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Abstract—This paper presents improvements to two-stage al-
gorithms for estimating the short-time Fourier transform (STFT)
phase from only the amplitude by using deep neural networks
(DNNs). The phase is difficult to reconstruct due to its sensitivity to
the waveform shift and wrapping issue. To mitigate these problems,
two-stage approaches indirectly estimate the phase through phase
derivatives, i.e., instantaneous frequency (IF) and group delay
(GD). In the first stage, the IF and GD are estimated from the
amplitude using DNNs, and then in the second stage, the phase is re-
constructed by maintaining the IF/GD information. Conventional
methods for the second stage do not consider the importance of
high-amplitude time–frequency bins, e.g., the least squares-based
method, or lack a solid model, e.g., the average-based method. To
address these problems, we propose improvements to the second
stage of two-stage algorithms by using von Mises distribution-based
maximum likelihood and weighted least squares. We also provide
theoretical discussions for the phase reconstruction, including the
investigations of the properties of the GD and roles of the IF/GD
information in the inverse STFT. On the basis of the analysis,
we propose a new phase-based feature, i.e., inter-frequency phase
difference (IFPD), and demonstrate its application in two-stage
phase reconstruction algorithms. We conducted subjective and ob-
jective experiments to compare the performances of our proposed
and conventional methods. The results confirm that the proposed
method using the IFPD performs better than other methods for all
metrics.

Index Terms—Two-stage phase estimation, instantaneous
frequency, group delay, weighted least squares, von Mises
distribution.
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I. INTRODUCTION

PHASE processing, especially phase reconstruction, has
gained considerable attention [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10] in the short-time Fourier transform (STFT)-based
audio processing area. Most conventional STFT-based applica-
tions focus on reconstructing/modifying the amplitude, while the
phase is largely neglected as it is difficult to handle due to the
wrapping issue. However, a low-quality phase spectrogram may
degrade the perceptual quality of the reconstructed signal [11],
[12]. The phase also contains important information, which can
be combined with the amplitude information as inputs for the
DNN models to improve their performances [13], [14], [15],
[16]. As a target to estimate, the phase reconstructed using the
amplitude and observed noisy/mixed phase has been demon-
strated to be useful in many applications including source sepa-
ration [17], [18], [19] and speech enhancement [20], [21], [22].
In other contexts, when the amplitude spectrogram is artificially
constructed (e.g., time-scale modification [23], speech synthe-
sis [24], [25], [26], and audio restoration [27]), the observed
phase does not exist, and the phase reconstruction has to be
done using only the amplitude information.

Most former phase reconstruction approaches rely on the
consistency property of the STFT, which originates from the
redundancy of the information caused by the overlap of analysis
windows. The approach proposed by Griffin and Lim [23] is the
most well-known, which iteratively updates the phase estimate
using the STFT and inverse STFT (ISTFT) while holding the
amplitude information. Alternatively, [28] explicitly defines an
inconsistency criterion and minimizes it with simplifications.
Although yielding relatively good results, consistency-based ap-
proaches have several drawbacks; the whole amplitude spectro-
gram is required for each iteration, the convergence can be slow,
and the reconstructed signals may contain artifacts such as echo
or reverberation. Other phase reconstruction approaches based
on signal modeling, including harmonic modeling, have been
reported to achieve higher performance with a lower complexity
in comparison with consistency-based approaches in various
applications [19], [20], [21], [22], [27]. More recently, iterative
algorithms use alternating direction method of multipliers [29]
and direction map [30] to improve the reconstruction quality
and convergence rate. In a non-iterative manner, [31] utilizes
the direct relationship between the logarithm of the amplitude
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Fig. 1. Example of (c) instantaneous frequency and (d) group delay of a speech,
where (a) and (b) are log-amplitude and phase spectrograms.

and partial derivatives of the phase of the un-sampled STFT
with respect to the Gaussian window. Additional features, such
as instantaneous frequency (IF) [32] and group delay (GD) [33],
have also been used to assist the phase reconstruction [34], [35].
Other approaches [17], [18], [36], [37] model the phase by using
deep neural networks (DNNs) to further benefit from the prior
knowledge of the target signals.

One difficulty with DNN-based phase reconstruction is the
wrapping issue. As the phase is wrapped in the range of
(−π, π], the conventional loss functions for regression, e.g.,
mean squared errors, become inefficient as they do not handle
the periodicity. A solution for the wrapping issue is to use the von
Mises distribution, which is a circular distribution. [38] and [39]
are among the first studies to model the phase using the von Mises
distribution for deriving a joint estimator of the amplitude and
phase. Later, by using the same distribution, [36] proposed a
cosine loss function for DNN-based phase estimation. Other
approaches to deal with the wrapping issue are to cast the
phase-regression problem into a classification problem of the
quantized version of the phase [17], [18] or estimate the real
and imaginary parts of the complex spectrogram instead of its
amplitude and phase [40], [41]. However, there are also other
problems for modeling the phase using DNNs, including the
phase sensitivity to the waveform shift, i.e., only a small shift
in the time domain can lead to a significant change in the phase
spectrogram, especially at high frequencies. Another problem is
sign indetermination [42], i.e., the STFTs of two signals x(n)
and −x(n) have the same amplitudes but different phases. In
other words, a given amplitude spectrogram may be consistent
with both phase spectrograms Φ and Φ+ Jπ, where J is an
all-one matrix. The Φ and Φ+ Jπ usually yield very different
values for most phase reconstruction loss functions; they are
even opposite for the cosine loss function proposed in [36].

To mitigate these problems, two-stage approaches were pro-
posed [4], [5], [6] for indirectly reconstructing the phase through
the phase derivatives, i.e., the IF and GD. Although the phase
changes quickly along the time and frequency, its change rate
between neighboring elements is more stable. The IF and GD
extract that change rate through the derivative operation, thereby
reducing the sensitivity and wrapping issues and revealing the
underlying structure of the phase, as illustrated in Fig. 1(c)
and (d). The first stage is almost the same for two-stage phase
reconstruction algorithms in that the IF and GD are estimated
from the amplitude using DNNs. Not only are the IF and GD

more structured than the phase, they are also not affected by
the sign-indetermination problem because the ambiguity of Jπ
becomes zero after the derivative operation. Therefore, the IF
and GD are reconstructed much more easily than the phase itself.
In the second stage, the phase is reconstructed from the IF and
GD. Conventional methods for the second stage include the least
squares (LS) [4], circular average [5], and maximum likelihood
(ML) [6]. Experimental results [4] indicated the efficacy of such
a two-stage approach over directly reconstructing the phase.

We focus on the two-stage approach for phase reconstruction
from only the amplitude. The contributions of this paper are
extensions of our preliminary study [6], including improvements
to the current methods, theoretical discussions, and the introduc-
tion of our new phase-based feature, called inter-frequency phase
difference (IFPD), that can be applied to phase reconstruction.
In our previous study [6], we used Newton’s method for solving
the ML problem in the second stage. In this paper, we present
improvements to this ML-based method in terms of calculation
speed and convergence rate of the optimization algorithm by
using a coordinate-descent strategy, which takes advantage of
the separability of variables in the objective function. We also
improve upon the LS-based method [4] by introducing amplitude
weights, which reflect the importance of each time–frequency
(TF) bin, to the error function and applying a tridiagonal system
algorithm to reduce the calculation time. Comparisons among
the approaches for the second stage are then discussed from
theoretical aspects. We also present several new analyses for
two-stage phase reconstruction algorithms. More specifically,
we examine the properties of the GD and propose a GD nor-
malization method for facilitating the training process of the
GD-estimation model in the first stage. Unlike the method in [13]
that subtracts the peak of the GD histogram, we introduce an
analytic formula for normalizing the GD without requiring the
training data for the histogram calculation. Another analysis is
the investigation of a narrow-band signal to interpret the effects
of the IF and GD information on the reconstructed waveforms
using the ISTFT. From the discussions, we define the IFPD and
use it to improve two-stage phase reconstruction algorithms.
We further conduct a listening test in addition to other objec-
tive measurements to verify the performance of our proposed
methods.

The remainder of the paper is organized as follows. We review
related work in Section II, and analyze the phase properties
for two-stage phase reconstruction algorithms in Section III. In
Section IV, we describe our proposed methods and present the
comparisons of them with conventional methods. In Section V,
we present the IFPD and illustrate its application in phase
reconstruction. In Section VI, we discuss the experiments on
the efficacy of our proposed methods and present the results.
Finally, we conclude the paper in Section VII.

II. CONVENTIONAL TWO-STAGE PHASE RECONSTRUCTION

This section starts by defining the notation and formulation.
Then, we review the conventional two-stage phase reconstruc-
tion algorithms.
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Fig. 2. Diagram of two-stage phase reconstruction algorithms. First stage
consists of two DNNs for estimating IF Ṽ and GD Ũ . Second stage reconstructs
phase Φ̂ from Ṽ and Ũ .

A. Notation and Formulation

Let Xk,� be the STFT of a discrete-time signal calcu-
lated with an M -sample window length, R-sample window
shift, and N -point discrete Fourier transform (DFT), where
� ∈ {0, . . . , L− 1} and k ∈ {0, . . . ,K − 1} are the time frame
index and frequency bin index, respectively. Its phase and ampli-
tude are then denoted as Φk,� = ∠Xk,� and |Xk,�|, respectively,
where ∠ is the angle operator.

IF is defined as the derivative of the phase with respect to
time, which can be estimated by the phase difference as

Vk,� = P(Φk,�+1 − Φk,�), (1)

where P(·) is a wrapping function mapping a value into the
principal range of (−π, π]. Similarly, GD, which is a negative
frequency derivative of the phase, can be calculated as

Uk,� = P(Φk,� − Φk+1,�). (2)

We denote the vector notations of phase spectrum, IF, and GD at
frame � as φ� = (Φ0,�, . . . ,ΦK−1,�)T, v�, and u�, respectively,
where (·)T is a matrix transposition operator. Thus, we have

v� = φ�+1 − φ�, (3)

u� =Dφ�, (4)

whereD is a (K − 1)×K upper bidiagonal matrix defined as

(D)i,j =

⎧⎪⎨
⎪⎩
1, if i = j

−1, if i+ 1 = j

0, otherwise

. (5)

The matrix notations for the amplitude, phase, IF, and GD
spectrograms are |X|, Φ, V , and U , respectively. In two-stage
phase reconstruction algorithms, the notations ·̃ and ·̂ denote
the estimates in the first and second stages, respectively, and ·∗
denotes the normalization (which is described in Sections II-B
and III-A).

Two-stage phase reconstruction algorithms are aimed at es-
timating the phase Φ from a given amplitude |X| indirectly
through the IF V and GD U , as illustrated in Fig. 2.

B. First Stage: IF/GD Estimation Using DNN

The first stage is similar for two-stage phase reconstruction
algorithms, in which the IF Ṽ and GD Ũ are reconstructed from
the amplitude using von Mises distribution-based DNNs [36].
The von Mises distribution is also known as the circular normal
distribution, which can be used to model circular data like the

phase. Its probability density function is defined as

f(x|μ, κ) = eκ cos(x−μ)

2πI0(κ)
, (6)

where x is a circular variable, μ is a measure of location, κ
is a measure of concentration, and I0(κ) is a modified Bessel
function of order 0. μ and 1/κ are analogous to the mean and
variance of the normal distribution. The negative logarithm of
(6) is given as

− log f(x|μ, κ) = −κ cos(x− μ) + C, (7)

where C is a constant to x. By modeling the IF/GD by the von
Mises distribution with the assumption that κ is constant for all
the data points, the error function for the DNNs reconstructing
the IF/GD is defined as

LDNN(y�, ỹ�) = −
∑
k

cos(Yk,� − Ỹk,�), (8)

where y� and ỹ� are the original and estimated values of the out-
put, which is either the IF or GD. To improve the DNN training
process, the IF and GD are normalized so that their distributions
have peaks at zero. [13] proposed an IF normalization method
as

V ∗k,� = P (Vk,� − 2πkR/N) , (9)

which removes the between-frame phase shift of 2πkR/N from
the IF. [13] also proposed a GD normalization scheme that
subtracts π from all of its elements, which is based on the obser-
vation that the GD histogram has a peak nearπ. [5] demonstrated
that the IF and GD normalizations in [13] are useful for the DNN
training process of two-stage phase reconstruction algorithms.

C. Second Stage: Phase Estimation From IF and GD

In the second stage, the phase Φ̂ is reconstructed from the
estimated IF Ṽ and GD Ũ . We briefly describe two conven-
tional methods for the second stage, LS-based [4] and weighted
circular average-based [5].

1) Least Squares: Inspired by the LS-based method for 2D-
phase unwrapping in [43], [4] proposed recursively reconstruct-
ing the phase from the IF and GD for each frame by minimizing
the quadratic error function defined as

LLS(φ�) = ‖φ� − φ�−1 − ṽ�−1‖2 + ‖Dφ� − ũ�‖2. (10)

When estimatingφ�,φ�−1 is replaced with the wrapped version

of its previously estimated value, i.e., φ̂
P
�−1 = P(φ̂�−1). Since

ṽ� and ũ� are also wrapped, which may lead to a detrimental
effect on the LS solution, [4] proposed modifying ũ� in (10) as

ũ� ←D(φ̂
P
�−1 + ṽ�−1) + P

(
ũ� −D(φ̂

P
�−1 + ṽ�−1)

)
. (11)

(11) adds 2π jumps to ũ� to make it more consistent with the
GD calculated from the previously estimated phase and IF, i.e.,

D(φ̂
P
�−1 + ṽ�−1). The solution for minimizing (10) is

φ̂� = (IK +DTD)−1(φ̂
P
�−1 + ṽ�−1 +D

Tũ�), (12)

where IK is a K ×K identity matrix.
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2) Circular Average: By incorporating the amplitude infor-
mation, [5] proposed a simple weighted circular average-based
method that estimates the phase for each TF bin as

Φ̂k,� = ∠
Q∑

q=1

W
(q)
k,� exp

(
jϕ

(q)
k,�

)
, (13)

where ϕ
(q)
k,� is an estimate of Φk,� computed from the IF, GD,

and the qth previously estimated phase element near Φk,�. W
(q)
k,�

is the amplitude weight, and Q is the number of the neighbors
involved. [5] also empirically determined that Q = 3 yields the
best result, i.e., Φ̂k,� is calculated from Φ̂k−1,�, Φ̂k,�−1, and
Φ̂k+1,�−1.

III. PHASE ANALYSIS FOR TWO-STAGE PHASE

RECONSTRUCTION ALGORITHMS

In this section, we provide theoretical discussions for two-
stage phase reconstruction algorithms. Section III-A analyzes
the properties of the phase and GD calculated with two types of
the window functions and introduces our analytic GD normal-
ization formula. Section III-B investigates the effects of phase
modifications on the ISTFT of a sinusoidal wave to interpret
how the IF and GD are useful for phase reconstruction.

A. GD Analysis and Normalization

For normalizing the GD, [13] proposed subtracting the peak
π of the GD histogram. However, this peak varies with the
window length and number of DFT points. Instead of following
the method in [13], we analyze the GD values and introduce an
analytic formula for GD normalization as follows.

When calculating the STFT, we usually multiply each signal
frame by a window function before calculating the DFT. This is
equivalent to a convolution in the frequency domain, as

x� = s� ∗w, (14)

wherex�, s�, andw are the DFT spectra of the windowed signal,
target signal at frames �, and window function, respectively.
Equivalently, elements of x� can be calculated as

x�(k) =

N−1∑
m=0

s�(m)w(k −m). (15)

From (14), we can see that the phase of x� is affected byw. The
phase of w relies not only on the type of the window function
but also on the position (in other words, the time origin) of the
window function in the DFT formula. Fig. 3(a) to (c) shows an
example of the Hamming window at two positions in the time
and frequency domains, i.e., that starting from zero (typically
used in STFT implementations, as shown with blue lines) and
that centered at zero (as shown with red lines). When the window
function is symmetric and centered at zero (in other words, the
time origin of the DFT formula is at the center of the frame),
w is a real-valued vector. From (15), we see that each element
x�(k) is a linear combination of all the elements of s�. However,
the contributions of the elements of s� at frequency bins far
from bin k are scaled down by the low side lobes of w, as

Fig. 3. Example of Hamming window at two positions and windowed frame
of speech signal in time and frequency domains. Window length and number of
DFT points are M = N = 511.1

shown in Fig. 3(b). As a result, the phase ofx� at each frequency
bin is mostly dominated by the nearest strong component of
s�. By shifting the zero-centered window to the right side by
(M − 1)/2 samples, we obtain a zero-starting window, i.e., the
time origin of the DFT formula is at the beginning of the frame.
In this case, the amplitude is the same, but the phase at each
frequency bin k will be shifted by − 2πk

N
M−1
2 compared with

the case of a zero-centered window, as illustrated in Fig. 3(b)
and (c).

Fig. 3(d) to (f) shows an example of a windowed frame of
a speech sample calculated using the zero-centered and zero-
starting windows. For the zero-centered window, we see that
phase elements around a strong component (an amplitude peak),
e.g., around the frequency bin of 56, are dominated by that
component, hence nearly constant. As a result, the GD, which is
a negative frequency-derivative of the phase, is approximately
zero. For the zero-starting window, the phase at those frequency
bins becomes an oblique line due to the linear phase shift, and
the GD will be a non-zero constant. These properties are similar
for weak components of the signal, although the affected area
around a weak component is narrower than that around a strong
component.

1In this example, M was set to an odd number so that the zero-centered
window is calculated by setting the time origin to the center of the windowed
frame when calculating the DFT. However, M can also be even.
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Fig. 4. Examples of GD histograms of speech sample before and after nor-
malization. STFT is calculated with M = 512 and various N .

From the above discussion, we can see that the GD values
calculated using the zero-centered window naturally concentrate
around zero. The linear phase shift introduced by the commonly
used zero-starting window shifts the peak of the GD histogram
to a non-zero constant. We hence propose normalizing the GD
by compensating for that linear phase shift using either the
following methods.
� Circular-shift the windowed signal to the left by
(M − 1)/2 samples when calculating the DFT.

� Compensate for the phase shift by

Φ∗k,� = P
(
Φk,� +

2πk

N

(M − 1)

2

)
. (16)

� Directly modify the GD by

U ∗k,� = P
(
Uk,� − π(M − 1)

N

)
. (17)

It is worth noting that (M − 1)/2 is not necessarily an integer;
hence, M can be either even or odd. (17) is similar to the GD
normalization formula proposed by [13] in terms of subtracting
a number from the GD. However, when M = N , instead of
subtracting π as with the method in [13], we can see from (17)
that the subtrahend is π(M − 1)/N . The advantage of (17) is
that it can be applied to other settings of M and N without
requiring calculating the GD histogram of the training data.
Fig. 4 shows examples of GD histograms of a speech sample
before and after normalizing using (17).

B. IF and GD Information in Phase Reconstruction

Two-stage phase reconstruction algorithms indeed recon-
struct the phase by maintaining the phase relationships between
TF bins along time and frequency through the IF and GD,
respectively. Since the ISTFT has the form of a sum of complex
numbers, if the phase relationships between those complex
numbers are maintained, i.e., the phase differences between TF
bins remain unchanged, the amplitude of the reconstructed signal
will be consistent even if the phase is shifted. To investigate the
role of the phase relationships in the ISTFT, we modify the phase
spectra calculated from a sinusoidal wave and observe the effects
on the reconstructed waveform as follows.

Fig. 5 shows the DFT spectra and waveforms of the sinusoidal
wave, in which the phase spectrum is modified in a frequency

Fig. 5. Example of effects of phase modifications on IDFT. DFT of 32-ms
frame of 150-Hz sinusoidal wave is calculated with Hamming window. Sam-
pling frequency is 16 kHz. Original phase spectrum (blue solid line) is modified
by adding random numbers (red solid line) or constant ofπ/2 (blue dashed line).
Note that only area around 150Hz is modified because other areas do not have
much of effect on IDFT.

range by using two methods: 1) adding random numbers to each
element, i.e., the phase relationships along the frequency are
broken, and 2) adding a constant of π/2 to all the elements, i.e.,
the phase relationships along the frequency are maintained. Each
phase spectrum is then combined with the amplitude spectrum
to reconstruct the waveform using the inverse DFT (IDFT). We
can see from Fig. 5(c) that the reconstructed waveform for the
maintained phase relationships has almost the same amplitude as
the original waveform, although it is shifted in the time domain.
In contrast, the waveform of the randomly modified phase has a
lower amplitude due to the misalignment of the complex spectral
bins in the IDFT calculation.

Fig. 6 shows an example of two consecutive frames in the
same signal used above. The phase spectra are shifted by adding
a constant, which is π/2 in this example, to all the elements.
The IDFTs of the original and modified versions of the first
and second frames are then combined for each pair using the
overlap-add method. We can see from this figure that, if the
phase spectra of both frames are shifted the same way, i.e., the
IF information is maintained, their waveforms are aligned well
for the overlap-add to yield the same amplitude as the original
signal. In other situations, when the phase spectrum of only
one frame is modified, the misalignments between the recon-
structed waveforms of the two frames decrease the amplitude
of the overlap-added signals. Those misalignments also cause a
frequency modulation to the overlap-added signals, as illustrated
by the period changes in Fig. 6(e).

From the above discussion, we can see that the distortions in
the IF and GD information result in the degradation in both
the amplitude and frequency of the signal. When the phase
relationships between TF bins are maintained, even if the phase
is shifted, the reconstructed signal still has the same amplitude
as the original signal. The shifted phase only introduces a shift of
the signal in the time domain, which, based on our observation,
makes no difference in perception of sound quality.
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Fig. 6. Example of effects of phase modifications on overlap-add. Signal and
DFT setting are same as in Fig. 5, in which two consecutive frames with hop of
4 ms are shown. Phase spectra are modified by adding π/2 to all elements.

IV. PROPOSED PHASE RECONSTRUCTION METHODS

All two-stage phase reconstruction algorithms have the same
first stage that estimates the IF and GD from the amplitude
using DNNs. In this section, we propose two approaches for
reconstructing the phase from the IF and GD in the second
stage, i.e., weighted LS-based (Section IV-A) and ML-based
using von Mises distribution (Section IV-B). The ML-based
methods are also divided into two optimization approaches, i.e.,
using Newton’s method and coordinate descent. We then present
the comparison of the proposed and conventional methods in
theoretical aspects (Section IV-C).

A. Weighted Least Squares

The contribution of each TF bin to the ISTFT depends highly
on its amplitude. We also observed that errors of the IF and
GD reconstructed in the first stage are low at high-amplitude
positions. Therefore, we improved the conventional LS-based
method [4] by adding amplitude weights to the error function
(10) to emphasize the importance of the high-amplitude TF bins.
The weighted error function is defined as

LWLS(φ�) = ‖
√
W̆

v

�−1(φ� − φ�−1 − ṽ�−1)‖2

+ ‖
√
W̆

u

� (Dφ� − ũ�)‖2,
(18)

where W̆
v

� and W̆
u

� are diagonal weight matrices of the IF ṽ�
and GD ũ�, respectively. The kth element on the main diagonal

Algorithm 1: Pseudo-Code of Weighted LS-Based Method
for Reconstructing Phase from IF and GD.

Input:Amplitude |X|, estimated IF Ṽ and GD Ũ
Output:Phase spectrogram Φ̂
Φ̂0,0 ← 0

Φ̂k,0 ← Φ̂k−1,0 − Ũk−1,0, for k ∈ {1, . . . ,K − 1}
for � ∈ {1, . . . , L− 1} do

φ̂
P
�−1 ← P(φ̂�−1)

Update ũ� as in (11)
Calculate φ̂� as in (19)

of bothW̆
v

� andW̆
u

� are empirically set to |Xk,�|p. The power of
p (p ≥ 1) is used to further separate the low- and high-amplitude
TF bins. We also use the GD modification method (11) to address
the wrapping issue.

The analytic solution for minimizing (18) is

φ̂� = (W̆
v

�−1 +D
TW̆

u

�D)−1

· (W̆ v

�−1(φ̂
P
�−1 + ṽ�−1) +D

TW̆
u

� ũ�). (19)

The derivation of this solution is explained in Appendix. Most
of the calculation time of (19) is spent in calculating the inverse
of a K ×K matrix. However, we can see that (19) has a form of
φ̂� = A

−1b, where A is a matrix and b is a vector. Moreover,
the matrix A = W̆

v

�−1 +D
TW̆

u

�D is a symmetric tridiago-
nal matrix. For that reason, we apply the tridiagonal system
algorithm [44] to calculate A−1b with a complexity of O(K)
(instead of the O(K3) required by the Gaussian elimination
for a non-tridiagonal matrix A), thus significantly reducing the
calculation time. The pseudo-code for this method is given in
Algorithm 1.

B. Maximum Likelihood Using Von Mises Distribution

The LS-based methods for the second stage are greatly af-
fected by the wrapping issue with the periodic variables such
as the phase, IF, and GD. To address this issue, we propose
an ML-based approach using a circular distribution, i.e., the
von Mises distribution. In addition, the use of the von Mises
distribution for the second stage makes it consistent with the
first stage since, in the first stage, the IF/GD are also modeled
using the same distribution.

We define a model as

ỹ = dTψ + ε, (20)

where ỹ is the element of either Ṽ or Ũ , ψ is the flattened
vector of the phase spectrogram Φ, d is a corresponding vector
consisting of 0, 1, and −1 [similar to the matrix D in (5)], and
ε is the residual of the model. Unlike the first stage that models
the distribution of the IF/GD conditioned on the amplitude to
train the DNN parameters, we define a von Mises distribution
over ỹ conditioned ond, and the phaseψ becomes the parameter
of the model to be fitted. In other words, p(ỹ|d;ψ) is equal to
a von Mises distribution, the measure of location of which is
ŷ = dTψ.
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From (6), by taking the negative logarithm of p(ỹ|d;ψ) of
all the elements of Ṽ and Ũ with the assumption of a constant
concentration κ, we derive an error function for the whole phase
spectrogram as

LML(Φ) = −
∑
k,�

(
Wu

k,� cos (Ũk,� − Ûk,�)

+ W v
k,� cos (Ṽk,� − V̂k,�)

)
, (21)

where Wu
k,� and W v

k,� are the weights of the GD and IF at
TF bin (k, �), respectively, which are empirically selected as
Wu

k,� = W v
k,� = |Xk,�|. Thanks to the cosine functions, (21) is

not affected by the wrapping issue of Ũk,� and Ṽk,� as with the
LS-based methods.

The partial derivative of (21) is given by

∂LML

∂Φk,�
= sin(Φk,�)Ck,� − cos(Φk,�)Sk,�, (22)

where

Ck,�=W v
k,� cos(Φk,�+1−Ṽk,�)+W v

k,�−1 cos(Φk,�−1+Ṽk,�−1)

+Wu
k,� cos(Φk+1,� + Ũk,�) +Wu

k−1,� cos(Φk−1,� − Ũk−1,�),
(23)

and Sk,� is defined the same as Ck,�, in which all the cosine
functions are replaced with sine functions. Note that, at the
boundaries of k = 0, k = K − 1, � = 0, and � = L− 1, we
remove the terms containing the indices of k − 1, k + 1, �− 1,
and �+ 1, respectively, from Ck,� and Sk,�.

It is impossible to find the analytic solution of the equation set-
ting the gradient vector of LML(Φ) to zero. On the basis of
several properties of the error function, we propose the following
two optimization approaches.

1) Using Newton’s Method: The first approach is to break
(21) into frames so that the Hessian matrix becomes tridiagonal.
Considering only the terms containing the phase at frame � in
LML(Φ), the frame-wise error function is given by

LMLF(φ�) = −
∑
k

(
Wu

k,� cos (Ũk,� − Ûk,�)

+W v
k,�−1 cos (Ṽk,�−1 − V̂k,�−1)

+ W v
k,� cos (Ṽk,� − V̂k,�)

)
. (24)

The gradient vector∇φ�
LMLF(φ�) can be calculated with thekth

element identical to (22). We can see from (22) that the partial
derivative with respect to Φk,� contains only two phase elements
of the same frame, i.e., Φk+1,� and Φk−1,�. Consequently, the
Hessian matrix of LMLF(φ�), denoted as H , is a symmetric
tridiagonal matrix, the element on the main diagonal of which
is given by

∂2LMLF

∂Φ2
k,�

= cos (Φk,�)Ck,� + sin (Φk,�)Sk,�, (25)

and the element on the first diagonal above (or below) is

∂2LMLF

∂Φk,�∂Φk+1,�
= −Wu

k,� cos (Φk,� − Φk+1,� − Ũk,�). (26)

Algorithm 2: Pseudo-Code of ML-Based Method Using
Newton’s Method for Reconstructing Phase from IF and GD.

Input: Amplitude spectrogram |X|, estimated IF Ṽ and
GD Ũ , number of iterations N1 and N2

Output: Phase spectrogram Φ̂
Φ̂0,0 ← 0

Φ̂k,0 ← Φ̂k−1,0 − Ũk−1,0, for k ∈ {1, . . . ,K − 1}
for � ∈ {1, . . . , L− 1} do
φ̂� ← φ̂�−1 + ṽ�−1
for i ∈ {1, . . . , N1} do

Update φ̂� as in (27) removing terms containing
Φk,�+1 from Ck,� and Sk,�

for i ∈ {1, . . . , N2}, � ∈ {0, . . . , L− 1} do
Update φ̂� as in (27)

The tridiagonality of the Hessian matrix motivates us to use
Newton’s method to update the phase estimate. However, there
is a problem that H is often not positive definite as LMLF(φ�)
is periodic. To solve this problem, we apply a regularization
strategy, as in a previous study [45], to update the phase estimate
as

φ̂� ← φ̂� − (H + γIK)−1∇φ�
LMLF(φ̂�), (27)

where γ is a damping factor. γ = 0 is equivalent to no regu-
larization. When γ is large, H is dominated by γIK , and (27)
approximates the standard gradient descent with the updating
rate of 1/γ. Ideally, γ is adaptive so that it is large enough to
offset the negative eigenvalues of H . We calculate γ from the
smallest eigenvalue λ ofH for each update as

γ =

{
−βλ, if λ < 0

0, otherwise
, (28)

where β is a scaling constant. We can efficiently estimate only
the smallest eigenvalue of the tridiagonal matrix H as in [46].
AsH + γIK is also tridiagonal, the complexity of (27) can be
reduced from O(K3) to O(K) by using the tridiagonal system
algorithm, similar to what was mentioned in Section IV-A.

In the update (27) for φ�, the phase at the next and previous
frames for calculating Ck,� and Sk,� are replaced with their
estimates, i.e., φ̂�+1 and φ̂�−1. However, those estimates are not
available at the beginning. We found that a random initialization
may lead to slow convergence and poor results. Therefore, for
the first several iterations, we recursively reconstruct the phase
φ� by using only φ̂�−1. In other words, we remove the terms con-
taining Φk,�+1 from Ck,� and Sk,� when calculating (27). This
is equivalent to removing the terms of W v

k,� cos (Ṽk,� − V̂k,�)
from the error function (24). The full version of (27) is then
used to smooth the phase estimate, i.e.,φ� is updated using both
φ̂�−1 and φ̂�+1. The pseudo-code for this method is given in
Algorithm 2.

2) Using Coordinate Descent: Another approach for mini-
mizing (21) is based on its separability property. From (1) and
(2), we can see that each phase element Φk,� is only present in
at most four terms in the sum of LML, i.e., the terms containing
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Algorithm 3: Pseudo-Code of ML-Based Method Using
Coordinate Descent for Reconstructing Phase from IF and
GD.

Input: Amplitude spectrogram |X|, estimated IF Ṽ and
GD Ũ , number of iterations N1 and N2

Output: Phase spectrogram Φ̂
Φ̂0,0 ← 0

Φ̂k,0 ← Φ̂k−1,0 − Ũk−1,0, for k ∈ {1, . . . ,K − 1}
for � ∈ {1, . . . , L− 1} do
φ̂� ← φ̂�−1 + ṽ�−1
for i ∈ {1, . . . , N1}, k ∈ {0, . . . ,K − 1} do

Update Φ̂k,� as in (29) removing terms containing
Φk,�+1 from Ck,� and Sk,�

for i ∈ {1, . . . , N2}, � ∈ {0, . . . , L− 1},
k ∈ {0, . . . ,K − 1} do

Update Φ̂k,� as in (29)

V̂k,�, V̂k,�−1, Ûk,�, and Ûk−1,�. In other words, varying Φk,� will
change only those terms and will not have much of an effect on
the optimal states of other phase elements in LML. Therefore,
we use a coordinate-descent strategy [47] that sequentially min-
imizes LML for each Φk,� where all other phase elements are
fixed.

As Sk,� and Ck,� are independent from Φk,�, we can easily
set the first derivative ∂LML/∂Φk,� to zero and check the second
derivative to find the minimum. The solution is

Φ̂k,� =

{
arctan (Sk,�/Ck,�) , if f ′′ > 0

arctan (Sk,�/Ck,�) + π, otherwise
, (29)

where f ′′ = ∂2LML/∂Φ
2
k,�, which is identical to (25).

(29) is sequentially calculated throughout the whole spectro-
gram. Because the update of Φ̂k,� affects the optimal states of
other phase elements around it, we need several iterations to
make all the elements converge. Similar to the approach using
Newton’s method, for the first several iterations, we remove from
Ck,� and Sk,� the terms containing Φk,�+1 when calculating the
solution of (29). The pseudo-code for this coordinate-descent
approach is illustrated in Algorithm 3.

C. Comparison of Methods for Second Stage

In this subsection, we present several theoretical comparisons
among the methods for the second stage of two-stage phase re-
construction algorithms, i.e., the conventional LS-based method,
conventional circular average-based method, our weighted LS-
based method, and our ML-based method with the two optimiza-
tion schemes.

1) Least squares [4] and Weighted Least Squares: Our
weighted LS-based method differs from the conventional LS-
based method only in terms of the weights in the error function,
which results in changes in the calculation of the solution,
especially the matrix inversion. In the solution (12) of the
conventional LS-based method, we can calculate the inverse of
the matrix (IK +DTD) in advance as it is constant. For our

weighted LS-based method, the matrix (W v
�−1 +D

TW u
�D) in

(19) depends on the weights; hence, its inverse must be computed
for each frame. However, thanks to the tridiagonality property
of the matrix, (19) can be calculated with a complexity ofO(K),
which is the same as (12).

2) Least Squares and Maximum Likelihood: As the LS-based
methods can also be interpreted as the ML, LS- and ML-based
methods differ in the distributions used, i.e., Gaussian and von
Mises distributions. The von Mises distribution seems to be
more efficient as it handles the wrapping issue and is the same
distribution used in the first stage. The LS-based method is
greatly affected by the wrapping issue. Although (11) is used
to mitigate this issue, it may not be reliable when the errors of
Ũ and/or Ṽ are high. However, the advantage of the LS-based
methods is that they yield a unique solution, while the ML-based
methods require iterative methods for the optimization.

3) Circular average [5] and Maximum Likelihood: Like our
von Mises distribution-based ML-based method, the circular
average-based method is not affected by the wrapping issue.
However, it consists of a single pass of recursively calculating
each phase element using the average operation. This makes the
phase estimate at each TF bin heavily dependent on the IF, GD,
and other previously estimated phase elements nearby. There-
fore, the circular average-based method may not be efficient
when the estimated IF and GD have high errors, or when the
underlying components of the signal are not stable. In contrast,
our ML-based methods define a solid optimization problem,
which can be solved using various optimization techniques.
Although for the first several iterations, our ML-based methods
also reconstruct the phase recursively, the later iterations help to
compromise the IF and GD errors at all TF bins, thus smoothing
the phase estimate. Regarding the calculation speed, the circular
average-based method has the same complexity as one iteration
of our ML-based methods, which is O(K).

4) Maximum Likelihood Using Newton’s Method and Co-
ordinate Descent: Our ML-based methods using Newton’s
method (MLN) and using coordinate descent (MLC) are two dif-
ferent strategies to solve the same optimization problem: MLN
breaks the error function into frames, while MLC breaks it into
elements. The update scope of MLN seems to be more advanced
than that of MLC as it modifies more elements at the same time.
However, with the use of amplitude weights, the high-amplitude
TF bins may restrict the change of the low-amplitude ones when
they are updated simultaneously. An advantage of MLC is that
it does not require tuning the parameters such as β in MLN.
Regarding the calculation speed, although one iteration of both
MLN and MLC has the complexity of O(K), MLN is slower
due to the eigenvalue estimation.

V. INTER-FREQUENCY PHASE DIFFERENCE AND ITS

APPLICATION TO PHASE RECONSTRUCTION

This section presents our new phase-based feature, the IFPD,
and its application in improving two-stage phase reconstruction
algorithms.



THIEN et al.: INTER-FREQUENCY PHASE DIFFERENCE FOR PHASE RECONSTRUCTION USING DEEP NEURAL NETWORKS 1675

Fig. 7. Example of IFPD of speech signal with various frequency hops i. STFT is calculated using Hamming window with 32-ms length, 4-ms shift, and
512-point DFT. Sampling rate is 16 kHz. Linear phase shift is removed from phase using (16).

A. Inter-Frequency Phase Difference

In two-stage phase reconstruction algorithms, the phase rela-
tionships between TF bins along the frequency are maintained
through the GD. However, as a phase difference between two
consecutive TF bins, the GD only represents the local relation-
ships. Meanwhile, all TF bins in the same frame are interdepen-
dent because each depends on all the underlying components
of the signal, as discussed in Section III-A. In addition, we can
see from Fig. 3 that the range of the area affected by a strong
component is probably wider than two bins.

For the above reasons, to better represent the phase relation-
ships along frequency, we generalize the calculation of the GD
to the phase difference between two frequency bins with the
frequency hop of i bins. We define a feature called the IFPD as

U
(i)
k,� = P(Φk,� − Φk+i,�). (30)

For i = 1, U (i)
k,� is identical to Uk,�. It is worth noting that the

subtraction operation in the GD calculation is an estimation
of the phase derivative, while for the IFPD, it is merely the
phase difference between two frequency bins. For the frequency
hops smaller than the main-lobe width of the window function,
the IFPD has similar properties to the GD in that its value at
the strong components is close to zero, as discussed in Sec-
tion III-A. For larger frequency hops, the IFPD may capture
the phase difference between two harmonic components if the
hop is close to the multiple of the fundamental frequency. This
property relates to two other phase-based features, i.e., relative
phase shift [8] and phase distortion [9], which also reflect the
phase relationships between harmonic components. However,
the calculation of these features relies on the estimation of the
fundamental frequency and harmonic model, while the IFPD is
literally based on the DFT. An example of the IFPD of a speech
signal with the frequency hop varying from 1 to 8 bins is shown
in Fig. 7.

To illustrate how the IFPD captures the phase difference
between harmonic components, we analyze the example of the
IFPD in Fig. 7. Let us represent two harmonic components by

sinusoids as

x1(n) = A1 cos(2πk1n/N + φ1), (31)

x2(n) = A2 cos(2πk2n/N + φ2), (32)

where A1 and A2 are the amplitudes, φ1 and φ2 are the initial
phases, and k1 and k2 are the frequencies of the sinusoids. The
phase difference between the two components at frame � is

Δϕ� = P
(
2πΔk

N
R�+Δϕ0

)
, (33)

where Δϕ0 = φ1 − φ2 is the phase difference at the time
origin, and Δk = k1 − k2 is the frequency difference. Since
the signal in Fig. 7 has the fundamental frequency close to
4 bins, the IFPD with the frequency hops of 4 bins shows
the phase difference between two consecutive harmonic com-
ponents. With Δk = −4, R = 64, and N = 512, from (33),
we have Δϕ� = P(−�π +Δϕ0). Along the time frame, as �
increases, Δϕ� switches between Δϕ0 and Δϕ0 + π, result-
ing in the vertical stripes in the IFPD spectrogram shown in
Fig. 7(f). Considering two more distant harmonic components
with the frequency hop of 8 bins, corresponding to Δk = −8,
the phase difference is nearly constant along the time frame as
Δϕ� = P(−2�π +Δϕ0) = Δϕ0. Although Δϕ� is a constant,
the IFPD spectrogram shown in Fig. 7(j) changes slowly along
the time in accordance with the variations of the fundamental
frequency. The IFPD spectrograms with other frequency hops
in Fig. 7 also exhibit similar patterns, although not as clearly
as those with frequency bin hops that are multiple of the funda-
mental frequency.

B. IFPD for Two-Stage Phase Reconstruction

The IFPD can be used to enhance the phase relationships along
the frequency in two-stage phase reconstruction algorithms. In
the first stage, the IFPD with various hops is reconstructed from
the amplitude using DNNs, similar to the IF and GD. In the
second stage, we penalize the IFPD errors in addition to the IF
and GD errors in the loss function for reconstructing the phase.
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Because the IFPD is also wrapped, which may aggravate the
wrapping issue in the LS-based method, the ML-based method
is used. With the IFPD, the error function (21) becomes

LML_IFPD(φ�) = −
∑
k,�

(∑
i∈S

Wu(i)

k,� cos(Ũ
(i)
k,� − Û

(i)
k,�)

+ W v
k,� cos(Ṽk,� − V̂k,�)

)
, (34)

where S is the set of the frequency hops used for calculating
the IFPD, including i = 1 for the GD. The weight for U (i)

k,� is
defined as

Wu(i)

k,� = α(i)|Xk,�|, (35)

where the scalar α(i) is used to adjust the contribution of U (i)
k,�

in the error function.
Because the use of the IFPD makes the Hessian matrix no

longer tridiagonal, which increases the computational complex-
ity of Newton’s method, (34) is minimized using the coordinate-
descent strategy. The solution of Φ̂k,� for minimizing LML_IFPD

is the same as (29), except that we include terms containing
Û

(i)
k,� to the calculation of Ck,� and Sk,�. We found that errors

of the IFPD estimated in the first stage, Ũ (i)
k,�, become higher as

the frequency hop i increases. This means that the reconstructed
phase will get these errors if it is completely fitted with those
IFPD estimates. Therefore, we only minimize the error function
(34) with the IFPD for the first several iterations. After that, (21)
is used to smooth the phase estimates with only the IF and GD.

In summary, the algorithm for reconstructing the phase with
the IFPD is the same as Algorithm 3 with two modifications, i.e.,
the IFPD is required as an input, and, in the inner for-loop of the
first for-loop, Φ̂k,� is updated to minimize LML_IFPD instead of
LML. As discussed above, the update Φ̂k,� in the last for-loop in
Algorithm 3 is still for minimizing LML.

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup

We conducted experiments to evaluate the performances of
two-stage phase reconstruction algorithms. All such algorithms
share the same IF and GD estimated in the first stage. The
methods used for the second stage include the conventional
LS-based method [4] (LS), conventional circular average-based
method [5] (AVG), the proposed weighted LS-based method
(WLS), and the proposed ML-based methods with 30 iterations
using Newton’s method (MLN; N1 = 10 and N2 = 20) and
coordinate descent (MLC; N1 = 5 and N2 = 25). The proposed
algorithm using the IFPD (ML+IFPD) was also evaluated with
30 iterations (N1 = 5 and N2 = 25). In addition, we included
conventional non-two-stage phase reconstruction algorithms for
comparison. These are the Griffin-Lim method [23] with 100 it-
erations (GL), the phase gradient heap integration method [31]
(PGHI), and the iterative method using alternating direction
method of multipliers [29] with 100 iterations (ADMMGLA).

The data used for training were from the training set of the
TIMIT dataset [48]. The sampling rate is 16 kHz. The tests
were performed on 300 samples (150 males and 150 females)
randomly selected from the test set of the TIMIT dataset.

In the implementation, the STFT was calculated using a Ham-
ming window with a 32-ms length, 4-ms shift, and 512-point
DFT. To reconstruct the IF, GD, and IFPD in the first stage, we
used fully connected feedforward DNNs with 4 hidden layers,
each layer containing 1024 gated tanh units [49], and the last
layer containing linear units. This DNN architecture is similar
to those in [4], [5], [50]. In addition, the authors of [50] claimed
in their work that, based on their experiments, there was no
difference between the gated layers and LSTM (long short-term
memory) layers in terms of the quality of the reconstructed
speech. For these reasons, we decided to use this DNN architec-
ture. It is worth noting that a separate DNN is used to estimate
each of the IF, GD, and IFPD. The input of the DNN was joint
vectors consisting of the log amplitude at the current and ±2
frames and was normalized to zero mean and unit variance.
The output of the DNN was one frame of the phase feature
(IF, GD, or IFPD), which was also normalized using (9) for the
IF and (16) for the GD and IFPD. These models were trained
using the Adam optimizer for 400 epochs. The parameters of the
methods in the second stage were determined by fine-tuning,
which are described as follows. The power p in WLS was set
to 10. The weight β in MLN was set to 2.4. For ML+IFPD, we
used a set of six frequency hops ofS = {1, 2, 3, 4, 5, 6}with the
corresponding set of weightsα(i) of{1.0, 0.4, 0.3, 0.2, 0.1, 0.1}.
The Linear Algebra Package (LAPACK) [51] was used for the
tridiagonal system algorithm and eigenvalue estimation.

For the objective metrics, we measured the perceptual evalu-
ation of speech quality (PESQ) [52] and short-time objective
intelligibility (STOI) [53] of the reconstructed signals. The
higher those scores, the higher the quality of the signal. We
also calculated the consistency measure [28] as

C(X̂) = 10 log10
‖X̂ − STFT(ISTFT(X̂))‖2

‖X̂‖2 , (36)

where (X̂)k,� = |Xk,�|ejΦ̂k,� . The consistency measure indi-
cates how much the phase spectrogram is consistent with the
amplitude spectrogram, which is expected to be low.

To further compare the subjective performances among the
two-stage algorithms, we conducted the BS.1116 test [54] using
webMUSHRA [55], which is a web-based listening test frame-
work. In each BS.1116 trial, the subject is presented with three
stimuli labeled A, B, and C. A is always the reference (original
signal), while B and C are randomly assigned by the hidden
reference and reconstructed signal. The subject is asked to assess
the impairments (if any) on B and C compared to A using a
continuous 5-grade scale with anchors defined as
� (5.0) Imperceptible,
� (4.0) Perceptible, but not annoying,
� (3.0) Slightly annoying,
� (2.0) Annoying,
� (1.0) Very annoying.
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TABLE I
ERRORS OF DNNS IN FIRST STAGE

Fig. 8. Objective scores of phase reconstruction algorithms, where blue and
red respectively indicate conventional and proposed methods.

Because one of B and C is identical to A, there must be at least
one point of 5.0. As a general rule, if a subject rates the hidden
reference with a score of less than 5.0 for more than 15% of
the test, all the results of this subject will not be considered. The
samples presented to each subject are randomly selected from the
test set, in which the number of samples depends on the subject’s
demand (maximum 15 samples per subject, corresponding to
105 trials for 7 methods). The subjects participating in the test
were all students ranging from 20 to 30 in age. Apart from the
results of 3 subjects excluded by the test rules, 245 samples
(which may be duplicated) were tested by 20 subjects in total.

B. Results

Table I lists the errors of the DNNs in the first stage, in which
an error is defined as

ε(Y , Ỹ ) = 1− 1

KL

∑
k,�

cos(Yk,� − Ỹk,�). (37)

ε(Y , Ỹ ) is similar toLDNN in (8), however, (37) is for the whole
spectrogram, while (8) is for each frame. The error range is [0, 2].
We can see from Table I that the higher the frequency hop i, the
higher the errors of the DNNs for reconstructing the IFPD. The
reason is most likely because, when the frequency hop is large,
the connections between TF bins are weak due to the low side
lobes of the window function. In such a case, the IFPD becomes
less structured, hence, more difficult to estimate.

Fig. 8 shows the STOI, PESQ, and consistency measure of
the reconstructed signals of the phase reconstruction algorithms.
The results were analyzed with the paired sample t-test, which
shows that the differences between the scores are statistically
significant with a few exceptions. It can be seen from Fig. 8 that

the two-stage methods, except the LS-based methods, performed
better than the conventional non-two-stage methods, in which
the ML+IFPD yielded the highest results. By using the IFPD
in addition to the IF and GD for only several first iterations,
ML+IFPD improved the results ofMLC for all metrics. Although
both MLN and MLC minimize the same error function with the
same number of iterations,MLC achieved better results thanMLN.
A possible reason is that the update of MLN is an approximation
while MLC directly solves the equation setting the derivative to
zero. Although the solution in MLC is local, the separability of
the error function motivates it. We can also see from Fig. 8 that,
by adding the amplitude weights, WLS significantly improved
the results of its baseline method LS. However, WLS was still
worse than AVG and our ML-based methods. This is most likely
due to the LS-based methods being affected by the wrapping
issue.

Fig. 9 shows an example of the phase differences between
the original and estimated phases, i.e., P(Φ− Φ̂). We may
expect that the phase difference spectrogram has large regions
of the same color, at which Φ and Φ̂ change at the same rates.
In other words, the phase relationships in those regions are
preserved, even if the absolute values of the phase are changed.
In addition, we only focus on the high-amplitude regions since
the phases of low-amplitude TF bins have little effect on the
ISTFT. We can see from Fig. 9(b) and (e) that the same-color
regions in the phase-difference spectrograms of GL and LS are
small. At the boundaries of those regions, the phase relationships
are distorted, resulting in impairments in the amplitude and
modulations in the frequency of the reconstructed time-domain
signals. As a consequence, the signals estimated using GL and
LS often contains artifacts, such as reverberation and buzz. The
same-color regions at high-amplitude TF bins became larger for
other methods. Especially, by using the IFPD,ML+IFPD clearly
improved the phase relationships between TF bins, illustrated
with the smooth phase difference spectrogram in Fig. 10(j). This
finding in this example is reflected in, and consistent with, the
objective results.

Fig. 10 illustrates the results of the BS.1116 test for the two-
stage algorithms, i.e., the measures of perceptual impairments
on the reconstructed signals compared with the original signal.
The subjective scores in Fig. 10 expose a similar trend to the
objective scores in Fig. 8, in which ML+IFPD surpassed other
methods. The differences between the scores are also confirmed
with the small p-values of the paired sample t-test.

The above observations confirmed that ML+IFPD outper-
forms the other methods. In addition, for the second stage
of two-stage phase reconstruction algorithms, the ML-based
methods are better than the LS-based and circular average-based
methods. The experimental results also indicate the efficacy
of using amplitude weights in improving the conventional LS-
based method.

Although achieving high objective and subjective scores, a
limitation of the two-stage approaches is that the waveform may
differ from the original signal as we focus on the phase relation-
ship between the TF bins but not the absolute value of the phase.
This is a common problem for phase reconstruction when only
the amplitude information is available [42]. In other applications,
when the noisy/mixed phases are available, they can be used as
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Fig. 9. Examples of (a) log-amplitude, and (b)–(j) phase differences between original phase Φ and estimated phase Φ̂.

Fig. 10. Subjective scores of phase reconstruction algorithms.

an initialization for the proposed methods to reduce the problem.
Another limitation of the proposed methods is that they require
multiple models to estimate the phase features in the first stage,
which may be a drawback in real-time applications. A possible
solution is to use multitask learning, i.e., to combine all the
models in the first stage into one model with multiple outputs.

VII. CONCLUSION

We presented two approaches for the second stage of two-
stage phase reconstruction algorithms. The first method is to
add the amplitude weights to a conventional LS-based method.
The second method is based on the ML with the von Mises
distribution, which is optimized using the regularized Newton’s
method and coordinate descent. In the theory discussion, we
analyzed the GD properties and introduced a GD-normalization
formula by compensating for the phase shift introduced by
the commonly used zero-starting window function. We also
investigated the roles of the phase relationships between TF
bins in the ISTFT. On the basis of the analysis, we proposed
a new phase-based feature, i.e., IFPD, and applied it to the
phase reconstruction. Both objective and subjective experiments
showed that the performance of our ML-based method using the
IFPD is superior to other methods that use only the IF and GD.
The results also suggest that ML-based methods perform better

than other methods in the second stage, and the use of amplitude
weights significantly improves the results of the conventional
LS-based method. In the future, we will investigate effects of
the first stage on the final results, including using other advanced
DNN architectures and combining the models in the first stage
into one model with multiple outputs. We will also apply the
proposed methods to other fields of speech processing such as
STFT-based speech synthesis and speech enhancement.

APPENDIX

DERIVATION OF WEIGHTED LEAST SQUARE SOLUTION (19)

We can rewrite the loss function (18) as

LWLS(φ�)=(φ� − φ�−1−ṽ�−1)TW̆ v

�−1(φ�−φ�−1−ṽ�−1)
+ (Dφ� − ũ�)

TW̆
u

� (Dφ� − ũ�). (38)

Its first derivative can be calculated as

LWLS

φ�
=2W̆

v

�−1(φ�−φ�−1 − ṽ�−1)+2DTW̆
u

� (Dφ�−ũ�)

= 2(W̆
v

�−1 +D
TW̆

u

�D)φ�

− 2(W̆
v

�−1(φ�−1 + ṽ�−1) +DTW̆
u

� ũ�). (39)

By setting the first derivative to zero, we achieve the solution
(19).
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