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Sound Source Localization Inside a Structure Under
Semi-Supervised Conditions

Shunsuke Kita

Abstract—We propose a method for applying a sound source
localization (SSL) model trained on simulated data in a real-world
environment, with a domain transfer (DT) model for the SSL
inside a structure. The DT model transfers real data into pseudo-
simulation data. The SSL model trained on the simulation data is
then adapted to the real data using the DT model. Our method
consists of an SSL. model and a DT model. The SSL. model predicts
the position of a sound source inside the structure, whereas the
DT model transforms the data. Because our simulation is not
perfect, real data are extrapolated for use with the SSL model.
However, the data transformed by the DT model are interpolated
within the feature space. The outcome is that the performance of
the SSL model in the real world is improved. In our study, the
frequency spectra of accelerometers observed on the outer surface
of the structure are the model input. The goal is to predict the
position of the sound source. The SSL model is built using deep
and convolutional neural networks, and the DT model is built
using either an autoencoder, a deep convolutional autoencoder,
or pix2pix. The two-dimensional distributions of the t-distributed
Stochastic Neighbor Embedding indicate that using pix2pix as the
DT model shows the best performance. Furthermore, our method’s
performance for SSL is improved by 57% for the classification
problem and by 27% for the regression problem when compared
to the case where no transformation is applied.

Index Terms—Sound source localization, domain transfer,
acoustic-structure coupling, t-distributed stochastic neighbor
embedding.

1. INTRODUCTION

OUND source localization (SSL) is an important for re-
S ducing the noise of machines and electrical appliances.
Currently, several SSL methods that use the correlation of
time-frequency signals observed by multiple microphones have
been proposed. Those methods are based on the time difference
of arrival (TDOA) of acoustic signals [1], [2]. Many studies
have reported improvements in TDOA problems such as in
noise, reverberation, and the simultaneous emission of sound
sources. In recent years, several methods have been proposed
that incorporate deep learning and overcome different scenarios
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that are challenging for conventional methods [3], [4]. However,
the applications of these methods are limited to circumstances
where acoustic signals can be directly observed. These methods
are not applicable for estimating, from outside, the position of a
sound source inside a structure because the acoustic signals are
observed as indirect sounds.

The SSL inside a structure is an important problem because
it leads to essential solutions for product noise reduction. For
example, if noise is generated owing to damage to a compo-
nent inside the structure, disassembling the structure or placing
measurement equipment inside the structure is not an option
because it would change the structure’s response system. In other
words, the resonant frequency changes because the disassembly
of the structure or placement of the measurement device causes
achange in the volume of the acoustic space. Therefore, the SSL
has to be conducted outside the structure under normal operating
conditions. Specifically, it can detect the position of noise owing
to component defects, deterioration, and interference that occur
in mass-produced home appliances, mechanical products, and
prototypes. Other applications can be applied to SSL in situa-
tions that cannot be observed directly. For example, SSL can
be applied to estimate the position of noise generated in gas or
water pipes. This research deals with the problem of estimat-
ing the location or position of sources that cannot be directly
observed.

Methods based on deep neural networks (DNN) and
computer-aided engineering (CAE) have been proposed for
estimating the sound source inside a structure [5]. Our method
successfully estimated the position of the sound source inside the
structure from the signals observed by accelerometers installed
on the outer surface of the structure, in both the simulation and
real domains. However, our method still faces the challenge
of applying a DNN trained in the simulation domain to the
real domain. The main problem is that there are differences
between the simulation data and actual experimental data. These
differences occur because the simulation data poorly simulate
the actual experimental conditions of a structure’s geometry,
material parameters, and nonlinearity. For both the indirect and
direct sound, it is still difficult to apply the trained model built
on simulation data to real data because the simulation is not
perfect [6].

To solve the SSL problem, our study focuses on a method to
apply models built with simulated data to real data. Adapting a
trained model to another task or data is called “transfer learning
(TL),” which has been studied in the fields of visual catego-
rization and natural language processing by a large number of
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researchers [7], [8], [9], [10], [11]. With TL, the goal is to reduce
the performance degradation caused by different distributions
(called domain shifts) of the data used to train the model (source
domain) and test data (target domain). Although there are a few
studies on SSL in the TL, there are no methods for estimating
the position of the sound source inside the structure. Previous
studies on SSL have focused on classification problems and
assumed weakly supervised labels and TL in visual catego-
rization [12], [13], [14], [15]. We could not use these methods
because our study included a regression problem for predicting
the coordinates of a sound source. In addition, weakly super-
vised learning situations with missing or noisy labels were not
targeted.

We focus on “transductive transfer learning” or “domain
adaptation (DA)” because the task is the same and only the
domain differs [16]. Within that learning condition, we use a
“feature-representation-transfer approach” because the equiv-
alency of conditional distributions in the source and target
domains is not guaranteed [17]. The SSL in this study can use
real data; that is, it is a semi-supervised condition. In the case of
labeled and unlabeled data available in the target domain, there
are discrepancy, adversarial, and reconstructive approaches for
solving the DA with deep learning [18]. These methods mainly
use invariant representations of the source and target data or
assign pseudo labels to the target data.

We propose a DA method for SSL inside a structure under
semi-supervised conditions. The datasets are labeled according
to the area or position of the sound sources and not based on
the data. Therefore, the model built in the simulation domain
is used directly because the condition distributions differed
between the simulation and real domains. The method consists
of a domain transfer (DT) model and an SSL model. The DT
model transforms real data into pseudo-simulation data and the
SSL model predicts the position of the sound source from the
transferred data.

The remainder of this paper is organized as follows. In
Section II, the method used in our previous study on SSL
inside a structure is summarized. In Section III, the proposed
method for applying the models built in the simulation to real
environments is described. Section I'V presents the datasets of the
simulation and actual experimental data. In Sections V and VI,
the SSL and DT models are described. The results are described
and discussed in Section VII, and Section VIII presents our
conclusions.

II. FORMULARISATION AND FRAMEWORK FOR SSL INSIDE A
STRUCTURE

The finite discretization equation for the forced vibration of
the acoustic—structural coupled problem is as follows:
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where u, p, M, C, and K represent the displacement, sound
pressure, mass matrix, damping matrix, and stiffness matrix,
respectively. Suffixes S and F denote the structural and acoustic
terms, respectively. Here, py denotes the mass density constant
of the acoustic fluid, and matrix R denotes the coupled term.
In this study, the external forces on the structure are not as-
sumed (Fs = 0). The SSL inside the structure determines the
input term for the inverse problem. There are three physical
limitations to identifying the source inside the structure. First,
the input-term estimation problem at resonance is ill-posed
because the uniqueness of the solution is not guaranteed. Second,
because the sound radiating from the structure is an indirect
sound, the phase information of the internal sound source is
lost. In the resonance state that causes noise, the resonance
characteristics derived from the acoustic space are mixed with
those derived from the structure. Third, because noise charac-
teristics are determined by the resonance characteristics of the
structure and its acoustic space, the structure cannot be disassem-
bled. Therefore, in the framework of SSL inside the structure,
the location or position of the sound source is stochastically
estimated from observation data outside the structure, using
machine learning techniques and simulations. We propose a new
method using machine learning, which is required for SSL inside
structures.

As shown in Fig. 1, a framework for SSL inside the structure

is implemented in the following three steps [5].

a) Data generation by simulation: A coupled acoustic-
structure analysis is used to generate datasets that consist
of data observed outside a structure and the position of
a sound source. For example, the finite element method
(FEM) is used to generate analytical data, such as accel-
eration signals on the exterior surface of the structure and
acoustic signals around the structure corresponding to the
acoustic excitation of the sound source position.

b) Training of SSL model.: The analytical data obtained
from the coupled acoustic structure analysis are defined
as input data for the DNN, and the positions of the
sound sources paired with the input data are defined
as the labels for the DNN. In other words, a combi-
nation (X, T) of the data observed outside the struc-
ture (input data X) and the location or position of the
sound source (label data T) are treated as a dataset. The
matrix X of D-dimensional input vectors x; and the
matrix T of K-dimensional label vectors t; are given
by

Lxn)’, )
)" 3)

X = (X17X27X37"

T = (t1,to,t3,...,tx
where the subscript IV indicates the number of samples.
In this step, the input-output relationships are learned by
the DNN.

¢) Prediction of the sound source positions: The trained DNN
constructed with the simulation data is used in the real
world for SSL.
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(a)

Framework for SSL inside the structure. (a) Data generation by simulation, (b) training of SSL model, and (c) prediction of the sound source position.

Fig. 1.

Because this method is based on sampling data from a simula-
tion, it applies to objects of various sizes, and the resolution of the
SSL can be set as needed. Narrowing the sampling interval of the
simulation improves the resolution near the decision boundary
for the classification problem and reduces the variance of the
RMSE for the regression problem owing to the increase in the
number of data points. For example, if a regression problem
requires an SSL performance of 20 mm or less, it can be handled
by setting the sampling interval for the simulation to 20 mm or
less, thereby allowing flexibility in the setup. In the product de-
velopment design step, the clearance of the components placed
inside the product is designed by considering the intersection of
each element. The noise source parts can be identified by setting
the sampling interval below the clearance in the simulation.

Furthermore, because this method uses multiple sensors, the
transfer functions between the sensors as input data for the model
enable SSL without depending on the characteristics of the
sound source. Specifically, Y1 = 1.5 holds if the characteristic
of the sound source is Sy, the signal observed by sensor “1”
is Y7, and the transfer function due to the path from the sound
source to the observation point is G1. Similarly, Yo = G55y and
Y3 = (3.5, for the other sensors. If Y7 is the reference sensor,
the ratios of the three observed signals are Y>/Y, = G2/Gq,
Y3/Y: = G3/Gq, and Y3 /Y3 = Go/(3, and these expressions
are independent of Sy. By defining these three ratios as Fi,
F5, and F3 and by using them as training data, SSL can be
applied independently of the sound source characteristics. This
methodology may be affected by noise from accelerometer
observations and is not applied in this study. We plan to treat the
noise as an optimization problem for the location and number of
sensors. This is because the amplitude of the FSA measured at
each observation point is different; therefore, the effect of noise
is likely to be different for each point. In view of this, the present
study focuses on the domain transfer problem without applying
the division method because we consider that the domain transfer
can be properly evaluated without canceling the characteristics
of the sound sources.

III. PROPOSED METHOD:UNDER SEMI-SUPERVISED
CONDITIONS FOR SSL INSIDE STRUCTURE

In general, the generalization performance is significantly
lower when training and test data are sampled from populations
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Fig. 2. Transformation and adaptation with the domain transfer model.

(a) The simulation (source) domain, and (b) the real (target) domain.

with different distributions [7], [8], [19]. This is important when
using machine-learning models in real-world scenarios. For the
same reason, when the model trained in the simulation is applied
to a real environment, the generalization performance of the
trained model is low because the simulation does not perfectly
reproduce the real environment. Therefore, the difference be-
tween the simulation and real data significantly decreases the
SSL model’s performance that is trained during the simulation.

In this study, the DT model is applied to reduce distributional
discrepancies under semi-supervised conditions. DT models are
incorporated into the framework of the SSL inside the structure.
The DT model transfers real data into pseudo-simulation data
so that the SSL model constructed in the simulation domain can
handle real data. In machine learning, the simulation domain
corresponds to the source and the real domain corresponds to the
target [20]. Fig. 2 shows a schematic of data transfer and decision
boundary adaptation in a situation where the simulation and real
domain distributions and their respective decision boundaries
are different. In general DA techniques, the direction of the
transformation is from the source domain to the target domain.
However, our method predicts the position of the sound source
using the SSL model built into the simulation domain; therefore,
the direction of the transformation is the opposite. In other
words, the target data are transferred to the source data. This
reverse transformation strategy is being studied further in a field
called DA for semantic segmentation [21], which is a recent
development.

The contribution of this study is to show a domain transfor-
mation method to adapt the SSL model built on simulation to the
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real environment for the SSL inside structures, which has rarely
been studied. Typical “source to target” domain transformation
methods have been applied to photographic images and text data
that are data-rich in both the source and target domains and have
notbeen applied to SSLs inside structures. Our study requires the
SSL in the target domain under the condition that a large amount
of simulation data is available but real data is limited. Therefore,
it is essentially impossible in this research to use “source to
target.” Because of this limitation, we use a “target to source”
transformation direction. Furthermore, although our previous
work [5] could not directly build SSL models with small amounts
of real data, this inverse transformation contributes to the lever-
aging of SSL models trained on large amounts of simulated
data.

Our method has the potential to use the numerous discrimina-
tive, regressive, and generative models that have been proposed.
A flowchart of our method is shown in Fig. 3. The blue box rep-
resents the training and transfer phases of the DT model and the
green box represent the training and prediction phases of the SSL
model. The subscripts S and R denote the simulation and real do-
mains, respectively, and X g and X p denote the input data. In ad-
dition, the paired sound source position labels are denoted by T'g
and T g. The goal is to estimate T i from X i by using the SSL
model built in the simulation domain. In most cases, X g does
not equal X; and so the SSLs fsg and frr for each domain
are different; fgg and frg are the models built in the simulation
and real domains, respectively. Consequently, the SSL in the real
domain using the SSL model trained in the simulation domain
failed.

Therefore, the DT model h g is adapted to reduce the distri-
butional discrepancies between the simulation and real domains.
The model uses Ng(r) pairs of simulation data Xg(7) and
real data X p(r) as the training data (Fig. 3(a)). The subscripts
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Fig.4. Simulation and real domain setup. (a) Simulation. (b) Real. (c) Sensor
placement positions.

S(T') and R(T') represent the simulation and real training data,
respectively. The DT model transforms the test data X (y-y from
the real data into pseudo-simulation data X rg(yy (Fig. 3(b)).
The subscripts R(V') and RS(V) denote the real and pseudo-
simulated test data, respectively. The SSL model fgg is built
using the training dataset (Xg(r), Tg(r)) with Ng( datasets
(Fig. 3(c)). By providing pseudo-simulation test data X rg(v) as
input data to the trained-SSL model, the sound source positions
in the real data are predicted (Fig. 3(d)). The training and test
data meet the following criteria.

Ng(ry + Nr(v) = Ng, “4)

where N is the total number of real data and Ny is the real
test data.

Ng(ry = Ns + Nrs(1), Nrs(r) = NRr(1)s )

where Ng is the total number of simulation data and Ngg(r)
are the pseudo-simulation training data. Pseudo-simulation data
are not guaranteed to be transformed according to the decision
boundaries of the SSL model. Therefore, the SSL model is
trained on both the simulation and pseudo-simulation data to
adapt to discriminative boundaries.

IV. DATASETS OF SIMULATION AND ACTUAL EXPERIMENTAL
DATA

A situation is assumed in which the acoustic excitation from “a
single sound source” within the structure is measured using three
accelerometers mounted on the outer surface of the structure.
The frequency spectra of the accelerometer (FSA) are used as
the observation data. The subject is an acrylic box as shown in
Fig. 4. Fig. 4(a) shows the simulation and Fig. 4(b) shows a real
domain. The datasets are FSAs observed by three accelerometers
on the outer surface of the structure paired with the sound source
position labels. These datasets are collected from both domains
at the same sensor positions (Fig. 4(c)). The acoustic volume is
400 x 400 x 400 mm? and the thickness of the acrylic box is
3 mm.

The simulation conditions are listed in Table I. The simulation
data are generated from a coupled acoustic structure analysis
using FEM. The FEM solver is a full-harmonic analysis in
ANSYS Mechanical [22]. (1) is solved using the FEM solver.
The conditions for the position of the sound source are intervals
of 50 mm for the simulation and 512 sound source points. The
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TABLE I
CONDITIONS OF ANALYSIS

Acrylic young’s modulus 27 MPa
Acrylic density 1180 kg/m?
Acrylic damping ratio 0.8
Interval of sound source 50 mm
Number of sound source location 512
Observation Sen.1 - Sen.3
Frequency range 0.01-1.5 kHz

Sound Card
(Fireface UCX)

ILoud speaker Amp.
(LP-2024A+)

NP-3211

“Antivibration rubber (Visaton FRS 7)

Fig. 5.

Actual experimental setup.

TABLE II
CONDITIONS OF MEASUREMENT

Interval of sound source 100 mm
Number of sound source location 64
Observation Sen.1 - Sen.3
Input signal Swept sinusoidal
Frequency range 0.01-1.5 kHz
Sampling rate 4.8 kHz
Sound pressure 90 dB at 1 m
Sub band width 10 Hz

frequency range is 0.01-1.5 kHz, and the increment range of the
data is 10 Hz.

The experimental conditions are shown in Fig. 5. In the actual
experiment, one loudspeaker (Visation FRS 7) is placed inside
the acrylic box as the sound source. The acoustic excitation of
the structure is measured using three acceleration sensors (Ono
Sokki Co. Ltd. NP-3211) installed on the outer surface of the
structure. The sound waves of the sweep signal are generated by a
loudspeaker via a sound card (Fireface UCX) and a loudspeaker
amplifier (LP-2024-A +). The bottom of the structure and the
loudspeaker are covered with anti-vibration sheets to reduce
structure-borne sound. The experimental conditions are listed
in Table II. The conditions for the position of the sound source
are an interval of 100 mm between the actual experiment and
64 sound source points. The frequency range is 0.01-1.5 kHz,
the same as the simulation domain. The time-series vibration
data are measured at a sampling frequency of 4.8 kHz. The
time-series acceleration data measured by the three sensors are
transformed into FSA by applying a fast Fourier transform. The
FSAs are sub banded into 150 bins by calculating the average of
each band, which is used as the representative value. Therefore,
the dimensions of the FSA per sensor in both the simulation and
target domains are 150.

1401

TABLE III
CONDITIONS OF THE SSL MODEL

DNN : F400, F350, F300, F200, F100, F50

Hidden layer CNN : C256, C128, C64, C32, C16,

F200, F150, F100, F50, F25, F20,

L Hidden layer : ReLU
Activation

Output . Linear (Reg.), Softmax (Class)

Loss function ~ Mean squared error (Reg.), Cross entropy error (Class)

Initialization He normal
Batch size 50
Epochs 1000

The FSAs generated in both domains are defined as the data
formats corresponding to the model as follows:

a) Vector data: The FSAs measured at the three positions are
concatenated as a horizontal vector from Sens 1 to 3 in
sequence when treated as vector data. Hence, the size of
the observation data for one sound source pointis 1 x 450.

b) Image data: The FSAs measured at three positions are
transposed and concatenated horizontally. The size of the
observation data for each sound source point is 150 x 3.
Defining an array of data in this manner results in two-
dimensional (2-D) data.

The input and label data for the DT model are FSAs. The input
data for the SSL model are the FSA, and the label data changes
depending on the problem [5]. In other words, in the case of the
classification problem, the problem is to estimate which of the
eight regions of the acoustic space where the sound source is
located. In the case of a regression problem, the problem is to
predict the X, Y, and Z coordinates.

V. EXPERIMENTAL SETUP USING SSL MODELS

SSL performance is tested by feeding pseudo-transformation
data into the SSL. model. The SSL model conditions are listed in
Table ITI. A DNN is used when the input data are vectors, and a
CNN is used when the input data are images. The optimization,
preprocessing, and metrics are the same as those of the DT
model. In the case of the classification problem, the total acoustic
space is divided into eight acoustic sub volumes, and each
acoustic space is labeled according to one of the K coding
schemes. In the case of the regression problem, the X-, Y-, and
Z-coordinates are directly defined as label data.

Accuracy (Acc.) shown in (6) is used to evaluate the accuracy
of the classification problem, and the RMSE shown in (7) is used
to solve the regression problem.

The number of correct answers

Acc. = , (6)
Nrsv)
RMSE
_ | (Trse) = fssXrsw)) (Trsv)—fs5s(Xrs(v)))
Ngsvy ’
@)

where Npg(1) denotes the number of transformed test data
points. The label data consider the X-, Y-, and Z-coordinates;
hence, the RMSE is expressed by (7). The percentage of the
actual experimental data used as the training data for the DT
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Fig. 7. DT model using DCAE. DCAE uses image data as input and output data. Input is the real data and the output is pseudo-simulation data.

model varies from 20 to 80% of the conditions, and the SSL
performance is measured in each case. The SSL performance
for real data is tested by predicting the SSL. model on pseudo-
simulated data, where the DT model transformed the real data
into simulated data.

VI. EXPERIMENTAL SETUP USING DT MODELS

The effectiveness of the proposed method is tested by evalu-
ating the transformation performance of the DT model. In this
study, the DT model is selected using two learning approaches:
an encoder-decoder model and a generative model. The encoder-
decoder model is built as an autoencoder (AE) [23] or a deep
convolutional autoencoder (DCAE) [24]. The generative model
is built using pix2pix [25] based on conditional generative adver-
sarial nets (cGAN) [26]. cGAN is a model that allows generative
adversarial nets (GAN) [27] to use conditional probabilities.
The transfer performance of these models is evaluated using
root mean square error (RMSE) and t-distributed Stochastic
Neighbor Embedding (t-SNE) [28] distributions.

A. Encoder-Decoder Models

The input and output data for AE and DCAE are the vector
and image data, respectively, and both DT models convert real
datainto pseudo-simulation data. Figs. 6 and 7 show an overview
of the AE and DCAE. Both models are given FSAs of the real
domain as the input and the simulation domain as the label. The
difference between these models is whether a fully connected
layer or a convolutional layer is used. The fully connected layer
executed its task based on the extraction of features by linear
summation over the input data and mapping by nonlinear acti-
vation functions. Therefore, it is not guaranteed to be equivariant
or invariant [29], and it is not robust to either frequency peaks

TABLE IV
CONDITIONS OF AE AND DCAE

AE : F400, F350, F300, F250, F200, F100,
F100, F200, F250, F300, F350, F400
DCAE : C400, C200, C100, CT100, CT200, CT400
Hidden layer : ReLU
Output : AE (Linear), DCAE (Sigmoid)
Adam : Learning rate = 0.001
(B1 =09, B2 =0.999)
Mean squared error

Hidden layer

Activation

Optimization

Loss function

Initialization He normal
Batch size 5
Epochs 1000
Preprocessing Min-max normalization
Metrics Hold-out validation

or notch deviations. By contrast, the convolutional layer can
extract local features through filtering [30]. In addition, sub-
sampling makes the convolutional layer robust against feature
misalignments in an image.

The conditions for the AE and DCAE are listed in
Table IV. “F” represents fully connected layers, “C” repre-
sents convolutional layers, and “CT” represents convolutional
transpose layers. When both the input and label data are vector
data, the AE is adopted as the DT model. When both the input
and label data are image data, the DCAE is adopted. Batch
normalization [31] is applied between the layers of each model.
In the DCAE encoder, the 2-D convolution layers are set as
(2, 3) kernel size, (1, 1) stride, and had the same padding. The
hyperparameters of the convolutional layers transformed data of
size (150, 3, 1) into (150, 3, 400) in the first layer. In the DCAE
encoder, the 2-D convolution transpose layers are set to (2, 3)
kernelsize, (2, 1) stride, and the same padding. In the last decoder
layer, cropping 2D is applied because the reconstruction size
differs from the desired size owing to the effect of the input data
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size. In [32], [33], the frequency-response data are normalized
from zero to 2'¢ — 1 after a hyperbolic tangent transformation.
In this study, because the measured data are between 0 and 1,
the only preprocessing step performed is min-max normalization
for each dataset. Masking data augmentation is applied to build
each model [34], [35].

B. Generative Models

An overview of pix2pix is presented in Fig. 8. Pix2pix is
included in ¢cGAN, which is the conditional model of GAN.
Its structure comprises a generator composed of U-NET [36]
and a discriminator composed of patchGAN. Both the generator
and discriminator are convolution-BatchNorm-ReLu methods.
The goal of this model, similar to the encoder-decoder model,
is to generate pseudo-simulation data that are similar to the
simulated data. In pix2pix, two images are paired and trained
using adversarial training. Through adversarial learning, a gen-
erator can generate fake images that appear as true images. Le.,
the generator is responsible for transforming the real data into
more realistic simulated fake data. In contrast, the discrimi-
nator receives concatenated simulation-true and real-true data
or concatenated simulation fake and real data generated by the
generator.

The pix2pix generator generates an image G/(x, z) from image
2 and noise z such that the discriminator cannot distinguish
between true and fake images. The pix2pix’s discriminator takes
a pair of images x and conditional y (or G(z, z)) as input and
determines whether the image is fake or authentic. The loss of
binary classification is given by

£CGAN(G7 D) = ]ELy UOg D(‘Tv y)}
+E, .[log(l1 — D(z,G(z, 2)))], (&)

where “G” represents the generator and “D” represents the
discriminator. “G” attempts to maximize this loss while “D”
minimizes it in the adversarial training manner. The L1 distance
s adopted for the generator loss.

Lr1(G) = Eqy2[lly — Gz, 2)|h] - ©)
Consequently, the final loss function is.
G* = argménmgxﬁcGAN(G, D)+ AL (G) . (10)

Note that the loss function of the discriminator uses the binary
classification loss. In other words, the loss function is adapted to

-True D_G_loss
(Bin.)
Discreminator
(PatchGAN) {h
G_loss (L1)
I

DT model using pix2pix. Pix2pix consists of U-net and patchGAN frameworks.

TABLE V
CONDITIONS OF PIX2PIX

Discriminator C256, C128, C64, C32, Cl6, C1
En.:C64, C128, C256, C512,
C512, C512, C512, C512
De.:CT512, CT512 ,CT512, CTS12,
CT256, CT128, CT64
Hidden layer : LeakyReLU
Output : sigmoid
Hidden layer : LeakyReLU (En.),
ReLU (De.)
Output . tanh
Adam : Learning rate = 0.0002
(B1 =05, B2 =0999)
A =100

binary crossentropy+L1

Random Normal

Generator

Activation(Discriminator)

Activation(Generator)

Optimization

Loss function
Initialization

Batch size Instance normalization: 1
Epochs 1000
Preprocessing [-1 1] normalization
Metrics Hold-out validation

determine only whether the image generated by the generator is
fake or authentic, and not a human-designed loss function such
as AE or DCAE. Generally, it is difficult to design a loss function
that best represents a dataset. For example, MSE cannot be used
to evaluate the resonant frequency deviations, as is clear from
its definition.

The conditions for pix2pix are listed in Table V. The pix2pix’s
discriminator takes the form of a patchGAN. The receptive
field of the input data for one pixel of the output is a 6x3
patch. The pix2pix generator is in the form of a U-NET, and its
structure is the same as [25]. As with AE and DCAE, min-max
normalization is applied for preprocessing, followed by pix2pix
specific [-1 1] normalization. This process is based on the tanh
activation function of the generator. In the discriminator and
generator, the 2-D convolution layers are set to (2, 3) kernel
size, (1, 1) stride, and the same padding. Furthermore, the noise
z consist of dropouts. The AE, DCAE, and pix2pix transfer
performances are not only evaluated by the RMSE but also
visualized by t-SNE.

Note that the paired data is determined based on the X-, Y-,
and Z-coordinates. As shown in Tables I and II, the number of
sound source positions is 512 in the simulation and 64 in the real
environment. The pair data are determined by selecting X-, Y-,
and Z-coordinates that are the same as or close to each other.
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VII. RESULTS AND DISCUSSION

First, the transformation performance of the DT model
is described. AE, DCAE, and pix2pix are selected as DT
models, and their transformative performance is visualized in
two dimensions with t-SNE and quantified using the RMSE.
Then, we describe the SSL performance. Here, we show the
relationship between the amount of semi-supervised data and the
SSL performance for each of the classification and regression
problems. Finally, a comparison of the SSL performance of the
proposed method to that of the conventional method and the
non-adaptative case (from our previous work) is made.

A. Data Transformation Performance With DT Model

Fig. 9 shows an example of data transformation by AE.
The red, blue, and green solid lines represent real, simulated,
and transformed data, respectively. Fig. 9(a) and (b) show the
training and testing data, respectively. This figure shows that
the transformed data are shifted in the resonance frequency
and transformed closer to the simulation data. To evaluate
the transformation performance of each model quantitatively,
the RMSEs values are shown in Fig. 10. Each solid line in the
figure represents the RMSE for AE, DCAE, and pix2pix for
each of the training and test datasets. This result indicates the
conclusion that pix2pix’s transformation performance is worse
than DCAE’s for the training data. Furthermore, the RMSE of
the test data is the largest for pix2pix, and the RMSE did not seem
to decrease as the number of semi-supervised datasets increased.
Howeyver, the visualization of t-SNE leads to different con-
clusions regarding the transformation performance. Fig. 11(a)
shows the visualization of t-SNE for the transformation per-
formance of the AE. The red, blue, and green plots represent
real, simulated, and transformed data, respectively. The numbers
in the plots represent the classes in the classification problem.
The number of classes in the classification problem is eight,
implying that numbers 0 — 7 are given. The subscripts “T”
and “V” represent training and test data, respectively. Clearly,
visualization by t-SNE shows that domain matching by AE is not
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Fig. 10. RMSE of semi-supervised conditions.

possible. This can be understood from the fact that AE cannot
learn the local features of the data, and the transformed data
have negative values. Fig. 11(b) shows the t-SNE visualization of
the data transformed using DCAE. This distribution shows that
the transformation by DCAE enables domain matching in most
of the data (most of the plots overlap in the well-matched, and
thus, a zoomed-in view is shown in the figure). Furthermore, the
transformation by pix2pix appears to match better (Fig. 11(c)).
Although evaluation using the RMSE is useful because of its
quantitative aspect, the RMSE is not necessarily correct for
transformational performance. As the RMSE cannot evaluate
the amount of frequency misalignment, it is inappropriate as an
indicator for evaluating the characteristics of the FSA. Similarly,
the MSE set as the loss function for DCAE is also considered
inappropriate. The measurement of the similarity between the
two resonance frequencies is summarized in [37]. A method that
uses these metrics as loss functions should also be considered.



KITA AND KAJIKAWA: SOUND SOURCE LOCALIZATION INSIDE A STRUCTURE UNDER SEMI-SUPERVISED CONDITIONS

1405

*  Real W * Real i 8 \ Ry « Real
200« Sim 60 ud - Sim. 0 \ « sim.
- ¥ |Zoomed-in view |\+ Transfer- oT Y ﬁgfﬂ/ + Transfer
e Transfer \ N
. 10 40 5’%’ wmw Z#T \\‘ 3T N #%1"_
= = \ . 20{ |Zoomed-in view ‘1; ar
(o] It -~
iy T a \ N S 5T
E 0 £ 20 \ T | OT:;%"
g 8 £ \ £ W oT3Tyr 487
=" [} 1) ol Y £ Sy T
LRUE % o s — f L o or M
—20 _ # .| g F o 4
20 'ﬁr 3707 vm i/ 1B [ 48
¥ W gy T b2
-30 S5 w0 2107 8F pr A
—40 -20 0 20 40 60 20 10 0 10 20 30 B =T 20 E0
Component 1 (-) Component 1 (-) Component 1 (-)
(a) (b) (c)
Fig. 11.  Visualization of t-SNE. The subscripts “T” and “V” are the training data and test data, respectively. Visualization of transformed data with (a) AE,

(b) DCAE, and (c) pix2pix. The numbers in the plots represent the classes in the classification problem, with eight classes of values from 0 to 7.

150

901

801

70

(=

60

505

RMSE (mm)

401

Accuracy (%)

Spatial sampling of real domain ‘

‘ Spatial sampling of Sim. domain ‘

—DNN-AE (Training)
—+DNN-AE (validation)
< DNN-AE (Test)

= CNN-DCAE (Training)

wn
(=}

301

20F

Baseline

T o~ —

10

<-CNN-DCAE (Validation)

CNN-DCAE (Test)
#CNN-Pix2pix (Training)
+CNN-Pix2pix (Validation)
© CNN-Pix2pix (Test)

40 50 60 70
Semi-supervised (%)

(@)

30

20 80 20

Fig. 12.

TABLE VI
PROPOSED METHOD VS. CONVENTIONAL METHOD (CROSS-CORRELATION)
AND NON-ADAPTATION

Prob. (Criteria) | Model or method | Training performance | Test performance

CC - -

Non-adaptation 99.75% 15.38%

Class. (Acc.) DNN-AE 99.82% 23.07%

CNN-DCAE 99.82% 61.54%

CNN-Pix2pix 99.82% 69.23%

CC - 235.07

Non-adaptation 128.18 141.94

Reg.(RMSE) DNN-AE 6.12 149.67

CNN-DCAE 30.72 103.17

CNN-Pix2pix 42.98 105.13

The learning curves for the stability of each model are shown
in the Appendix.

B. SSL Performance With SSL Model

The performance of the SSL model in terms of classification
and regression is shown in Fig. 12. The training data given

30 40 50 60 70

80
Semi-supervised (%)
(b)

Results of classification and regression problems. (a) Classification. (b) Regression. Legend follows SSL model - DT model.

to the model are all simulation data, and the real data are semi-
supervised; the validation data are semi-supervised real data, and
the test data are the real data for testing. Although the validation
data should be unknown, in this case, we use real training data
to focus on learning domain-specific data in more detail. We use
validation data to check for model overfitting on the simulation
data because the simulation data are always larger than the real
data. For the classification problem (Fig. 12(a)), all models
are nearly 100% accurate for the training data but differed in
accuracy for the validation and test data. The accuracies of
CNN-DCAE and CNN-pix2pix for the validation data are 100%
consistent. However, the accuracy of DNN-AE concerning the
validation data is unstable. The SSL performance for the test
data is similar for the CNN-pix2pix and CNN-DCAE. In this
dataset, CNN-pix2pix is the highest and DNN-AE is the poorest
and below the baseline. The baseline is the probability that a
subvolume is selected for a random selection of eight classes.
In this case, it is 20%. In the CNN-pix2pix and CNN-DCAE
cases, the accuracy improves as the amount of semi-supervised
data increases and exceeds the baseline in all conditions. In
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particular, the performance of pix2pix shows an accuracy of
approximately 70% for a semi-supervised data rate of 80%.
The accuracy without the DT model is 12% [5]; therefore, the
improvement in the accuracy of the DT model is approximately
58%.

In the regression problem (Fig. 12(b)), the RMSE of DNN-AE
for the training data is less than that of the spatial sampling of the
sound sources in the simulation domain with high performance,
but poor for the validation and test data. This result is similar
to that obtained for the classification problem. The RMSEs of
CNN-DCAE and CNN-pix2pix for the training and validation
data are approximately equal to the spatial sampling of the sound
source in the simulation domain. The RMSE:s for the test data are
almost identical for the CNN-DCAE and CNN-pix2pix. In this
dataset, CNN-pix2pix has the lowest value. In addition, these
values are close to the spatial sampling of the real domain. The
RMSE without the DT model is 142 mm [5], whereas the per-
formance improves to 100 mm when pix2pix is applied. These
results indicate that the regression model is still underperforming
and could require tuning the structure and hyperparameters of
the CNN. However, tuning the model is inefficient, and it is
considered more important for the DT model to directly learn
the labels of the SSL. model.

Table VI shows the proposed method, conventional method,
and non-adaptation SSL performance. The CC in the table
represents the conventional method (cross-correlation method),
and nonadaptation is the result shown in our previous pa-
per. Our proposed method shows results for the case with
80% ratio of semi-supervised data. The adaptation models
are effective in both tasks: CNN-Pix2pix for the classifica-
tion problem and CNN-DCAE for the regression problem. In
our previous work, an SSL experiment using small amounts
of data without data augmentation in the real-world domain
failed to learn the SSL model, resulting in poor performance.
However, the use of the DT model improves the SSL perfor-
mance without applying data augmentation to real-environment
data.

VIII. CONCLUSION

The proposed method of transforming real data into pseudo-
simulation data using the DT model improves the performance
of the SSL inside the structure. The 2-D distribution of t-SNE
indicates that DCAE and pix2pix exhibit better transfer perfor-
mance than AE for the FSA of the exterior of the structure. Both
models incorporate a convolution-based layer, which is superior
to a fully connected layer because it enables the learning of
local features. This can be understood from the stability of the
learning curves for both models. The SSL classification problem
is less accurate when using the DT model with AE and more
accurate when using DCAE or pix2pix than the baseline. In
the test on the dataset used in this study, the overall accuracy
is higher when pix2pix is used than when the DCAE is used.
This seems to be because pix2pix utilizes binary cross-entropy
as the loss function, whereas DCAE sets it as MSE. MSE
cannot evaluate frequency response deviations, whereas binary
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cross-entropy is a simple metric that discriminates between
true and real values. In particular, the performance of pix2pix
shows an accuracy of approximately 70% for a semi-supervised
data rate of 80%. The accuracy without the DT model is
12%; therefore, the improvement in the accuracy with the DT
model is approximately 58%. Similarly, with the regression
problem, the RMSE is lower when DCAE or pix2pix is used
than when the AE is used. The RMSE without the DT model
is 142 mm, whereas the performance improves to 100 mm
when the DT model is applied. However, the RMSE of the
SSL model using both transformations for the training data is
approximately equal to the sound source spatial sampling of
the simulation domain and requires further improvement. This
indicates that the CNN structure and hyperparameters must be
tuned.

Going forward, we aim to build a model that combines SSL
and DT models. The proposed method separates the SSL model
from the DT model, and the DT model cannot directly learn
the discriminative bounds to solve the SSL problem. In other
words, the DT model does not directly learn the domain trans-
formations that are important for the SSL. Therefore, we aim to
construct an SSL method that utilizes the discriminator of the
GAN. Furthermore, we plan to develop a method for SSL under
unsupervised conditions.

APPENDIX
STABILITY OF LEARNING CURVE FOR EACH MODEL

Fig. 13 shows the learning curve of AE for each semi-
supervised system. Fig. 13(a) and (b) show the learning curves
up to 100 and 500 epochs, respectively. This figure shows that
the loss to the training data tends to converge faster as the
number of semi-supervisors increases. However, the loss of
test data oscillates significantly. After 500 epochs, there is no
convergence, and the amplitude of oscillations is larger. This
indicates that the transformation by AE fails to learn the features.
In contrast, the learning curve of DCAE is stable without loss
of oscillation, unlike AE (Fig. 14). Similar to the AE, the
number of epochs leading to convergence tends to decrease as
the number of training data increases. These results demonstrate
that DCAE using convolutional layers is effective for domain
transformations. Fig. 15 shows the respective loss progress in
adversarial training of the generator and discriminator. The
solid blue line is the loss to the generator, and “G” represents
the generator. The solid red line represents the loss associated
with the discriminator, and its value is expressed as an average
of the true and fake data. “D” represents the discriminator.
During training for up to 500 epochs, both losses oscillate and
converge. After 500 epochs, the losses of both models are close
to each other, indicating that these models are in equilibrium
(Fig. 15(a)). The loss of the test data is lower in the discriminator
than in the generator, and the convergence is approximately 600
epochs. No mode collapse is observed in the output image of the
generator.
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