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Deep Learning-Based Speech Specific Source
Localization by Using Binaural and Monaural

Microphone Arrays in Hearing Aids
Peyman Goli and Steven van de Par

Abstract—A deep learning-based method is proposed for jointly
detecting and localizing speech sources in a complex acoustic scene
by using microphones of a hearing aid. Motivated by the human
auditory system, peripheral preprocessing is applied on the micro-
phone signals to obtain auditory subband signals that serve as input
to the proposed deep neural network for detecting and localizing
speech sources. In the proposed neural network, a combination of
residual and dense aggregation learning is utilized rather than the
conventional residual learning to preserve and reuse the spatial
representations at the output layers. This process is performed to
improve the gradient flow in deeper layers, in the training stage. The
learning curves show that the proposed residual-dense aggregation
mapping do improve the speed and accuracy of the convergence.
The proposed model shows good performance in joint speech source
detection and localization using a binaural microphone array (i.e.,
three channels at each side) but also using a monaural microphone
array (i.e., four channels at the right side) despite of the short
distances between the microphones. The proposed methods also
outperform neural networks that are directly using STFT compo-
nents of the binaural or monaural microphone arrays. In addition,
the proposed models extended with learnable peripheral processing
show slightly improved in detection and localization scores com-
pared to the proposed models using the plain auditory subband
signals, in both the binaural and monaural microphone arrays but
only so, when the learnable peripheral processing is initialized with
parameters stemming from human peripheral processing.

Index Terms—Auditory system, direction of arrival estimation,
speech source localization, deep learning, hearing aids.

I. INTRODUCTION

CONTRARY to the remarkable capabilities of normal hear-
ing listeners in understanding speech in a complex acoustic

environment, hearing-impaired listeners can have substantial
difficulties in speech source localization and in understanding
speech [1]. To support hearing-impaired listeners, methods are
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developed that allow beamformers in hearing aids to selectively
enhance speech sources [2], [3]. For this purpose, combined
speech source detection (SSD) and localization (SSL) algo-
rithms have been developed that can determine at what location
a speech source is placed amid interfering noise sources placed
within a reverberant environment.

Both for hearing aids (HA), as well as for human-robot
interaction, numerous conventional methods for SSL (i.e., non-
deep learning-based methods) have been proposed that use
time-frequency representations of microphone signals as inputs.
Some approaches in HAs use interaural features derived from
pairs of microphone signals that resemble auditory localization
cues such as interaural time and level differences. Many con-
ventional SSL approaches in human–robot interaction rely on
the sound having different propagation pathways to the multiple
microphone channels located on the robots. These methods often
extract the spatial information from the spectral representa-
tion of microphone signals to predict the direction of arrivals
(DOA) of sound sources. For example, time-difference-based
algorithms such as the generalized cross-correlation with phase
transform (GCC-PHAT) [4] estimate the time differences be-
tween the Fourier transforms of pairs of microphone signals to
localize sound sources. Beamforming-based approaches such
as steered-response power phase transform (SRP-PHAT) [5]
search for the candidate source location that maximizes the
output of a steered delay-and-sum beamformer. GCC-PHAT is
also a conventional feature for source localization in microphone
configurations used in HAs [6]. Histogram analysis approaches
estimate the angles of arrivals by scanning DOAs across all
angles to determine that direction containing most energy [7].
Subspace-based methods such as multiple signal classification
(MUSIC) algorithms rely on the maximum of the spatio-spectral
covariance matrix of microphone channels to estimate DOA of
speech sources [8].

Since the microphone configurations in HAs, contrary to
robotics, are limited to the positions of the ears, the spatial distri-
bution of the microphone positions in HAs may not provide suffi-
cient time-of-arrival differences for the SSL methods to provide
optimal performance. Therefore, some conventional methods,
specifically in HAs, have used models of computational auditory
scene analysis (CASA) to localize speech sources inspired by
the human ability to detect and localize speech sources [9], [10],
[11], [12], [13], [14], [15]. In the auditory system, starting from
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the outer ear and ending in the cortical areas of the brain, the
spatial information of speech sources is processed by segment-
ing, grouping, and integrating the information extracted from
the binaural signals [13]. Interaural time difference (ITD) and
interaural level difference (ILD) between the ears are the two
major cues that are exploited by the human auditory system
to localize sound sources. ITDs result from the difference in
arrival time of a sound between the ears, and ILDs result from
the head shadow effect at high frequencies. It has been proposed
that the interaural coherence is used as a selection criterion to
select reliable interaural cues for speech source localization in
mixtures of several speakers [13]. In [14], based on the different
positions of sound sources, a decision rule system is used to
separate a speech source from interfering sounds. In [15], a prob-
abilistic localization model based on Gaussian mixture models
(i.e., shallow learning models) was developed that estimated
likelihoods of different azimuth angles for each time-frequency
interval. These azimuth dependent likelihoods were then used
to segregate sources in the time-frequency domain to support
a missing data classifier to determine the presence of a speech
source for various azimuth angles.

Using multiple microphone channels at each ear in HAs can
further improve the spatial resolution because interchannel cues
[i.e., interchannel time difference (ICTD) and interchannel level
difference (ICLD)] can be determined across multiple pairs.
Utilizing the contributions of the multiple interchannel cues
in speech source localization and creating a mapping between
the cues and corresponding azimuth angles at different acoustic
conditions are challenging tasks that cannot be handled well by
conventional methods and shallow learning models. Deep neural
network (DNN)-based methods have been proposed for estimat-
ing and exploiting optimal representations of the interchannel
cues for detecting and localizing speech sources [16], [17],
[18], [19], [20], [21]. In addition, DNN-based approaches have
been shown to be able to handle strong interfering sources and
reverberation which are very challenging tasks in conventional
methods.

Although deep learning-based methods that use high-level
features in terms of pure interchannel cues may require neural
networks with fewer layers and less complexity compared to
neural networks using raw data, these interaural cues may not
provide the most optimal representations of the raw microphone
signals throughout the deep layers for localization. Accordingly,
some recent DNN-based approaches in environment–robot in-
teractions have used the raw time-frequency (TF) representa-
tions of the microphone signals as the inputs to preserve the
optimal spatial representations throughout the deep layers [22],
[23], [24]. In [22], the inputs of the deep neural network are the
powers of the short-time Fourier transform (STFT) components
of the signals received by 16 microphone channels placed around
a robot body. In this method, a deep classification model for
estimating the probability density across azimuth angles was
trained using the gradient of a cross entropy loss function. In
[23], the real and imaginary parts of STFT were used as input to
a deep regression model in order to detect and localize speech
sources. Here, the microphones were located on a robot device in
a coplanar rectangular shape microphone array. In [24], the phase
and magnitude of the STFT components of the signals received

by circular and spherical microphone arrays were utilized as
the input to a deep neural network to predict the azimuth angle
of target speech sources. In all these methods, the microphone
channels are positioned in a coplanar or noncoplanar micro-
phone arrays around the robot devices. Compared to HAs, this
microphone positioning can provide a better spatial resolution
due to their more evenly distributed spatial configurations [25].
In a single HA, microphone channels are clustered more close
to each other, and only small ICTDs and ICLDs are observed.
Thus, although in robot devices, the STFT components may
enable the extraction of sufficiently strong cues for localization,
the closely spaced microphones in HAs usually allow only a
poor representation of ICTDs and ICLDs.

In this study, we propose a deep learning-based method to
jointly detect and localize speech sources in noisy and re-
verberant environments by using six behind-the-ear channels
of a binaural HA microphone array. Rather than using STFT
components extracted on a frame-by-frame basis, we use the
time domain auditory subband signals obtained by an audi-
tory peripheral preprocessing stage applied to each microphone
signal. In the peripheral preprocessing, an auditory filter bank
followed by half-wave rectification and square-root compression
is applied on the microphone signals to prepare the inputs for
the neural network. These preprocessing stages are inspired on
the human auditory system. The interchannel cues are better
represented in this way compared to using STFT components
because the subband signals extracted by the auditory filter
bank have better spectral resolution at lower frequencies. Note
also that for a narrow-band signal, halfwave rectification will
preserve the original (spectral) information that was present
before rectification [26]. As a result, spatial information as well
as periodicity information is preserved. Importantly, the onsets
of individual periods may provide salient time-delay information
between the auditory subband signals, which may be readily
detected by convolutional layers. The square-root compression
limits the total dynamic range of the subband signals while
still preserving level information. Initial layers in the proposed
deep neural network are designed to learn to extract the optimal
interchannel cues from the raw auditory subband signals to be
utilized in the rest of the network for detection and localization
at various acoustic conditions.

Note that recently, some DNN-based speech recognition and
sound classification approaches have suggested using learnable
auditory filter banks to estimate the optimal TF representations
of microphone signals [27], [28]. Estimating the optimal au-
ditory filters (e.g., optimal center frequencies and bandwidths)
through deep layers can potentially provide a better front end
than the peripheral preprocessing we propose. Accordingly, we
have also utilized a convolution-based learnable gammatone
filter bank (LGFB) as a front-end SSD and SSL processing the
raw microphone signals.

Utilizing the raw data (e.g., auditory subband signals or mi-
crophone signals) rather than the pure interchannel cues may be
beneficial because more information of the input signals is pre-
served. It will, however, require a deeper neural network. Note
that problems, such as gradient vanishing and overfitting, make
the deeper neural networks more difficult to train [29]. Some
approaches based on residual learning and dense aggregation
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have been proposed to deal with this problem in DNN-based
image recognition [30] and speech enhancement models [31].
Such approaches allow for the training of very deep neural
networks by preventing the vanishing gradient problem and
improving gradient flow during backpropagation [32], [33]. In
addition, so called, dense aggregations use the identity mapping
to concatenate the inputs of shallow layers with the outputs of
deeper layers and allow for more layers to explore a larger set
of features during training [34]. Based on these insights, in our
study, we use a combination of identity mapping, consisting
of the residual links and dense aggregation, to further improve
gradient flow in deeper layers. This combination also enhances
the performance of the neural network in terms of convergence
speed and training loss during the training stage.

The contribution of this paper focuses on the following spe-
cific aspects of deep learning-based SSL and SSD in HAs: 1. The
benefit of utilizing a peripheral preprocessing and a learnable
peripheral processing to determine the auditory subband signals
as the input of the neural network model and comparing the
performance of the proposed model to the DNN-based models
using a STFT-based preprocessing. 2. The use of only a monaural
microphone array (i.e., four microphones of one hearing aid
only) for joint speech source detection and localization. 3.
Applying a combination of residual links and dense aggregation
in deeper layers to further improve the gradient flow in deeper
layers in comparison to the conventional residual blocks used in
DNN-based methods for SSL and SSD.

The paper is organized as follows. Section II describes the
CASA-based preprocessing stage for determining the auditory
subband signals as the inputs of the neural network model.
Section III explains the architecture and hyperparameters of the
proposed neural network model and the proposed residual-dense
learning. Section IV describes the experiments, the datasets
prepared for training and testing the neural networks, and the
performance of the trained models in SSD and SSL. Section V
provides the conclusion and a summary of the main findings.

II. CASA-BASED PREPROCESSING

In our proposed method, we apply a CASA-based preprocess-
ing on the signals received by the microphones of the array to
prepare the inputs for the neural network model. The prepro-
cessing stage consists of an auditory peripheral model which
results in a set of auditory subband signals, and a preparation
stage which prepares the inputs of the neural network.

In the inner ear, the cochlea converts time dependent sound
pressure patterns received from the ear drum into cochlear
oscillations on the basilar membrane that separates the time
signal in different bandpass filtered signals. The auditory nerves
(driven by inner hair cells) then passes the interaural signals to
the brain. Several approaches have been proposed to simulate the
activities of the cochlea and the inner hair cells [35], [36], [37].
In the peripheral processing we used here, the activity of the
human auditory system in the inner ear is simulated by applying
an auditory filter bank followed by inner hair cell processing,
which assumes half wave rectification and square root.

Fig. 1. Binaural signals of a speech source at −90◦ and the auditory subband
signals produced by the peripheral processing in four frequency bands. ILDs
increase at high frequencies because of the head shadow effect. ITDs are well
detectable between the plain onsets at lower frequencies while conveyed in the
modulated envelopes of the auditory subband signals at higher frequencies.

In more detail, the preprocessing stage first uses a rectangular
window of 20 ms (882 samples at 44.1 kHz sampling rate) to
segment the microphone signals in the time domain. Then a
fourth-order gammatone filter bank is applied on the signals to
simulate the activity of the human cochlea in the inner ear. The
gammatone filter bank decomposes the signals into N = 32
subband signals. The band center frequencies are distributed
uniformly on the equivalent rectangular bandwidth (ERB) scale
between 80 Hz and 5 kHz and have bandwidth in accordance
with the ERB estimates of [38]. The neural transduction process
in the inner hair cells is simulated by applying halfwave recti-
fication (i.e., simulating the firing rates of the auditory nerves)
and square-root compression (i.e., simulating the compressive
response of the early stages of auditory processing) on the
subband signals

An exemplary binaural signal of a speech source located at
−90◦ (i.e., a speech source at the right side) and the correspond-
ing auditory subband signals in some frequency bands resulting
after the peripheral processing are shown in Fig. 1. At lower
frequencies, where the wavelength is larger than the diameter
of the head, ILDs between the auditory subband signals are
extremely small (i.e., near zero), and ITDs are well detectable
between the onsets of the positive signal part.

At higher frequency bands, ILDs are well detectable due to the
head shadow. Furthermore, in accordance with the processing
of the human auditory system, the network can in principle



GOLI AND VAN DE PAR: DEEP LEARNING-BASED SPEECH SPECIFIC SOURCE LOCALIZATION 1655

Fig. 2. Auditory-based and STFT-based binaural cue scatters extracted from
the HRIRs of the DUDA head at different azimuth angles. Low bin resolution
at lower frequencies in the STFT components leads to downscale ITDs at low
frequency bands in comparison with the auditory-based ITDs.

exploit the modulated envelopes of the auditory subband signals
to detect the time delays in the envelopes at higher frequencies.

Time delays play an important role in human localization,
specifically, at lower frequencies. To get more insight in the
representation of interaural time delays and level differences as
represented in STFT-based approaches, in the lower panel of
Fig. 2, scatter plots of STFT-based binaural cues are shown. In
addition, in the upper panel ‘auditory-based’ ITDs and ILDs
are shown that are calculated from the peripheral front-end
that includes a gamma-tone filtering. For both cases, ITDs and
ILDs are extracted using the head-related impulse responses
(HRIRs) of the DUDA head model [39] at different azimuth
angles. Auditory-based ILDs are calculated using the level dif-
ferences between the auditory subband signals of HRIRs, and
STFT-based ILDs are computed on the basis of the magnitude
of Fourier transform of HRIRs at each frequency band. The
auditory-based ITDs are determined by searching the maximum
of normalized cross-correlation function between the auditory
subband signals of HRIRs, and the STFT-based ITDs are calcu-
lated on the basis of the unwrapped IPDs of the Fourier transform
of HRIRs at each frequency band.

The length of HRIRs is 1024 samples, which is the conven-
tional size of segmented signals used in STFT-based methods
for speech source localization. As can be seen in Fig. 2, STFT-
based ITDs are downscale at lower frequency bands due to the

low frequency-bin resolution of the STFT components. These
downscaled time differences can lead to a reduced performance
in SSL models at adverse acoustic conditions where the level
differences cannot be detected by the model due to target speech
signals being masked by interferers at somewhat higher frequen-
cies. The auditory-based ITDs are detectable at all frequencies
because the auditory subband signals no longer suffer the poor
resolution at lower frequencies. The detectable time delays at
lower frequency bands can improve the robustness of speech
source localization when the target speech signals are masked
by interferers at higher frequency bands.

In the model input preparation stage, a min-max scaling is
applied on the auditory subband signals for each time frame
separately to set the input value range between 0.1 and 0.9. This
prevents that the large dynamic range of the input signal leads
to the large gradient variance problem when updating the neural
network parameters during the training stage. Four preceding
context frames are added to the current input frame to extend
the time interval for speech source localization (i.e., the input
duration is 5×20 ms= 100 ms). The number of the time samples
is reduced to M = 2205 by using a downsampling step with
the rate of 2 to 1. The size of the 3D inputs is [frequency bands
(N ), time samples (M ), microphone channels (P )].

III. NEURAL NETWORK MODEL

We utilize a regression model based on a deep convolution
neural network (CNN) to jointly detect and localize speech
sources using auditory subband signals. Note that some SSL
approaches have also proposed that use a temporal sequence
of STFT representations combined with a recurrent structures
to utilize the context information [40], [41]. However, since
the context frames in our proposed method are concatenated
in the subband signal samples anyway, using the convolutional
learning, the temporal pattern of context information is available
also for detection and localization.

In this section, the expected output used in the labeled data,
the proposed residual-dense learning, and the architecture and
hyper parameters of the neural network model proposed for joint
speech source detection and localization are described.

A. Expected Output

In supervised learning-based methods, neural networks are
trained by using well-labeled data based on the pairs of input
feature and expected output. The specific training set we used
will be detailed in Section IV where it will be explained how
target speech sources and interfering noise sources are placed
within a reverberant environment. In the proposed method, the
expected output is an array with the size of 360 (i.e., the number
of azimuth angles), and represents the likelihood that a speech
source is present at a specific azimuth position. In the absence
of speech sources (i.e., only nonspeech sources are found in the
environment), the expected output is an all-zero array because
no speech source should be detected. In the presence of speech
sources (i.e., speech and nonspeech sources are found in the
environment), the expected output is defined as a likelihood rep-
resentation of speech source presence across different azimuth
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Fig. 3. Expected output for joint SSL and SSD. In the presence of speech
source, the target output is the likelihood of azimuth angles around the target
azimuth angle θm, and in the absence of speech source, the target output is an
all-zero array.

angles by using a Gaussian function. The mean value of this
Gaussian function is at the true azimuth angle of speech source:

φm (θ)

=

{
0 ; absence of speech source

exp
[
−(θ − θm)2/σ2

]
; presence of speech source

;

θ = 1, . . . , 360, (1)

hereφm(θ) is the expected output at azimuth angle θ, for themth
time frame of a speech source positioned at an azimuth angle θm.
Furthermore, σ2 is the variance of the Gaussian function which
determines the width of the curve around the target angle, as
shown in Fig. 3. In our training, the parameter σ is set to 5°
which corresponds approximately to human spatial resolution
in moderately reverberant environments.

B. Residual-Dense Learning

Neural networks utilizing relatively raw data as inputs (e.g.,
TF components of binaural signals) may need more deep layers
to extract optimal representations of the inputs. However, prob-
lems, such as gradient vanishing and overfitting, make deeper
neural networks difficult to train. The residual connections have
been proposed to deal with these problems also in the context
of DNN-based SSL methods [22], [23]. One of the methods for
implementing a residual block in CNNs is to use an identity
mapping between the inputs and outputs of a stack of three
convolutional layers (i.e., a convolutional layer with a kernel
size of 3×3 is used between two convolutional layers with a
kernel size of 1×1, maintaining the same number of channels).
In neural networks, this compacts extracted representations to
best fit in the available space. Residual links provide an identity
mapping by adding the inputs of the stacked layers to the outputs.

Although utilizing the residual blocks in deeper layers can
improve the convergence speed during the training stage, the
spatial information still represented in earlier shallower layers
may be lost after in case multiple summations with deeper layer

Fig. 4. Residual block and residual-dense block utilized by the proposed neural
networks. The dense aggregation can preserve the spatial information of the input
layer despite the multiple summations applied by the residual links.

outputs. Recently, dense aggregations have been proposed to
deal with this problem in deep learning-based image processing
methods [42], [43]. The dense aggregations utilize the identity
mapping to concatenate the inputs of earlier shallow layers with
the outputs after several deeper layers and allow layers to explore
a larger set of features during training. In this study, we apply
a combination of residual link and dense aggregation within
three-layer stacks, as illustrated in Fig. 4. The dense aggregation
can preserve the spatial information of the earlier shallow layer
despite the multiple summations applied by the residual blocks.
The kernel size of the middle layer is adopted to be 8×5 based
on the dimension of the frequency bands and time samples at
the input of the stacked layers. Five residual links are used in
each residual-dense block. In this study, two neural network
models are trained for detecting and localizing speech sources
by using the residual and residual dense blocks in deep layers
to compare the performance of the conventional residual block
and the proposed residual dense block in the training phase.

C. Model Architecture

In this study, a deep regression model based on convolu-
tional neural networks is used to create a complex mapping
between the 3D inputs containing the auditory subband signals
and corresponding expected outputs to simultaneously detect
speech sources and predict the azimuth angle of available speech
sources.
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Fig. 5. (a) Architecture of the proposed neural network model for joint SSL and SSD using plain auditory subband signals. (b) Learnable gammatone filter bank
(LGFB) for estimating auditory subband signals from microphone signals. The parameters of the convolutional layers are abbreviated as follows, KS: Kernel size,
ST: Stride, and CH: Channels. BN, activation, and parameter P are, respectively, the batch normalization block, Swish activation function, and the number of
microphone channels.

The mean square error (MSE) is used as the loss function
between the expected and predicted outputs over batches:

MSE =
1

360B

B∑
m = 1

360∑
θ = 1

[
φm (θ)− φ̂w

m (θ)
]2
, (2)

where w denotes the parameters of the neural network (i.e.,
weights and biases), which should be learned on the basis of
the gradient of the loss function using backpropagation learning
over batches during the training stage. φ̂w

m(θ) is the predicted
output of the model at the mth time frame, with w representing
the current model parameter set, and B is the batch size.

The architecture of the neural network model consists of four
blocks, as shown in Fig. 5(a). Each block has a specific contribu-
tion in enabling the complex mapping of the auditory subband
signals onto the azimuth dependent likelihood function defined
in (1). Briefly, in Block 1, the optimal spatial representations
of auditory subband signals are estimated at each frequency
band. Block 2 improves the gradient flow in deeper layers (i.e.,
the parameters of the deeper layers in Block 1 can be updated
based on the true gradient of the loss function.). Block 3 is
used for removing the samples with less spatial information, and
changing the convolution domain in Block 4. In the last block,
the likelihood of azimuth angle is estimated by convolving the
spatial representations across the frequency bands. The blocks
are described in detail in the following.

In Block 1, three convolutional layers with the kernel size of
1×80, 1×10, and 1×5 are applied on time samples to estimate
the optimal representations of the auditory subband signals
throughout the expanded channels 3P, 9P, and 27P, where P is
the number of channels in the microphone array. The dimension

of time samples is reduced throughout the convolutional layers
by using strided convolutions 1×4, 1×3, and 1×2.

In the next block, five three-layer stacks with
residual/residual-dense mapping are used to improve gradient
flow and prevent the vanishing gradient problem in deeper
layers during backpropagation. The number of channels of
the layers is 27P (i.e., the same as the number of channels
of the last layer of Block 1). The output dimensions of the
residual and residual-dense blocks are (32, 86, 27P) and (32, 86,
54P), respectively. Two models are designed and trained using
the residual and residual-dense blocks described in details in
Section B.

In Block 3, a 1×1 convolutional layer with 720 channels (i.e.,
twice the number of the azimuth angles) is applied to extract the
optimal representations of previous layer throughout the azimuth
angles, and then a max pooling layer with the size of 1×5 is
applied on time samples to pool the most prominent samples with
more energy. An axis swapping is used to change the convolution
domain from frequency sample to frequency angle in the rest of
the model [23].

In the last block, 2D convolutions are applied on the frequency
and angle axes. A convolutional layer with the kernel size of
16×10 (i.e., 16 on frequency and 10 on angle domain), stride
of 2×2, and the channel number of 258 is applied to create an
output with the dimension of (9, 360, 258). A convolutional
layer with 9×5 kernel size and 1×1 stride is applied to estimate
the target azimuth angle based on the representations extracted
across the frequency angle domain with filters having 774 ex-
panded channels. The convolutional layers are applied by using
circular padding along the azimuth angles (i.e., The azimuth
angle 359◦ is connected with 0◦ by using circular padding). In
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the last layer, a 1×1 convolutional layer with a single channel is
applied to create the output array on the basis of the likelihood
of the target azimuth angle. The batch normalization [44] and
Swish activation function are applied after all convolutional
layers. Note that the Swish activation function, x/(1 + e−x),
recently proposed by the Google Brain Team [45] has shown
better performance in deep learning-based image processing
models [46], [47], [48], [49] compared to the activation functions
conventionally used in DNN-based image and signal processing
methods, such as the rectified linear unit (ReLU),max(0, x), and
Sigmoid, 1/(1 + e−x). The unboundedness in positive values
and the nonmonotonicity of the Swish activation function lead
to a better convergence speed and smoother gradients in deeper
layers.

In addition to our proposed model for SSL and SSD which
uses a fixed gammatone filter bank, another model was trained
which uses a learnable gammatone filter bank (LGFB). As shown
in Fig. 5(b), a convolutional layer with 32 channels (i.e., filters) is
used in Block 0 to be able to model a gammatone filter bank with
32 filters that can be trained during the learning stage. It replaces
the fixed peripheral preprocessing. The weights of the channels
are initialized based on the impulse responses of the gammatone
filters that were used in the fixed peripheral preprocessing. The
kernel size (i.e., convolution size) applied on the microphone
signals is 442 (i.e., the size of the impulse responses), and
the stride is adapted to 2 to perform a downsampling by a
factor of 2. The square root of ReLU (SReLU) is used as an
activation function to implement the half-wave rectification (i.e.,
the zero function at negative values in SReLU) and square-root
compression (i.e., the square root of the identity function at
positive values in SReLU). An axes swapping unit is applied
on the layer output to reshape the estimated auditory subband
signal to (32, 2205, 6). The rest of the model is the same as Blocks
1 to 4 shown in Fig. 5. The raw microphone signals (i.e., current
frame and four preceding context frames) are scaled between−1
and 1, padded with zeros, and then used as input to the model in
order to predict the azimuth angles of speech sources.

IV. EXPRIMENTS

The purpose of the experiments was to evaluate performance
of the proposed method in detecting and localizing speech
sources in various acoustic environments. In order to perform the
training, room simulations were made with the RAZR method
[50] which allows to simulate the acoustics within a specified
room for a specified sound source and listener. By providing
the HRTFs of the hearing aid microphones, the actual signals
received by the microphones can be simulated for arbitrary
multi-source acoustic scenes. This allows for an extendable
set of training data, and for creating test stimuli to evaluate
performance of the proposed method.

A. Microphone Arrays and Dataset Preparation

The BKwHA HRTF dataset [51], recorded on Brüel & Kjær
HATS, was used to simulate the head-related transfer functions
of the microphone channels in an 8-channel behind-the-ear

Fig. 6. The microphone positions of the right ear in the hearing aid. The
distances between the microphones are given in mm [52].

(BTE) HA [52]. Fig. 6 demonstrates the positions of the micro-
phone channels at the right ear in the BTE HA. Six microphone
channels behind the two ears are used for the binaural configura-
tion, and four microphone channels (three behind, and one in the
right ear) are used for the monaural configuration to capture the
audio signals in a simulated noisy and reverberant environment.

The impulse responses of an acoustic room are simulated
by using the perceptually plausible room acoustics simulator
(RAZR [50]). In the version of RAZR used in this research, all
sound sources are omnidirectional and increase the complexity
of the reverberation conditions in the acoustic environment. The
dimensions of the room are 5.4 m length, 7.1 m width, and 3
m height, and the head is positioned near the room center 2.7,
3.5, and 1.7 m. For a robust localization performance, sound
sources are randomly located between 1 and 1.5 m from the head
position at random azimuth angles between 1° and 360° with 5°
resolution. A total of 2000 utterances from 200 different speakers
(male and female) from the TIMIT database [53] and around 2.5
h nonspeech signals recorded in real rooms and public places
(e.g., babble, restaurant, café, air conditioner, fan, kitchen, room
ambience, office, etc.) [54] are used as speech sources and noise
sources to prepare the training dataset at random signal-to-noise
ratios (SNRs) from −6 dB to 30 dB with steps of 3 dB. Here,
the spatial anechoic SNRs are used, determined at the center
of the head. Because sound sources have different distances from
the head position it is calculated according to:

SNR = 10log10

{
[rms (speech)]2

[rms (noise)]2
d2n
d2s

}
, (3)

where dn and ds are the distance of the noise source and speech
source from the center of the head, respectively, and rms repre-
sents the root mean square. Three reverberation times, T60, are
randomly adopted from the range of 0.01 s to 0.81 s with intervals
of 0.2 s. T60 is varied by adjusting absorption coefficients for all
surfaces at five octave band center frequencies 250, 500, 1000,
2000, 3000, and 4000 Hz. None or one speech source, and one
noise source are simultaneously present in the acoustic room
at random azimuth angles. The presence or absence of speech
source is randomly selected during the preparation of the training
dataset. The silent regions at the beginning and end of speech
signals are removed. The training dataset is composed of 32400
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Fig. 7. Validation error (MSE) curves for the models employing residual and
residual-dense blocks for binaural and monaural microphone array.

different random combinations of positions, and each contains
three utterances. The duration of the training dataset is around 59
h. In the test dataset, 200 utterances from 20 different speakers
(male and female) and the nonspeech sources [54], which are
all not used in the training dataset, are used at 2500 random
positions. The number of the signals with speech sources and
no speech source present are nearly balanced in the test dataset.

B. Training Stage and Learning Curve

The Adam optimizer [55] is used as an adaptive optimizer
using the backpropagation algorithm to update the model pa-
rameters during the training stage. The minibatch size B is 32,
and the learning rate is set to 10−4 for all epochs in all neural
networks. Each epoch required approximately 4 days using one
GPU, Tesla P100, and three CPUs, Intel Xeon E5-2650, available
in the CARL cluster of Oldenburg University.

1) Residual/Residual-Dense Learning: The validation error
(MSE) curves for the models using residual and residual-dense
blocks are shown in Fig. 7. The models converged after around
3 epochs. For a better comparison, validation loss is computed
every tenth of an epoch which we will refer to as subepoch, and
a smoothing [56] is applied on the curves to smooth the rapid
changes in the validation errors in subepochs. As illustrated, the
residual-dense block in which the spatial representations of the
input layer are reused at the output layer of the block converges to
a lower validation error and leads to a better convergence speed
in comparison to the conventional residual block in the training
stage, both in binaural and monaural microphone arrays. In the
rest of the paper, the proposed binaural and monaural models
will use the proposed residual-dense structure.

2) Learnable Gammatone Filterbank: Two binaural mod-
els and two monaural models with LGFBs have been trained
with weight initialization based on the peripheral preprocessing
parameters (denoted as Prop-LGFB) and without such weight
initialization (denoted as Prop-LGFB-w/o init.), as shown in
Fig. 5(b). The validation error curves for the models with LGFB
and the models using the plain auditory subband signals calcu-
lated by the peripheral processing (Prop-CASA) are shown in

Fig. 8. Validation error curves for the model using the plain auditory subband
signals (Prop-CASA, solid line), and the models with a learnable gammatone
filter bank with initialization (Prop-LGFB, dashed line) and without initialization
(Prop-LFGB-w/o init., dotted line).

Fig. 9. Center frequencies and ERBs of the plain gammatone filter bank (GFB,
solid black line), and a learnable gammatone filter bank trained with initialization
(LGFB, dotted line) and without initialization (LGFB-w/o init. solid grey line).

Fig. 8. The models initialized with the peripheral preprocessing
parameters (Prop-LGFB) converge to a slightly lower MSE as
compared to the CASA-based methods using a fixed peripheral
processing stage, for both binaural and monaural microphone
arrays. However, when not using the peripheral preprocessing-
based initialization (Prop-LGFB-w/o init.), results show a larger
MSE after convergence compared to the CASA-based method.

Fig. 9 illustrates the center frequencies and the equivalent
rectangular bandwidths (ERBs) of the plain gammatone filter
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Fig. 10. Speech source localization scores for the proposed method using binaural and monaural microphone arrays in three time intervals, 20, 80, and 160 ms,
at three reverberation times, T60 = 0.01, 0.30, and 0.60 s.

bank (GFB) and the learnable gammatone filter bank (LGFB)
with and without weight initialization after convergence. In
binaural and monaural models, the learnable gammatone filters,
with initialization, converge to the center frequencies of the plain
filters for center frequencies above 1000 Hz (i.e., frequency
band 16), while the bandwidths increase somewhat. In lower
frequency bands, the learnable filters converge to slightly lower
center frequencies and narrower bandwidths in comparison to
the plain gammatone filters. However, the filter learning without
initialization diverges from the center frequencies of the plain
gammatone filters specifically at frequencies between 400 and
3000 Hz, and attains very wider ERBs after convergence.

As shown in Fig. 8, the model with initialized LGFB slightly
improves the validation MSE. It indicates that although the cen-
ter frequencies of the plain gammatone filters at high frequency
bands are efficient for speech source detection and localization,
filters with somewhat wider bandwidths at high frequencies, and
with slightly lower center frequencies and narrower bandwidths
at low frequencies might be able to extract slightly more in-
formative subband signals for detecting and localizing speech
sources at adverse acoustic conditions. However, without weight
initialization, the models using LGFB do not seem to converge
to optimal center frequencies, specifically at higher frequencies.

C. Results

The performance of the trained neural networks in SSL and
SSD is jointly evaluated based on the predicted outputs. A speech
source is detected in mth frame if one of the values of the
predicted output is above a threshold, δ. Otherwise, the frame
is assumed to contain no speech source. Once a speech source

is detected, its location is estimated by finding the argument of
the maximum of the predicted output. The models is assumed
to correctly estimate the azimuth angle of the detected speech
source if the predicted azimuth angle does not differ more than 2°
from the true azimuth angle. In addition, when the model detects
a speech source while no speech source was present, or detects
a nonspeech source while a speech source was present, this is
counted as an incorrect response. The thresholding parameter,
δ, is set to 0.2 for the two models using binaural and monaural
microphone arrays. The trained models are chosen for evaluation
based on the least validation error in the training stage.

Fig. 10 shows the speech source localization scores (i.e.,
percentage of correct localization) achieved by the proposed
model using the plain auditory subband signals (i.e., calculated
using the plain gammatone filters in the peripheral preprocessing
stage) using the binaural (upper panels) and monaural (lower
panels) microphone arrays for different SNRs and different
reverberation times (panels from left to right). For each SNR,
three localization scores are shown, calculated by averaging the
estimated outputs across time intervals of 20 ms, 80 ms, and 160
ms, which corresponds to averaging across one, four, and eight
successive time frames. As can be seen, the SSL performance
of the models improves as the time interval duration increase.
The model using the binaural microphone array outperforms
the monaural microphone array in all noisy and reverberant
conditions which is expected because the binaural positions of
the microphones lead to larger time delays and level differences
between the microphone signals compared to the monaural
microphone positions.

As illustrated in Fig. 10, the model using the monaural mi-
crophone array still achieves a good localization performance at
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Fig. 11. Speech source localization scores for the proposed methods using binaural and monaural microphone arrays in three reverberant rooms and three head
orientations. Room 1 where the head orientation is 0◦ has been used in the training stage, room 2 is a smaller room with a head orientation of 45◦, and room 3 is a
bigger room with a head orientation of −45◦. Room 2 and 3 are not used in the training dataset.

high SNRs and short reverberation times despite the extremely
small interchannel cues that occur in such a monaural micro-
phone array due to the short distances between the microphones.
It appears, the proposed neural network is still able to extract and
exploit the extremely small interchannel cues from the monaural
signals to a sufficient degree to be able to localizing speech
sources in noisy and reverberant conditions. This achievement
is relevant because it enables speech source localization for each
single HAs without the need to send audio signals between the
hearing aids.

The results show that the performance of the models is
reduced by increasing the reverberation times and decreasing
SNRs. The uncertainty of the interchannel cues caused by higher
reverberation times and the masked cues at lower SNRs impairs
the spatial information available for localizing speech sources,
especially in monaural microphones.

In order to further assess the generalization of the proposed
method in unseen acoustic conditions, we also evaluated the
localization performance in two other acoustic rooms with dif-
ferent dimensions and different head orientations, which have
not been seen during the training stage. The dimension of the
acoustic room used in the training dataset (i.e., Room 1) was
[5.4 m length, 7.1 m width, 3 m height] and the head orientation
was 0◦. Two test datasets were created using a smaller room (i.e.,
Room 2 with a dimension of [4.25 m length, 5.2 m width, 2.5 m
height] and a head orientation of 45◦) and a bigger room (i.e.,
Room 3 with a dimension of [12 m length, 10.3 m width, 3.2 m
height] and head orientation of −45◦). As illustrated in Fig. 11,
the models show very similar localization performance in the
three acoustic rooms at shorter reverberation times (left panels).
However, at longer reverberation times, the models show lower

and higher localization scores, in the smaller Room 2, and bigger
Room 3, respectively, compared to Room 1. We assume, the
differences between the localization scores between the different
rooms are caused by the different critical distances of the rooms
(i.e., reverberation radius). The critical distance in a reverberant
rooms has a direct relationship with the reverberation time and
an inverse relationship with the room dimensions [57]. When
a listener is further away from a sound source than the critical
distance, the level of the direct sound is lower than the reflected
sound. In this case, the reflected sounds, having quasi random
directions of arrival, will have more energy than the direct sound,
which can be expected to reduce the localization performance.
The shorter critical distance in the smaller Room 2 is therefore
expected to more negatively affect the localization performance
compared to the bigger Room 3 having a larger critical radius.
Since our proposed method has shown good generalization in
unseen acoustic conditions, in the remainder of this paper we
will use Room 1 (i.e., with a medium dimension compared to
Room 2 and Room 3) for comparing the performance of the
proposed method against a number of baseline methods.

The performance of the proposed models, using different front
ends, will now be evaluated in more detail; i.e., of using learnable
versus plain auditory signals and in addition to compare to
performance using STFT coefficients. Also, three methods from
literature will be evaluated on the same data set. The evaluated
methods are listed below.

Proposed methods (Prop-CASA and Prop-LGFB): we evalu-
ated the performance of the primary methods proposed in this
study in SSL and SSD. The first method detects and localizes
speech sources based on the plain auditory signals calculated
in the peripheral preprocessing stage (i.e., the model using
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the CASA-based representations of microphone signals) (Prop-
CASA). The second method utilizes the learnable gammatone
filter bank with weight initialization as shown in Fig. 5 using the
unprocessed microphone signals as input (Prop-LGFB).

Proposed model using STFT coefficients (Prop-STFT): to
facilitate a proper comparison between the performance of meth-
ods using CASA-based and STFT-based TF representations,
regardless the influence of neural network models, we also
trained the model, proposed for localization based on the plain
auditory subband signals, using STFT coefficients (Prop-STFT).
We used the real and imaginary parts of the STFT as the model
input for both the binaural and monaural microphone arrays in a
similar way as in [23]. We edited some hyperparameters of the
convolutional layers (e.g., kernel sizes and strides) to match the
dimensions of the STFT-based inputs.

DNN-based methods using STFT coefficients (Spec-CL and
STFT-RG): two deep learning-based models, which also use
STFT-based TF representations as model inputs, are used to
serve as baseline methods available from literature. The methods
have reported good performance in joint SSL and SSD by using
coplanar/noncoplanar microphone arrays located around the
head of robot devices. Firstly, in [22], a classification model
based on the spectrum power (Spec-CL) was proposed for
joint SSL and SSD in an environment–robot interaction. In
that method, a STFT-based preprocessing stage was applied
on the signals received from a 16-channel microphone array
located around a robot device to estimate the power of the TF
components. Then a CNN-based classification model with cross
entropy loss was used to estimate the probability density of the
azimuth angles and the binary detection of speech sources in
the output based on the power spectrum of the input signals.
Secondly, a STFT-based regression model (STFT-RG) was pro-
posed in [23] to detect and localize speech sources using a
rectangular four-channel microphone array placed on a robot
head. The model inputs contain the real and imaginary parts of
the STFT components of each microphone signal. A CNN-based
regression model with MSE loss was trained to estimate the
labeled outputs. In the training we used, the labeled outputs
corresponded to 360 speech source azimuth angles that could
occur.

Conventional feature (GCC-PHAT)-MLP: a localization ap-
proach was also evaluated which is based on GCC-PHAT co-
efficients. This is a conventional feature for SSL in both HAs
and robot devices. GCC-PHAT is a temporal feature used for
estimating the overall time of arrival delay between micro-
phone channels. GCC-PHAT coefficients are calculated using
the spectrally-weighted wideband cross correlation derived from
Fourier transforms of microphone signals for different time
delays. The time delay of the speech source is estimated by
finding the peak position in the GCC-PHAT coefficients. In this
evaluation, for the binaural array, GCC-PHAT coefficients were
calculated between the three microphone pairs on the left and on
the right HAs, and between two corresponding microphone pairs
on the front left/right and on the back right/left HAs (i.e., totally
five pairs). In the monaural microphone array, the GCC-PHAT
coefficients between the three behind-the-ear microphones and
the in-the-ear microphone (i.e., totally three pairs) are calculated

as the localization features. A regression model based on a shal-
low neural network [i.e., a multi-layer perceptron (MLP) with
3 hidden layers] was utilized to create a mapping between the
GCC-PHAT coefficients and the corresponding azimuth angles,
similar to the method used in [16]. This localization method has
shown good performance in localizing speech sources compared
to other conventional methods [16].

For all models that are evaluated, the hyperparameters (e.g.,
the number of the channels, and kernel and stride sizes of the
convolutional layers) have been adapted to achieve the best
performance on the available datasets.

1) Speech Source Localization Performance: In this evalua-
tion, localization scores are determined as a function of SNR for
three different reverberation times. The localization scores of all
models are estimated over 180 ms time intervals. As shown in
Fig. 12, Prop-CASA and Prop-LGFB show significantly better
localization performance for both the binaural and monaural
microphone arrays compared to the neural network models using
the STFT components (Prop-STFT and STRF-RG), especially
so at lower SNRs and longer reverberation times. In addition, the
models using LGFB seem to show slightly improved localization
scores at lower SNRs in comparison to the model using the plain
the plain auditory subband signals (Prop-CASA).

The performance gap between the models using the CASA-
based and STFT-based representations increases in the monaural
microphone array, where the interchannel cues are extremely
small. This finding indicates that the proposed model, using
the CASA-based representations can much better estimate and
exploit the much smaller interchannel cues that are present
in the auditory subband signals for SSL than the models that
use the STFT components. The results also show that the
proposed model based on the STFT components (Prop-STFT)
outperforms the regression-based baseline model using the same
inputs (STFT-RG), especially for the binaural microphone array.
Results indicate that the proposed neural network model (i.e., the
model architecture, residual-dense learning, Swish activation,
etc.) can better estimate the localization representations from the
STFT components and exploit them for localization, in compar-
ison with the deep regression model proposed in STFT-RG.

The results in Fig. 12 also show that the method using
the conventional GCC-PHAT feature can well localize speech
sources by using the binaural microphone array at higher SNRs
and shorter reverberation times. However, the performance of
the (GCC-PHAT)-MLP method dramatically decreases at lower
SNRs and longer reverberation times, especially when using the
monaural microphone array. GCC-PHAT is a temporal feature
that only contains the information of the overall time delays
between the microphone channels (i.e., it equally sums over all
frequencies). Therefore, when the peak regions of the GCC-
PHAT coefficients are corrupted by noise and reverberation,
the true time delays cannot be estimated by the model. When,
however, spatial features occurring within auditory bands are
maintained, such as is the case for the CASA-based features, and
for the STFT features, the neural network still has information
available to estimate the speech source location. Also, the low
localization scores obtained by the (GCC-PHAT)-MLP method
in monaural microphone array show that the very small time
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Fig. 12. Comparing the performance of the proposed models using CASA-based inputs (Prop) and STFT-based inputs (Prop-STFT), and the baseline methods
[Spec-CL, STFT-RG, and (GCC-PHAT)-MLP] in speech source localization by using the binaural and monaural microphone arrays at three reverberation times,
T60 = 0.01, 0.30, and 0.60 s.

delays detected by the GCC-PHAT coefficients between the
monaural microphones may not be sufficient for localization.

The results in Fig. 12 also show that the exclusive use of
the power spectrum of the microphone signals (Spec-CL) is
insufficient to localize speech sources when using the spatial
microphone configuration of a HA. In Spec-CL, the model
cannot extract the ICTD representations from the input TF
representations throughout the deep layers because the power
spectrum does not have the information of the time delays
between the microphone signals. Utilizing the power spectrum,
which contains only the information of the level differences, is
insufficient for SSL based on the microphone arrays of HAs,
especially at longer reverberation time and lower SNRs. Ac-
cordingly, Spec-CL has shown the worst performance in SSL in
comparison to the other DNN-based methods.

Contrary to the Spec-CL method, the Prop-STFT and STFT-
RG methods use the real and imaginary parts of the Fourier
transform of the microphone signals. The ICTD and ICLD
representations can in principle be extracted and exploited by
the neural networks because the phase and magnitude of the
complex values of Fourier transform contains the information
of time and level differences between the microphone signals.
When using Spec-CL in adverse acoustic conditions, interchan-
nel level differences at high frequencies may not be reliable due
to the masked speech sources, and in addition, the ICLDs are
expected to be near to zero at lower frequencies. In that case,
exploiting the ICTD representations would be essential for being
able to localizing speech sources. Accordingly, Prop-STFT and
STFT-RG can achieve better performance than Spec-CL, on the
one hand, which uses only the power spectrum of the microphone
signals and also compared to (GCC-PHAT)-MLP, on the other

hand, which only uses the time delay patterns between the
microphone channels for localization.

The results show that although the baseline methods using
STFT-based components can adequately estimate the interchan-
nel representations of the microphone channels placed around
the robot body for localizing speech sources, these methods
perform relatively poorly in microphone arrays in HAs because
microphones are positioned in two groups of very closely spaced
microphones.

Note that the sizes of the models using the raw microphone
signals and auditory subband signals as inputs are bigger than the
model using the STFT components (i.e., almost twice) because
extracting localization information from raw data requires a
deeper neural network to learn relevant signal features.

2) Speech Source Detection Performance: In Table I, the
performance in terms of speech source detection is shown
for the proposed methods (i.e., Prob-CASA, Prop-LGFB, and
Prob-STFT) and the three baseline methods both for binaural
and monaural microphone arrays. The average of the recall,
precision, and accuracy scores among the SNR range are shown
for three different reverberation times. As can be seen in the
table, the proposed models using the CASA-based TF represen-
tations can well detect speech sources in case a speech sources is
present (i.e., the recall scores) and in case speech and nonspeech
sources are present (i.e., the precision and accuracy scores) when
using the binaural microphone array at different reverberation
times. The scores are reduced for the proposed methods with
increasing reverberation times. Although the proposed model
using STFT components (Prop-STFT) and the two baseline
methods (STFT-RG and Spec-CL) show similar recall scores
compared to the models using the CASA-based representations
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TABLE I
THE AVERAGE SCORES OF SPEECH SOURCE DETECTION OBTAINED BY THE

PROPOSED METHOD AND BASELINE APPROACHES USING BINAURAL AND

MONAURAL MICROPHONE ARRAY AT THREE REVERBERATION TIMES, T60 =
0.01, 0.30, AND 0.60 S

for the binaural microphone array, they cannot detect speech
sources in the presence of speech and nonspeech sources as well
as Prop-CASA and Prop-LGFB across the different acoustic
conditions (i.e., they achieve lower precision scores).

In addition, when using the monaural microphone array, the
proposed methods using the CASA-based inputs outperforms
the models using the STFT components for all reverberation
times. (GCC-PHAT)-MLP shows the worst detection scores
in comparison to the other methods especially in monaural
microphone arrays. It indicates that the model using GCC-PHAT
coefficients cannot properly differentiate between the wideband
cross correlations of speech and nonspeech sources in order to
perform speech source detection.

V. CONCLUSION

A deep learning-based method was proposed for jointly de-
tecting and localizing speech sources in hearing aids using
auditory subband signals of microphone channels. Motivated
by the human auditory system, a peripheral preprocessing was
applied on the signals received from a binaural set of hearing
aid microphones to determine auditory subband signals. A deep
regression model, based on the convolution neural network was
trained to create a complex mapping between the auditory sub-
band signals and a 360° range of azimuth angles at which speech
sources could be positioned. In addition, another neural network
was trained using only a monaural microphone array (i.e., four
channels of a single hearing aid). The models were based on

a combination of residual and dense aggregation mapping to
preserve and reuse the spatial representations of the earlier
shallow layers at the deep layers. This helps to improve the
gradient flow, in the training stage. Indeed, the learning curves
showed that the proposed residual-dense block does improve the
speed and accuracy of the model convergence during the training
stage compared to using only the residual blocks conventionally
used.

Surprisingly, the proposed neural network model, using the
monaural microphone array achieves prediction scores over 90%
in joint speech source detection and localization at high SNRs
and low reverberation times despite the short distances between
the microphone channels for which only extremely low time
delays and level differences can occur.

Replacing the plane gammatone filters in the peripheral front
end with learnable filters that were initialized with the impulse
responses of the plain gammatone filters showed slightly im-
proved localization scores at lower SNRs compared to using
the CASA-based auditory preprocessing. The learnable filters
converged to filters with slightly wider bandwidths at frequen-
cies higher than 1000 Hz, while the center frequencies for
low-frequency bands were lower than the plain filters.

The performance of the proposed method was also compared
to two baseline DNN-based methods using the STFT compo-
nents of all microphone signals, and was also compared to a
shallow model utilizing the conventional GCC-PHAT feature.
Results demonstrated that the proposed method, trained based
on the auditory subband signals significantly outperforms the
model utilizing the STFT components, and also outperformed
the three baseline methods in terms of joint detection and local-
ization for both the binaural and monaural microphone arrays.
Note that the sizes of neural networks using raw microphone
signals and/or processed subband signals as inputs are larger than
the models utilizing STFT components. These large networks
are necessary to be able to extract all information present in
the raw input signals needed to detect and localize speech
sources.
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