely, Harmonic-
Net+ achieved the best performance of all the methods. As
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TABLE III
RESULTS OF OBJECTIVE EVALUATIONS FOR FULL-BAND SINGING VOICE

SYNTHESIS IN NORMAL CONDITION

expected, artificial artifacts included in stretched features were
avoided by introducing the excitation signal network because ex-
citation signals are less susceptible to degradation resulting from
interpolation. Consequently, Harmonic-Net+ outperformed the
conventional models for unseen speaker synthesis in all (i.e.,
normal, fo-conversion, and SR-conversion) conditions.

C. Evaluation of Full-Band Singing Voice Synthesis

Table III shows the results of the objective evaluations for full-
band singing voice synthesis in the normal condition (1.0× fo
and 1.0× T ). With respect to SNR, SD and MCD, PeriodNet
achieved the best score but the inference speed was insufficient
for real-time synthesis on a CPU. With respect to fo-RMSE,
Harmonic-Net with harm excitation signals achieved higher
score than the other methods except for Harmonic-Net+ with
sine excitation, and it maintained real-time speed even for
48-kHz synthesis. Harmonic-Net+ could not realize real-time
synthesis because of the large number of parameters associated
with 48-kHz synthesis. Additionally, Harmonic-Net+ suffered
deterioration in SNR, SD and MCD. We found that the speech
waveforms synthesized by Harmonic-Net+ were buzzy through-
out. Fig. 8 shows the spectrograms up to 12 kHz of an original
speech waveform included in the speech samples and those
synthesized by Harmonic-Net with harm and Harmonic-Net+
with harm for full-band singing voice synthesis. Compared with
the spectrograms of the original (Fig. 8(a)) and Harmonic-Net
(Fig. 8(b)), that of Harmonic-Net+ (Fig. 8(c)) includes horizon-
tal stripes especially in aperiodic components surrounded by
blue squares. These components sound buzzy and degrade the
synthesized speech quality of Harmonic-Net+.

Table IV shows the results of the objective evaluations for
full-band singing voice synthesis in the fo-conversion condition.
With respect to fo-RMSE, Harmonic-Net+ models achieved
higher fo conversion accuracy than the other models. However,
with respect to MCD, Harmonic-Net+ models were lower than
the other models, and the speech waveforms synthesized by
Harmonic-Net+ were also buzzy throughout. Compared with
multi-speaker model trained using the JVS corpus, the Tohoku
Kiritan corpus only contains about 1 h although the fo range of

Fig. 8. Spectrograms of (a) original speech waveform and those synthesized by
(b) Harmonic-Net with harm and (c) Harmonic-Net+ with harm for full-band
singing voice synthesis. To show the buzzy components surrounded by blue
squares in (c) more clearly, they are shown up to 12 kHz.

the Tohoku Kiritan corpus (58 to 793 Hz) is wider than that of
the JVS corpus (Fig. 4). Then, LW-PDCNNs might not be able
to be trained well due to the lack of training data. Therefore,
further investigation of Harmonic-Net+ with a larger amount of
training data for full-band singing voice synthesis is required as
future work.

We also conducted a MOS test as a subjective evaluation.
The evaluation conditions were the same as those for unseen
speaker synthesis with multi-speaker models. According to the
results of the objective evaluations and the preliminary MOS test,
Harmonic-Net+ was not included in the MOS test. Additionally,
although uSFGAN achieved high scores in the objective evalu-
ations, it was not included in the MOS test because it could not
outperform PeriodNet in preliminary experiments. Harmonic-
Net with harm excitation signals was compared with WORLD,
HiFi-GAN, and PeriodNet. Twenty subjects listened to all 20
phrases in the evaluation set for each model and each condition.
Thus, the total number of phrases evaluated by each listening
subject was 480 (= 20 phrases × (6 + 4 + 4 + 5 + 5) models).
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Fig. 9. Results of MOS test for full-band singing voice synthesis in the normal, fo-conversion, and SR-conversion conditions. Confidence level of the error bars
is 95%.

TABLE IV
RESULTS OF OBJECTIVE EVALUATIONS FOR FULL-BAND SINGING VOICE

SYNTHESIS IN fo-CONVERSION CONDITION

Fig. 9 shows the results of the MOS test for full-band singing
voice synthesis. According to Fig. 9(a), Harmonic-Net achieved
almost the same score as PeriodNet. However, because Period-
Net has the problem of low inference speed, Harmonic-Net has
the advantage of realizing fast and high-quality full-band singing

voice synthesis. In the fo-conversion condition, Harmonic-Net
also achieved a higher synthesis quality than HiFi-GAN which
could not synthesize speech waveforms with fo-scaled features,
and there was a significant difference between Harmonic-Net
and PeriodNet in the 0.5× fo condition. In the SR-conversion
condition, Harmonic-Net significantly achieved the best synthe-
sis quality for both the 0.8× T and 1.5× T conditions. There-
fore, the effectiveness of Harmonic-Net with harm excitation
signals was validated for full-band singing voice synthesis.

D. Evaluation of Text-to-Speech

Finally, we subjectively evaluated models using the
FastSpeech-based TTS acoustic model. In the experiments,
we compared Harmonic-Net+ with HiFi-GAN models that use
mel-spectrograms or WORLD features.17 In SR conversion,
the phoneme durations, predicted by the duration predictor in
FastSpeech, were changed for the 0.8× T and 1.5× T con-
ditions. In preliminary experiments, there was no significant
difference between Harmonic-Net+ and HiFi-GAN because the
FastSpeech decoder could synthesize SR-converted acoustic
features accurately, similarly to ScalerGAN [51] but differently
from simple uniform resampling. Therefore, TTS was investi-
gated only for 1.0× fo in the normal condition, and 0.5× fo
and 1.5× fo in the fo-conversion condition. The evaluation
conditions were the same as those for unseen speaker synthesis
with multi-speaker models and full-band singing voice synthe-
sis. Twenty subjects listened to ten randomly selected sentences
from the evaluation set, for each model and each condition.

17Harmonic-Net was not included in the experiments because it could not
outperform HiFi-GAN in the normal condition in preliminary experiments.
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Fig. 10. Results of MOS test for single-speaker TTS in the normal and fo-
conversion conditions. Confidence level of the error bars is 95%.

Therefore, the total number of sentences evaluated by each
listening subject was 80 (= 10 utterances× (4 + 2 + 2) models).

Fig. 10 shows the result of the MOS test for single-speaker
TTS. According to Fig. 10(a), HiFi-GAN and Harmonic-Net+
achieved high performance and these was no significant differ-
ence between them. In the fo-conversion condition, Harmonic-
Net+ achieved a significantly higher synthesis quality even when
scaled fo not included in the range of the training data was input,
as unseen speaker synthesis with multi-speaker models and
full-band singing voice synthesis. Therefore, the effectiveness of
Harmonic-Net+ was confirmed for single-speaker TTS. Future
work includes the integration of Harmonic-Net+ into an entire
end-to-end TTS system, in a similar manner to [3], [31].

E. Discussion

From the results of the MOS test shown in Fig. 5, the proposed
excitation signal network with multi-channel harmonic waves
corresponding to fo combined with the proposed LW-PDCNNs
can realize high quality synthesis while keeping the fo controlla-
bility, whereas the conventional methods introduce sine waves or
pulse trains. Especially for high fo conversion condition, only
the proposed method with harmonic waves and LW-PDCNNs
can realized high synthesis quality. The effectiveness of the
proposed Harmonic-Net+ with multi-channel harmonic waves
and LW-PDCNNs was validated for unseen speaker synthesis
and TTS conditions from the results of the MOS tests depicted
in Figs. 5 to 7, and 10. Although the effectiveness of the proposed
LW-PDCNNs could not be validated for full-band singing voice
synthesis due to the lack of training data according to the results
of the objective evaluations (Table IV) and preliminary MOS
test, the effectiveness of the proposed excitation signal network
with multi-channel harmonic waves was validated from the
results of the MOS test shown in Fig. 9. Further investigation of
LW-PDCNNs with a larger amount of training data for full-band
singing voice synthesis is required as future work. Addition-
ally, the effectiveness of the proposed excitation signal network
with multi-channel harmonic waves for SR conversion was also

validated from the results of the MOS tests shown in Figs. 7
and 9.

V. CONCLUSION

To realize fast and high-quality neural speech waveform gen-
eration while preserving the controllability of fo and SR, we
proposed Harmonic-Net and Harmonic-Net+, which introduce
an excitation signal network and non-AR LW-PDCNNs into
the HiFi-GAN generator. The excitation signal network uses
multi-channel harmonic waves corresponding to fo as excitation
signals and we introduced a downsampling network that receives
these excitation signals. LW-PDCNNs can flexibly change re-
ceptive fields corresponding to the input fo, and we adjusted
the network architecture to fit the structure of the HiFi-GAN
generator. By introducing the proposed architectures, the con-
trollability of fo is expected to be improved. Additionally, the
direct input of the excitation signals is expected to improve the
synthesis quality of SR conversion because the excitation signals
are not resampled but the number of repetitions of the input
excitation signals is changed. We conducted experiments for
unseen speaker synthesis with multi-speaker models, full-band
singing voice synthesis, and single-speaker TTS. The results of
the experiments confirmed that the proposed excitation signal
network and LW-PDCNNs worked effectively to improve the
synthesis quality, compared with conventional models, while
realizing real-time inference with a CPU in all (normal, fo-
conversion, and SR-conversion) conditions.
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