
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023 1681

Speaker Counting and Separation From
Single-Channel Noisy Mixtures

Srikanth Raj Chetupalli , Member, IEEE, and Emanuël A. P. Habets , Senior Member, IEEE

Abstract—We address the problem of speaker counting and
separation from a noisy, single-channel, multi-source, recording.
Most of the works in the literature assume mixtures containing two
to five speakers. In this work, we consider noisy speech mixtures
with one to five speakers and noise-only recordings. We propose a
deep neural network (DNN) architecture, that predicts a speaker
count of zero for noise-only recordings and predicts the individual
clean speaker signals and speaker count for mixtures of one to
five speakers. The DNN is composed of transformer layers and
processes the recordings using the long-time and short-time se-
quence modeling approach to masking in a learned time-feature
domain. The network uses an encoder-decoder attractor module
with long-short term memory units to generate a variable number
of outputs. The network is trained with simulated noisy speech
mixtures composed of the speech recordings from WSJ0 corpus,
and noise recordings from the WHAM! corpus. We show that the
network achieves 99% speaker counting accuracy and more than
19 dB improvement in the scale-invariant signal-to-noise ratio for
mixtures of up to three speakers.

Index Terms—Source separation, speaker counting, attractors,
transformers.

I. INTRODUCTION

S PEECH presence detection, suppression of undesired
noises, and estimation of the speaker signals, from noisy

speech recordings containing one or more speakers, are the
three most important tasks for any speech analytics application.
Speech mixtures containing overlap of two or more speakers are
found to be a bottleneck for the success of speech diarization, au-
tomatic speech recognition and speaker verification. A separate-
and-process strategy is found to benefit these tasks, especially in
time regions containing speaker overlap. Data driven approaches
using deep neural networks, in particular, have been successful
for single-channel speech separation. Traditional approaches
commonly assume the speech recording to be a mixture of two or
more concurrent speakers. In long-form recordings, there exist
time regions where none of the speakers are active, or more
commonly regions where a single speaker is speaking, and also
regions of multi-speaker overlap. The number of speakers in

Manuscript received 29 September 2022; revised 9 March 2023; accepted
9 April 2023. Date of publication 20 April 2023; date of current version 3
May 2023. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Marc Delcroix. (Corresponding author:
Srikanth Raj Chetupalli.)

The authors are with the International Audio Laboratories, A Joint In-
stitution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
and Fraunhofer IIS, 91058 Erlangen, Germany (e-mail: srikanth.chetupalli@
iis.fraunhofer.de; emanuel.habets@audiolabs-erlangen.de).

Digital Object Identifier 10.1109/TASLP.2023.3268572

the mixture is often unknown. It is desirable to have a single
system, that can detect speech presence, count the number of
speakers, and separate individual sources from a mixture signal
with unknown number of speakers.

Early DNN approaches to source separation considered mask-
ing in the short-time Fourier transform domain [1], [2]. Recent
advances showed that masking in a learned time-feature do-
main gives better separation than a short-time Fourier transform
(STFT) based approach provided the window duration is suf-
ficiently small, which is also desirable for low-latency/online
source separation [3]. Further, dual-path processing to model
the long-time and short-time relations in the data is found to be
beneficial [4]. Convolutional layers are used in [3], recurrent
layers in [4], transformers in [5], [6], and a combination of
recurrent and transformer layers in [7], to compose the DNN
separator. Strategies such as incorporating auxiliary speaker loss
are also studied [8]. The number of speakers in the mixture is
assumed to be known, a-priori, in [1], [2], [3], [4], [5], [6], [7],
[8].

Several works [9], [10], [11], [12] have addressed the separa-
tion of an unknown number of speakers (mixtures of more than
two speakers). In [9], a recursive multi-pass source extraction
strategy is proposed for a STFT-domain masking network. The
network, trained on two speaker mixtures, was found to gen-
eralize to mixtures of zero to two speakers. A recursive source
separation scheme, using a one-vs-rest training strategy, was
proposed in [10]. The approach was shown to generalize to
an unseen number of sources. In the multi-decoder approach
of [11], several decoders, one for each possible number of
speakers, were used with a common encoder and trained along
with a speaker-counting head. In [12], multiple architectures,
one for each possible speaker count, were trained and a voice
activity based criterion is used to infer the number of speakers.
The above works require multiple forward passes [10], multiple
decoders [11] or multiple models [12]. To overcome these limi-
tations, we proposed an architecture in [13], in which the speaker
counting is achieved using an encoder-decoder-attractor (EDA)
module [14] and the speech separation module uses a network
of transformer layers configured to model short-time, long-time
and cross-speaker relationships.

Previous works on source separation focused mainly on clean
speech mixtures, but in real recordings, the mixtures are often
noisy and have reverberation. WHAM! [15] and WHAMR! [16]
datasets were proposed to develop source separation algorithms
for noisy and reverberant mixtures. Joint separation and en-
hancement was studied in [17], [18], but they assume a fixed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2186-5420
https://orcid.org/0000-0002-2613-8046
mailto:srikanth.chetupalli@iis.fraunhofer.de
mailto:srikanth.chetupalli@iis.fraunhofer.de
mailto:emanuel.habets@audiolabs-erlangen.de


1682 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Fig. 1. Source separation system for unknown number of speakers.

number of sources. The approach in [12], which uses a different
model for each speaker count, was recently extended to noisy
and reverberant mixtures in [19].

In this paper, we develop a unified approach to the tasks
of speech detection, speaker counting and separation from a
noisy single-channel recording. The joint task is posed as that
of “predicting zero or more speakers, and estimating the in-
dividual speaker signals when the predicted speaker count is
greater than zero”. The work uses the DNN architecture we
recently proposed in [13]. Unlike [13] where the DNN is trained
on two or more speaker mixtures, we train it on noise-only
signals (zero speakers), noisy single-speaker recordings, and
noisy multi-speaker mixtures in the present work. We show that,
the proposed architecture (i) predicts zero speaker count for
a noise-only recording, (ii) auto-encodes/enhances the single-
speaker recordings, and (iii) estimates the individual source
signals for noisy multi-speaker recordings. Further, we study the
generalization capabilities of the trained network for different,
practical evaluation conditions and provide insights into the
feature representations computed by the DNN at various layers,
which provide cues to efficient architecture designs in the future.

II. SYSTEM OVERVIEW

Let x be the vector representation of a recording with a
duration of L samples,

x =
J∑

j=1

sj + v, (1)

where J is the number of speakers, sj is the jth source signal
and v is the noise signal. The source signals and noise signal are
assumed to be mutually uncorrelated. The goal in this work is to,
(i) predict J = 0 when x = v, i.e., when the speech is absent,
and (ii) predict J and estimate sj , ∀j, when x follows (1) with
J ≥ 1,

Ĵ , {ŝj} ̂Jj=1 = fθ(x). (2)

We consider the supervised learning approach using a DNN in
this paper and fθ(.) represents the function learned by the DNN
architecture having parameters θ.

We consider masking, using a DNN, in the learned time-
feature (TF) domain [3], as shown in Fig. 1. The waveform
encoder, with a learnable analysis filter-bank, converts the time-
domain signal (x) into the TF domain (X). The masking net-
work, using the EDA block in the architecture, predicts the
number of speakers Ĵ and a mask for each predicted speaker
M̂j (when Ĵ > 0). The predicted masks are multiplied with the
mixture TF representation and input to the waveform decoder.
The decoder synthesis filter-bank reconstructs the source signals

Fig. 2. Block diagram of the SD-SepEDA architecture.

(̂sj , ∀ j ∈ [1, Ĵ ]), independently. We refer to the proposed DNN
architecture as “Speech Detector and Separator using Encoder-
Decoder-Attractors (SD-SepEDA), in the following sections.

III. SD-SEPEDA SEPARATOR

A block diagram of the proposed SD-SepEDA architecture is
shown in Fig. 2. The individual blocks in the architecture are
described in this section.

A. Time-Feature Representation

The L dimensional mixture signal x is fed to the waveform
encoder, which generates a non-negative, sub-sampled, time-
feature representation X. It is composed of a 1D convolution
layer (Conv1D) with H filters followed by a rectified linear
unit (ReLU) activation. An over-complete representation using
short-time windows is found to benefit source separation [3],
hence, we choose a kernel size equivalent to 2 ms (window
length) with a stride of 1 ms (hop size),

X = ReLU(Conv1D(x)), X ∈ RN×H
+ , (3)

where N is the number of time-frames.

B. Masking Network

Input processing: The masking network inputX is first passed
through a layer-norm (LN) layer [20], followed by a linear layer
without bias. It is then segmented into chunks of size K frames
with a 50% overlap between successive chunks. In the present
work, we choose K = 250 which corresponds to a chunk size
of 250 ms and a hop of 125 ms.

Dual-path block: Dual-path block, shown in Fig. 3, models the
short-time and long-time relations in the input using transform-
ers [21]. The block composition is identical to the SepFormer
block proposed in [5]. The intra-chunk transformer performs



CHETUPALLI AND HABETS: SPEAKER COUNTING AND SEPARATION FROM SINGLE-CHANNEL NOISY MIXTURES 1683

Fig. 3. Block diagram of the dual-path and triple-path blocks. L, C, K, and
H denote the number of channels, number of chunks, chunk size, and feature
dimension, respectively.L = 1 for the dual-path block andL = Ĵ for the triple-
path block in Fig. 2.

Fig. 4. Block diagram of the transformer block.

attention across the time-steps with-in a chunk, while treating
the chunk dimension as the batch. In contrast, the inter-chunk
transformer performs attention across the chunks at every time-
frame. The axes of the inputs and outputs of the transformers
are appropriately permuted and reshaped as shown in Fig. 3.
Skip connections are implemented across the intra-chunk and
inter-chunk transformers after passing the transformer outputs
through a LN layer.

The transformers comprise of a stack of transformer encoder
layers and optional position encoding, as shown in Fig. 4. The
input feature matrix is, optionally, added with a positional encod-
ing matrix and input to a stack of P transformer encoder layers
followed by a LN layer. We use the sinusoidal position encoding
in this work. The composition of the transformer encoder layer,
shown in Fig. 4, closely follows the definition in [21], with
pre-normalization and dropout. In this work, we use P = 4
layers in the intra-chunk transformer and P = 2 layers in the
inter-chunk transformer.

Attractor generation and speaker counting: The purpose of
the attractor generation module is to generate a conditioning
vector for each speaker in the mixture signal and facilitate
speaker counting. The attractors are generated on chunk-level
aggregated representations, as they capture speaker characteris-
tics better than the fine frame level features. A typical choice for
the intra-chunk sequence aggregation is mean pooling, which
gives equal importance to all the time frames including the
speech silences. In this work, we consider the self-attentive
weighted subspace projection strategy shown in Fig. 5, which
weights the samples based on their importance as computed
by the attention weights. Such a strategy is found to encode
the sequence characteristics effectively and improve the final

Fig. 5. Block diagram of the sequence aggregation module.

Fig. 6. Block diagram of the EDA module.

performance, for example, in the context of speaker verification
in [22]. The processing steps are,

V′ = Tanh(Linear(V)), V′ ∈ RK×H ′ , (4)

α = Softmax(Linear(V′))), α ∈ RK×r, (5)

W = Flatten(αT Linear(V)), W ∈ R1×H . (6)

Here, r different weighted linear combinations of a low-
dimension (H/r) projection of the input V are concatenated to
generate the summary vector. The weights are computed, from
a higher dimension projection of V (H ′ = 4H), as shown in the
top section of Fig. 5.

The EDA module, shown in Fig. 6, is composed of an LSTM
encoder and an LSTM decoder. The operation of the EDA
module is similar to the method proposed in [14]. The input W
of chunk level representations is first shuffled along the chunk
dimension to avoid learning the sequence related information
and model only the speaker attributes. The shuffled representa-
tions are fed to the LSTM encoder. The state ce,C of the encoder
at the last step (chunk C), comprising of the cell state and the
memory state, encodes a file-level summary of the speakers in
the recording, i.e.,

∼, ce,C = LSTM encoder(shuffle(W)). (7)

The state ce,C is used as the state at step-0 of the LSTM decoder.
The LSTM decoder is run for J + 1 steps for a recording with
J speakers. In step-j, it takes a vector of zeros as the input
and generates an embedding aj , referred to as the “attractor”.
The J + 1 attractors are fed to the attractor existence detection
module. In addition, the first J attractors are multiplied element-
wise with the DPB outputV to generate J parallel channels, i.e.,

Yj = aj �V, ∀j ∈ {1, 2, . . . , J}, (8)

where Y = [Y1 . . . ,YJ ].
The attractor existence detection module is similar to a binary

classifier and composed of a Linear-Sigmoid layer. The module
is trained to predict a 1 or 0 depending on whether the attractor
should correspond to a speaker or otherwise. For a recording
with J speakers, the module is expected to predict a 1 for the
attractors {a1, . . . ,aJ} and a 0 for aJ+1.

During training, for a recording with J speakers, we extract
J + 1 attractors. During inference, if the number of speakers is



1684 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Algorithm 1: EDA Processing With Speaker Count Estima-
tion.

Input: W
∼, ce,C = LSTM encoder(input=W, state=0)
Attractor matrix A = [ ]
j = 0
aj , cd,j = LSTM decoder(input=0, state=ce,C)
while Linear-Sigmoid(aj) ≥ 0.5 do

A = Concatenation(A,aj)
j ← j + 1
aj , cd,j = LSTM decoder(input=0, state=cd,j−1)

end while
Ĵ = length(A)

return attractors A and speaker count Ĵ

not known a-priori, the attractors are generated sequentially as
described in Algorithm 1.

Triple-path block: Triple-path block (TPB) extends the dual-
path block processing with an additional inter-channel trans-
former, as shown in Fig. 3. In this block, the intra-chunk and
inter-chunk transformers model the J channels independently.
In the inter-channel transformer, the intra- and inter-chunk di-
mensions are treated as batch size and the attention is applied
along the channel dimension. We do not use position encoding
in the inter-channel transformer, since the channel order is
arbitrary. The inter-channel is also bypassed for recordings with
J = 1. The inter-channel transformer is similar to the strategy
implemented in [23] for multi-channel speech enhancement.

Mask prediction: The mask prediction follows the steps from
the SepFormer architecture [5]. The 4D output of the triple-path
block is passed though a pReLU layer and overlap-add method
is used to invert the chunking operation. The signals are then fed
to a Linear-Tanh layer and a Linear-Sigmoid layer in parallel and
the corresponding outputs are multiplied element-wise to com-
pute a gated output. Finally, a Linear-ReLU layer predicts the
source masks M̂j , ∀j ∈ {1, 2, . . . , J} for the predicted sources.
TF representations for the separated sources are obtained as,
Ŝj = M̂j �X, ∀j ∈ {1, 2, . . . , J}.

C. Signal Reconstruction

The waveform decoder uses a 1D transpose-convolution layer
(Tr-Conv1D) with the same number of filters, kernel size, and
stride as that of the waveform encoder, discussed in Section II-
I-A,

ŝj = Tr-Conv1D(Ŝj), ŝj ∈ RL×1, ∀ j ∈ {1, 2, . . . , J}. (9)

D. Loss Function

To train the DNN, we use a weighted combination of the signal
estimation loss Lsignal and the attractor existence loss Lattr, i.e.,

L =

{
Lsignal + ηLattr, if J ≥ 1;

Lattr, otherwise,
(10)

where η > 0 is the weight value.

The negative of the scale-invariant signal-to-noise ratio (SI-
SNR), averaged over the speakers in the mixture, computed in a
permutation-invariant manner [24] is used for Lsignal. Let P de-
note the set of all possible permutations of the estimated source
signals. The signal estimation loss Lsignal is then computed as,

Lsignal = min
p∈P

1

J

J∑
j=1

−SI-SNR(sj , ŝp(j)). (11)

The SI-SNR measure, for a reference and estimated signal pair
(s, ŝ), is defined as [3], [25],

SI-SNR(s, ŝ) = 20 log
‖αs‖
‖αs− ŝ‖ , (12)

where α =< s, ŝ > / < s, s > is the scale parameter. For a
mixture with J speakers, Lattr is computed as

Lattr =
1

J + 1

⎛⎝ J∑
j=1

BCE(1, pj) + BCE(0, pJ+1)

⎞⎠ , (13)

where p = [p1, p2, . . . , pJ+1] is the Linear-Sigmoid layer out-
put, 0 ≤ pj ≤ 1, ∀j. To compensate for the scale differences
between Lsignal and Lattr, we choose η = 10, unless otherwise
stated.

IV. EXPERIMENTAL SETUP

A. Datasets

We conducted the experiments on noisy-speech mixtures,
simulated using single-speaker recordings from the WSJ0 cor-
pus [26] and noises from the WHAM! corpus [15].

WSJ0-Mix dataset: WSJ0-JMix is a synthetic dataset of
J speaker mixtures (J ∈ {2, . . . , 5}), composed using clean
WSJ0 recordings [26] and created as defined in [2] using
an open-source Python tool.1 To create the mixture, (i) the
clean signals were normalized, (ii) scaled with gain values
sampled randomly, and (iii) summed and then normalized
such that the peak amplitude of the mixture signal is 0.9.
Let g1, g2 be gain values uniformly sampled from the range
[0,2.5] dB. The gains for the individual speaker signals for
two to five speaker mixtures are {g1,−g1}, {g1,−g1, 0},
{g1, g2,−g1,−g2}, {g1, g2,−g1,−g2, 0} respectively.

For each J , the dataset has 20 K, 5 K and 3 K recordings
in the train, validation and test splits, respectively. These three
splits have disjoint speakers. We used the “min” duration mode
of the dataset (as defined in [2]) for the experiments in this paper,
which also guarantees that the mixture signals have a full-overlap
between the speakers except for the intra-recording silences. We
refer to the original recordings from WSJ0 as single-speaker
mixtures (WSJ0-1Mix). The train, validation and test splits of
WSJ0-1Mix have 8769, 3557 and 1770 recordings respectively.
We refer to the pool of 1-5 speaker mixtures as the WSJ0-Mix
dataset.

WHAM!-WSJ0-Mix dataset: We paired the mixtures from the
WSJ0-Mix dataset with noise signals sampled randomly from

1[Online]. Available: https://github.com/mpariente/pywsj0-mix

https://github.com/mpariente/pywsj0-mix


CHETUPALLI AND HABETS: SPEAKER COUNTING AND SEPARATION FROM SINGLE-CHANNEL NOISY MIXTURES 1685

the WHAM! corpus. We used the same train, validation and
test splits of the raw recordings defined in [15] to sample the
noise signals for the corresponding splits of WSJ0-Mix. The
noise signals were added to the speech mixtures at a mixture-
signal-to-noise ratio (MSNR) sampled randomly from the range
30–40 dB, for all the splits of the dataset. Additionally, we
evaluated the trained models using a wider range of MSNR
values in Section VI. For the training examples, we paired each
mixture with a different noise sample with a different MSNR
value in each epoch. For validation and test, each mixture from
WSJ0-Mix was paired with a unique noise sample with a unique
MSNR value at all epochs.

We also created noise-only recordings, sampled from
WHAM!, and refer to them as 0-speaker mixtures. We sampled
20 K, 5 K and 3 K examples for the train, validation and test
splits. Each example in the 0-speaker mixtures set has a duration
of 4 s. We refer to the cumulative set of 0-speaker mixtures and
the 1–5 speaker mixtures of WSJ0-Mix added with WHAM!
noises as the WHAM!-WSJ0-Mix dataset.

The mixture signal duration was limited to a maximum of
15 s during training and not limited for the test recordings. The
duration of the mixture recordings in the test splits varied from
1.62 s to 13.87 s.

B. Training Details

The SpeechBrain [27] platform was used to train the models.
Adam optimizer [28] was used with an initial learning rate of
1.5× 10−4 and a batch size of 1. The learning rate was fixed
for the first 20 epochs and halved later if the validation SI-SNR
is not increasing for two consecutive epochs. A loss threshold
of −30 dB was applied to the negative SI-SNR loss function.
The norm of the gradients was clipped to 5. Automatic fixed
precision was used to increase the training speed. Time domain
speech perturbation [29] was used as the audio augmentation
scheme with perturbation factors 95%, 100% and 105%. The
model parameters corresponding to the best validation SI-SNR
were used for the final evaluation.

C. Performance Measures

We measured the performance of the proposed approach
using SI-SNR improvement (SI-SNRi), SDR improvement
(SDRi) [30], and speaker-counting accuracy (SCA) measures.
The number of sources is known and fixed during training,
but the estimated number of sources during inference can be
different from the ground truth. When the number of sources
was under-estimated, an all-zero signal was used as the pseudo-
estimate for the sources not accounted for in the output, to
compute the SI-SNRi measure. On the other hand, if the number
of sources was over-estimated, the subset of sources with the
maximum average SI-SNRi were used for the performance met-
ric computation. In all the cases, the performance measures were
computed for the optimal pairing of estimated and reference
sources, i.e., accounting for the permutation ambiguity. Compu-
tation of SDR involves a projection of the estimated signal into
the desired signal and interfering speaker signal subspaces [30].
This is not possible if either the desired signal or its estimate

TABLE I
PERFORMANCE FOR WHAM!-WSJ0-MIX TEST SETS

TABLE II
SPEAKER CONFUSION MATRIX FOR WHAM!-WSJ0-MIX TEST SETS

have all zeros. Hence, SDRi was calculated only for recordings
with correct speaker count estimation. We used the open source
Python tool in [31] for the computation of SDRi measure. SCA
was calculated as the percentage of test recordings with correctly
estimated speaker count (Ĵ = J).

V. RESULTS

We evaluated the proposed SD-SepEDA model using (i)
the WHAM!-WSJ0-Mix test sets which denote the matching
condition for the training, and (ii) the WSJ0-Mix test sets
without noise. For each condition, we evaluated the model with
speaker count estimation (as described in Algorithm 1) and with
ground-truth speaker count (as in the training stage).

Table I shows the signal estimation performance for the
WHAM!-WSJ0-Mix test sets. For J = 0, we found that only
1 out of the 3000 test samples is identified as having a speaker
(Ĵ = 1). For J = 1, the input MSNR is high (sampled from
the range [30− 40] dB) and hence the improvement is less.
However, the results indicate that the model is capable of signal
enhancement. For J > 2, the metrics reflect mainly the source
separation quality, and we see that the performance degrades
with an increase in J . The incorrect speaker count estimation
contributes significantly to the performance degradation for J >
3, since inference using the ground-truth speaker count for the
same model achieves better performance. Table I also shows the
average performance across the recordings with correct speaker
count estimation only. The SI-SNRi and SDRi measures are
comparable on these recordings with correct estimated speaker
count. Table II shows the speaker confusion matrix. We see
that the model has a tendency to under-estimate the number
of speakers. We observed that the model does not estimate more



1686 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

TABLE III
PERFORMANCE FOR WSJ0-MIX TEST SETS AND COMPARISON WITH THE BASELINE SYSTEMS

TABLE IV
SPEAKER CONFUSION MATRIX FOR WSJ0-MIX TEST SETS

than 5 speakers in general (the maximum number of speakers
in the train set). For 0− 3 speakers, the SCA obtained may be
satisfactory for most practical applications.

The performance obtained for the clean WSJ0-Mix test sets
is shown in Tables III, IV. For J = 1, the table shows the
reconstruction SI-SNR (no-noise and no-interfering speakers).
We see that the reconstruction SI-SNR is close to 50 dB and
the SCA is 100%. For the mixture recordings (J > 1), the
performance trends are similar to the WHAM!-WSJ0-Mix test
set results shown in Tables I and II.

Table III also shows the performance of three baselines,
the recursive separation system in [10], the MulCAT approach
of [12] which uses multiple models, and our previously reported
SepEDA model [13]. We note that the baseline systems in [12],
[13] work only for two or more speaker mixtures (J ≥ 2) as they
are trained on two-five speaker mixtures, unlike the proposed
model which works forJ ≥ 0. The method in [10], in theory, can
detect single speaker recordings. But the single speaker record-
ings are not considered in the experiments in [10]. Comparing
with the proposed SD-SepEDA, we see that SD-SepEDA has
better performance than the current best architectures reported in
the literature. Compared to the SepEDA model reported in [13],
we see a slight degradation in performance for the condition
where the speaker count is estimated. For the known number
of sources condition, the proposed model is found to be better
for J > 2. The speaker counting is also better for J < 5 for the
proposed model compared to SepEDA model of [13].

To investigate further, we studied the distribution of source-
wise SI-SNRi for the mixture recordings (J > 1) in Fig. 7. For
J = 2 and J = 3, peak in the distribution is observed beyond
20 dB, and most of the recordings have more than 15 dB

Fig. 7. Histogram of source-wise SI-SNRi for WSJ0-Mix test sets.

Fig. 8. Scatter plot of median pitch frequencies of speakers in two-speaker
mixtures (WSJ0-2Mix test set). The colorbar (clipped to the range [−15, 20]
dB) indicates the corresponding SI-SNRi value.

SI-SNRi. A significant left-leaning tail is observed for J > 3,
though the peaks are beyond 15 dB SI-SNRi. This indicates
that, for J > 3, a subset of speakers in the mixture are correctly
estimated, and the remaining speakers may be confused. Fig.
8 shows the effect of the median pitch frequency of individual
speakers on the separation quality for the two-speaker mixtures.
The frame-level pitch values were computed using the Parsel-
mouth Python tool [32] and the median was computed over the
voiced speech regions. We see that, closer to the diagonal, the
separation is poor, i.e., the difference of median pitch frequency
between the two speakers is small. There are two clusters with
poor separation, in the low and high frequency regions, which
correspond to same gender speaker mixtures. We also studied



CHETUPALLI AND HABETS: SPEAKER COUNTING AND SEPARATION FROM SINGLE-CHANNEL NOISY MIXTURES 1687

Fig. 9. SI-SNRi versus x-vector Cosine similarity between speakers for the
two-speaker mixtures (WSJ0-2Mix test set).

Fig. 10. SI-SNRi distribution for the test samples in WSJ0-Mix test sets
divided into three groups by duration. The black dot shows the median value.

the relation between SI-SNRi and the x-vector cosine similarity
between the speakers for the two speaker mixtures. For x-vector
extraction, we used the pre-trained extractor available in the
SpeechBrain framework [27].2 Fig. 9 shows the scatterplot of
cosine similarity against the SI-SNRi. We see that almost all
recordings which have a poor SI-SNRi (<15 dB) have a higher
cosine similarity, but the vice-versa is not true. The analysis
shows that the architecture may be using not just timbre and pitch
but also other information such as the speech onset instances for
source separation.

Next, we study the performance as a function of the duration
of the test samples. Fig. 10 shows the distribution of SI-SNRi
of the test samples divided into three groups by duration for
the mixtures of two-five speakers. The median performance is
similar for the different duration groups for a given speaker
count. However, the worst-case performance is improved as
the duration of the sample increases, which can be seen for the
mixtures with more than three speakers in Fig. 10.

We measured the computational complexity of the proposed
architecture using the number of GigaFLOPs estimated using
the open-source flop-counter tool.3 For a 3 s recording, the com-
plexity is found to be {70.38, 125.84, 171.04, 216.26, 261.49}
GigaFLOPs for 1-5 speaker recordings, respectively.

2[Online]. Available: https://huggingface.co/speechbrain/spkrec-xvect-
voxceleb

3[Online]. Available: https://github.com/facebookresearch/fvcore

TABLE V
PERFORMANCE FOR DIFFERENT MSNR CONDITIONS

VI. ROBUSTNESS AND GENERALIZATION ANALYSIS

In the following, we study the generalization capabilities of
the proposed SD-SepEDA model for different MSNR condi-
tions, SIR variation, and for reverberant recordings.

MSNR variation: The test sets for this analysis use the noisy
speaker mixtures, but with different MSNR values compared
to the WHAM!-WSJ0-Mix test sets discussed in Section IV-A.
The MSNR values were sampled from three different ranges
[0− 10] dB, [10− 20] dB, [20− 30] dB and compared with the
training data setting of [30− 40] dB range. As shown in Table V,
the SCA degrades with decreasing MSNR except for J = 5,
which is also reflected in the SI-SNRi values. At low MSNRs,
the speaker count estimated is either 0 (i.e., no speech) or 5
(maximum predicted by the model). This also justifies the better
SCA obtained at low MSNRs for J = 5. For the [20− 30] dB
condition, the performance is comparable to the [30− 40] dB
case.

SIR variation: For the analysis in this section, we used the
WSJ0-Mix test sets with 2− 5 speakers, but with different rela-
tive gains for the mixed signals, which translate to differences in
the SIR. The training dataset as defined in Section IV-A has gains
g1, g2 sampled from the range [0− 2.5] dB. For the evaluation in
this section, we sampled the gains from three ranges [0− 5] dB,
[0− 10] dB, [0− 15] dB. The SCA and the separation accuracy
degrade with increase in SIR range, as shown in Table VI. We
observed that the speaker count is under-estimated for higher
SIR cases, i.e., the weak sources are not identified by the model.
The performance for the 5 dB condition is also comparable to
the train condition (2.5 dB), shown in Table I. Table VI also
shows the results for the known number of sources case. The
performance degradation is less with the change in the SIR,
and closer to the results reported in Table I. This shows that
the separation architecture is robust to different SIR conditions,
while the EDA module is sensitive to the SIR variation.

Reverberant test set: In this section, we study the perfor-
mance of the SD-SepEDA model trained on WSJ0-WHAM!-
Mix dataset on reverberant speech. We created a reverberant test
set using the simulated RIRs and the WSJ0-Mix test sets. The
RIRs were simulated using the pyroomacoustics [33] Python
tool, closely following the procedure and the parameters used
to create the WHAMR! dataset [16]. Each example in the
WSJ0-Mix test sets was paired with a different set of source
RIRs. The sources were first convolved with their corresponding
RIRs, scaled according to the SIR value, and added to create the
reverberant mixture. We used the SIR values from WSJ0-Mix
definitions to scale the sources. We considered three different

https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
https://github.com/facebookresearch/fvcore


1688 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

TABLE VI
PERFORMANCE FOR DIFFERENT SIR CONDITIONS. THE COLUMN LABELS SHOW THE UPPER LIMIT OF THE RANDOM GAINS APPLIED TO SOURCES

TABLE VII
SPEAKER COUNTING ACCURACY AND SI-SNRI (DB) MEASURE FOR THE REVERBERANT TEST SET

reverberation time ranges, low: 0.1− 0.3 s, medium: 0.2− 0.6
s, and high: 0.4− 1.0 s, similar to [16]. The performance mea-
sures were computed with (i) the direct path component, and
(ii) the reverberant source, at the microphone as the reference
signal.

For comparison, we also trained the SD-SepEDA model
on reverberated WSJ0-WHAM!-Mix dataset. The reverberated
training examples were created dynamically. The reverberation
time for the training set was sampled uniformly from the range
0.1− 1.0 s, and the remaining parameters are sampled similar to
the test set, described above. The model is trained to predict the
reverberant sources given the reverberant mixture inputs, since
our goal is to separate sources and not dereverberation.

Table VII shows the results. For the model trained on anechoic
speech, we see that the speaker counting is significantly affected
by the reverberation. We observed that the speaker count is
over-estimated in the reverberant cases. The better SCA ac-
curacy for the five speaker test set is misleading, because the
network is observed to not predict more than five speakers.
The SI-SNRi also degraded with the reverberation level. For
“low” reverberation condition, SI-SNRi with reverberant ref-
erence is better compared to the direct component reference,
indicating that the network estimates the reverberant sources at
the output. This can be observed clearly in the single-speaker
test set, where the SI-SNRi is closer to the clean speech results,
shown in Table. I. Training the model with reverberant speech
significantly improves the speaker-counting performance for the
medium and high reverberant cases. The SI-SNRi performance
for the high reverberation case is also improved. However, the
performance for the low and medium reverberation cases is
degraded compared to the model trained on non-reverberant
mixtures. This is due to the training set which has reverberation
times sampled from the wider range of 0.1− 1.0 s, the model

Fig. 11. Frequency response of the encoder and decoder filters. The red-dots
correspond to the filter center frequencies.

performance is improved for high reverberation recordings at
the cost of degradation for low reverberation cases.

VII. DISCUSSION

We study the processing of a speech mixture by the network,
using a synthetic 2-speaker mixture with partial speaker overlap
(≈ 50% overlap). This is to understand the attention schemes
computed by the different transformer layers in the network.
We note that the proposed network is trained and evaluated in
Section V with fully overlapping speaker mixtures and partial
overlap mixture is used here only for illustration purposes. The
source signals are from the WSJ0 test set.

Waveform encoder-decoder: The order of the encoder fil-
ters as a function of frequency is random, since the network
architecture or the training procedure do not encourage the
encoder filters to be in sorted frequency order. Fig. 11 shows
the frequency response of the encoder and decoder filters, sorted
by the center frequencies of the encoder filters. We see that the
learned center-frequencies are on a warped scale, as it is also
observed in other works [3]. Contrary to the expectation, the



CHETUPALLI AND HABETS: SPEAKER COUNTING AND SEPARATION FROM SINGLE-CHANNEL NOISY MIXTURES 1689

Fig. 12. Time domain signal, spectrograms of the estimated sources and their
corresponding reference signals.

decoder filter at the same index as the encoder filter was not
at the same frequency. The waveform encoder-decoder are not
found to be perfect reconstruction type, i.e., passing the encoder
output directly through the decoder does not reconstruct the
original signal. However, there exists a mask to reconstruct the
single-speaker signal, as we have seen in the results section for
the single-speaker recordings.

We observed that the waveform-encoder output has 50% zeros
on average. A closer look at the Conv1D filter weights showed
that for several filters their negative version is also a filter, i.e.,
if c is a filter then −c is also a filter (hence 50% zeros). This
shows that if the waveform-encoder output is computed as

X = ReLU (Concatenate (Conv1D(x),−Conv1D(x))) ,

the number of encoder filters could possibly be halved. A further
investigation is beyond the scope of this paper.

We also observed that some filters are repeated, i.e., have same
weights, indicating a redundant representation. This repetition of
filters at the same frequency may be helping with the separation
of sources with similar characteristics (same pitch range), since
the masks can be disjoint between speakers for features of
the same frequency filter. For the single-speaker recordings,
we observed that the obtained masks have 60% non-zeros on
average, which confirms the redundant representation by the
encoder.

Signal estimation: Fig. 12 shows the spectrograms of the esti-
mated sources and their corresponding reference signals. For the
example shown, there is no leakage across the speaker channels
during voiced speech regions. However, the silence/non-speech
regions of one channel may leak into the other in practice.

Intra-chunk attention: Fig. 13 shows the intra-chunk attention
computed by the four transformer layers in DPB and TPB.
We see that the attention-weights are concentrated around the
main-diagonal and the spread around the diagonal increases with
the layer index. This shows that the intra-chunk transformers
attend to the current and neighboring frames only. The trans-
formers accumulate temporal context through successive layers,

similar to the dilated convolution blocks in ConvTasNet [3].
The spread around the diagonal is higher in the TPB for the two
output channels, where the network’s goal is to generate speaker
specific outputs.

Inter-chunk attention: Fig. 14 shows the inter-chunk attention
computed by the two transformer layers of DPB and TPB. In
DPB (Fig. 14(a)), the first layer has higher attention weights for
the active speech chunks and the second layer has higher weights
for chunks with non-speech. The attention weights are spread
over all the time frames, indicating that the representations
computed in DPB are also global. The attention pattern for the
first layer appears like a superposition of two similarity matrices,
corresponding to two different, overlapping time regions. The
different heads of the transformer may be focusing on different
time regions. So, in practice, the overall capacity of the network,
in terms of the number of sources it can separate, may be
limited by the number of heads in the inter-chunk transformer
layers.

A different behavior is observed in the inter-chunk transform-
ers of the TPB (Fig. 14(b), (c)). The attention weights in these
are concentrated along the diagonal, indicating the modeling
of relationships in neighboring chunks, i.e., relationships span-
ning several hundred milliseconds. In each channel, the second
transformer layer attention weights are concentrated along the
diagonal, only in the active speech regions of that particular
channel and they are more spread-out during the silence re-
gions. This indicates speaker-selective short-time modeling in
the inter-chunk layers of TPB.

Inter-channel attention: Fig. 15 shows the intra-chunk mean
and standard deviation of cross-channel weights (anti-diagonal
of the self attention matrix), across the chunks for the two
transformer layers. We see that the weights are always greater
than zero, even for chunks which have only one active speaker,
showing that there is information sharing across the two output
channels. In the first layer, the cross-channel weights are mostly
less than 0.5, but greater than 0.5 for the second layer. This is
shows that the first layer is giving higher importance to intra-
channel features and the second-layer is fusing the information
from the second channel. Fig. 15 also shows that the attention
weights have a smaller variance with-in a chunk.

Attractors: The EDA module generates 3 attractors for this
example with J = 2. The existence probabilities for the gen-
erated attractors, for the example shown in Fig. 12, were
{1.0, 1.0, 4.8e− 7}. The module is found to predict the speaker
existence with a very high confidence. We found this observation
to be true for most of the test set, indicating over-fitting to the
training data conditions. This could be a reason for the poor
SCA in situations where one or more signals in the mixture are
loud compared to the other signals, different from the train/test
conditions of WHAM!-WSJ0-Mix dataset. The attractors are
found to be recording specific. Hence, they do not necessarily
contain speaker information useful for speaker identification or
re-identification of a given speaker across the different blocks
if the proposed method is applied in a block-wise manner to
process long recordings.

Gating mechanism: The output of the triple-path block, after
overlap-add, goes through a gating scheme before predicting



1690 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Fig. 13. Intra-chunk attention, averaged across the heads and the chunks, for the four transformer layers of (a) DPB, (b,c) two channels of TPB.

Fig. 14. Inter-chunk attention, averaged across the heads and with-in each chunk, for the two transformer layers of (a) DPB, (b), (c) two channels of TPB.

Fig. 15. Cross-channel attention weights (average across the heads and intra-
chunk) in the inter-channel transformer block for the two transformer layers.
The shaded region corresponds to the with-in chunk ±1 standard deviation.

the masks. Fig. 16 shows short segments of the Linear-Tanh
and Linear-Sigmoid layer outputs, for the two speaker chan-
nels. We see that, while the output of the Linear-Tanh layer is
dense, the Linear-Sigmoid layer output is sparse. It provides
speaker-sensitive selection across the feature dimension and
also suppresses the features during speech pauses. Finally, the
matrices are multiplied element-wise and fed to a Linear-ReLU
layer to predict the mask.

VIII. ABLATION EXPERIMENTS

In this section, we study the architecture and training choices.
For this study, the architectures are trained on WSJ0-Mix dataset
alone, i.e., 1-5 speaker mixtures and no-noise. Table VIII shows
the SI-SNRi and SCA for 1− 5 speaker mixtures for different

Fig. 16. A short segment of (a) Spectrogram and (b) waveform encoder output
for the mixture signal. (c), (d) Linear-Tanh layer outputs and (e), (f) Linear-
Sigmoid layer outputs for the two output channels.

models. V0 shows the architecture trained with default param-
eters. Table III shows the same results, but the architecture was
trained on 0-5 speaker mixtures (WHAM!-WSJ0-Mix dataset).
The performance is better in Table VIII compared to Table III.
The presence of noise-only samples and noise during training is
found to deteriorate the speaker counting, especially for J > 2.

First, we study the impact of weight η used for Lattr in the
training loss function (rows V0-V2). η = 10 for the V0 model.
SCA decreases with a decrease in η, which also reflects in the
SI-SNRi values, for 4 and 5 speaker mixtures. For 2 and 3 speaker
mixtures, SI-SNRi is marginally better for smaller η.



CHETUPALLI AND HABETS: SPEAKER COUNTING AND SEPARATION FROM SINGLE-CHANNEL NOISY MIXTURES 1691

TABLE VIII
ABLATION EXPERIMENTS

Model V3 in the table shows the results for a simpler scheme
of averaging the intra-chunk features instead of the attentive
sequence aggregation scheme discussed in Section II. We see
that the performance is affected for single-speaker recordings
but similar or better for the mixture signals.

The chunk-level features are shuffled prior to EDA in row
V0. Row V4 shows the results for the model trained without
shuffling. We see that the performance with shuffling is slightly
better compared to EDA without shuffling.

Next, we study the ordering of the three transformers in the
triple-path block. V0 configuration has the layers in the order
intraChunk-interChunk-interChannel. Architectures V5, V6 and
V7 show the results for different ordering of the blocks. The
configuration V7 has a very poor performance compared to
the other four. Placement of inter-channel transformer at the
beginning (V5) and at the end (V0) has similar performance,
though V0 is slightly better. The configuration in V6 has a
slightly poor performance compared to V0 and V5.

The experiments show that the performance is sensitive to
the ordering of the transformer layers. But the other training
parameters have a marginal impact on the test performance.

IX. CONCLUSION

We proposed a DNN architecture to jointly estimate the
speaker count and the individual sources from a single chan-
nel speech mixture of an unknown number of speakers. The
network is trained with noise-only signals (i.e., no speakers),
single-speaker signals and mixtures of up to five speakers.
While the network does not generalize to unknown number of
speakers, it achieves more than 99% speaker counting accuracy
for input signals with zero to three speakers. The SI-SNR for
recordings of one to three speakers is more than 19 dB. Through
robustness analysis, we showed that the network generalizes to
low-reverberation conditions and a higher range of speaker mix-
ing ratios than those observed during training. We also showed
that the network operates by building short-time, medium-time
and global file-level representations at different blocks. Through
the analysis, we provided insights for the design of compute
efficient transformer architectures for source separation, for
example, masked attention transformers can be used for all the
intra-chunk transformers with a limited temporal context for
each time frame.

ACKNOWLEDGMENT

The authors thank the Erlangen Regional Computing Center
(RRZE) for providing computing resources and support. The
authors would like to acknowledge the useful discussions with
Edwin Mabande, Oliver Thiergart, and Soumitro Chakrabarty
of the Communication Acoustics Group at Fraunhofer IIS, Er-
langen, Germany.

REFERENCES

[1] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Joint
optimization of masks and deep recurrent neural networks for monaural
source separation,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 23, no. 12, pp. 2136–2147, Dec. 2015.

[2] Y. Isik, J. L. Roux, Z. Chen, S. Watanabe, and J. R. Hershey, “Single-
channel multi-speaker separation using deep clustering,” in Proc. Inter-
speech, 2016, pp. 545–549.

[3] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time–frequency
magnitude masking for speech separation,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[4] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN: Efficient long
sequence modeling for time-domain single-channel speech separation,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2020,
pp. 46–50.

[5] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, “Attention
is all you need in speech separation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2021, pp. 21–25.

[6] J. Chen, Q. Mao, and D. Liu, “Dual-path transformer network: Direct
context-aware modeling for end-to-end monaural speech separation,” in
Proc, Interspeech, 2020, pp. 2642–2646.

[7] Z. Zhang, B. He, and Z. Zhang, “TransMask: A compact and fast speech
separation model based on transformer,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2021, pp. 5764–5768.

[8] N. Zeghidour and D. Grangier, “Wavesplit: End-to-end speech separation
by speaker clustering,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 29, pp. 2840–2849, 2021.

[9] K. Kinoshita, L. Drude, M. Delcroix, and T. Nakatani, “Listening to each
speaker one by one with recurrent selective hearing networks,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., 2018, pp. 5064–5068.

[10] N. Takahashi, S. Parthasaarathy, N. Goswami, and Y. Mitsufuji, “Recursive
speech separation for unknown number of speakers,” in Proc. Interspeech,
2019, pp. 1348–1352.

[11] J. Zhu, R. A. Yeh, and M. Hasegawa-Johnson, “Multi-decoder DPRNN:
Source separation for variable number of speakers,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2021, pp. 3420–3424.

[12] E. Nachmani, Y. Adi, and L. Wolf, “Voice separation with an unknown
number of multiple speakers,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 7164–7175.

[13] S. R. Chetupalli and E. A. P. Habets, “Speech separation for an unknown
number of speakers using transformers with encoder-decoder attractors,”
in Proc. Interspeech, 2022, pp. 5393–539.

[14] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, and K. Nagamatsu, “End-to-
end speaker diarization for an unknown number of speakers with encoder-
decoder based attractors,” in Proc. Interspeech, 2020, pp. 269–273.



1692 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

[15] G. Wichern et al., “WHAM!: Extending speech separation to noisy envi-
ronments,” in Proc. Interspeech, 2019, pp. 1368–1372.

[16] M. Maciejewski, G. Wichern, and J. L. Roux, “WHAMR!: Noisy and
reverberant single-channel speech separation,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2020, pp. 696–700.

[17] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Joint separation and de-
noising of noisy multi-talker speech using recurrent neural networks and
permutation invariant training,” in Proc. IEEE Int. Workshop Mach. Learn.
Signal Process., 2017, pp. 1–6.

[18] H. Shi, X. Chen, T. Kong, S. Yin, and P. Ouyang, “GLMSnet: Single chan-
nel speech separation framework in noisy and reverberant environments,”
in Proc. IEEE Autom. Speech Recognit. Understanding Workshop, 2021,
pp. 663–670.

[19] S. E. Chazan, L. Wolf, E. Nachmani, and Y. Adi, “Single channel voice
separation for unknown number of speakers under reverberant and noisy
settings,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2021,
pp. 3730–3734.

[20] J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in Proc. Adv.
NIPS Deep Learn. Symp., 2016, arXiv:1607.06450.

[21] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., Red Hook, NY, USA, 2017, pp. 6000–6010.

[22] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive speaker
embeddings for Text-Independent speaker verification,” in Proc. Inter-
speech, 2018, pp. 3573–3577.

[23] A. Pandey, B. Xu, A. Kumar, J. Donley, P. Calamia, and D. Wang, “TPARN:
Triple-path attentive recurrent network for time-domain multichannel
speech enhancement,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2022, pp. 6497–6501.

[24] M. Kolbaek, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech sepa-
ration with utterance-level permutation invariant training of deep recur-
rent neural networks,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 25, no. 10, pp. 1901–1913, Oct. 2017.

[25] Y. Luo and N. Mesgarani, “TaSNet: Time-domain audio separation net-
work for real-time, single-channel speech separation,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2018, pp. 696–700.

[26] J. S. Garofolo et al., “CSR-I (WSJ0) complete LDC93S6A,” Web down-
load, Philadelphia: Linguistic Data Consortium, 1993.

[27] M. Ravanelli et al., “SpeechBrain: A general-purpose speech toolkit,”
2021, arXiv:2106.04624.

[28] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic gradient
descent,” in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[29] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for
speech recognition,” in Proc. Interspeech, 2015, pp. 3586–3589.

[30] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[31] C. Raffel et al., “MIR_EVAL: A transparent implementation of com-
mon MIR metrics,” in Proc. Int. Soc. Music Inf. Retrieval Conf., 2014,
pp. 367–372.

[32] Y. Jadoul, B. Thompson, and B. d. Boer, “Introducing parselmouth: A
python interface to praat,” J. Phonetics, vol. 71, pp. 1–15, 2018.

[33] R. Scheibler, E. Bezzam, and I. Dokmanic, “Pyroomacoustics: A python
package for audio room simulation and array processing algorithms,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2018,
pp. 351–355.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


