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A Universal Filter Approximation of Edge
Diffraction for Geometrical Acoustics

Christoph Kirsch and Stephan D. Ewert

Abstract—Sound propagation in urban and indoor environments
often involves diffraction at corners, finite objects and openings, re-
sulting in perceptually relevant frequency-dependent attenuation.
Geometrical acoustics (GA) has become a de-facto standard for
the prediction and simulation of sound propagation and real-time
virtual acoustics, including effects of edge diffraction. However,
methods to account for edge diffraction often assume infinite edges,
such as the uniform theory of diffraction, or are computation-
ally involved, such as the Biot-Tolstoy-Medwin-Svensson (BTMS)
method. Particularly for interactive auralization, an efficient ap-
proximation of edge diffraction is desirable. Here, an extension
of GA to account for diffraction with simple-to-derive parameters
and a time-domain recursive filter implementation is suggested.
This universal diffraction filter approximation (UDFA) describes
diffraction from infinite and finite wedges using a combination of
first-order and (fractional) half-order low-pass filters to account
for the frequency-dependent attenuation of the diffracted inci-
dent and reflected sound field. The physically-based UDFA exactly
matches asymptotic solutions for infinite wedges and provides ap-
proximations for finite wedges. It is demonstrated that first-order
diffraction from flat finite objects like a plate or an aperture can
be described by combining the filters for each edge. To account
for effects of higher-order diffraction, an additional heuristic filter
extension is suggested.

Index Terms—Diffraction, room acoustics, virtual acoustics,
virtual reality, scattering.

I. INTRODUCTION

THE wave properties of sound cause diffraction at edges and
objects, with perceptually notable or specifically desired

frequency-dependent attenuation, e.g., for sound barriers [1].
When the direct sound path is occluded, typically a low-pass
characteristic is observed. Unlike in vision, where an occluded
light source abruptly becomes invisible when the receiver enters
the shadow zone, diffracted parts of the sound are still audible
and “bend” around the edge. Effects of diffraction are highly
relevant in the context of room acoustics simulation [2], [3], [4],
[5] and in (interactive) virtual acoustic environments (VAEs)
with dynamic sound sources and receivers. Besides applications
in architectural acoustics [6] and archaeoacoustics [7], such
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VAEs have recently gained interest for hearing research and
development of signal processing algorithms aiming at eco-
logical validity [8], [9], [10] or a high degree of perceptual
plausibility [11].

For acoustics simulation of in indoor and urban outdoor
environments, geometrical acoustics (GA), assuming ray-like
sound propagation, offers advantages with regard computational
complexity [12], [13], [14] and have become a de-facto standard.
Effects of diffraction can be included in GA by constructing
sound ray propagation paths involving “bending” at edges [15]
like building or room corners, or at the boundaries of smaller
objects, like boards or plates [16], [17], [18], [19].

Generally, descriptions of diffraction date back to Huygens
in the 17th century. In optics, a solution for diffraction at a
rigid or compliant half-plane has been developed by [20] and
a solution exists also for diffraction at a wedge with given
face impedances [21]. The concept of edge diffracted rays in
geometrical optics was described in the geometrical theory of
diffraction (GTD) [22], considering the incident and reflected
diffracted field at straight and curved edges. GTD offers only
limited validity in particular geometrical conditions [23], [24].
Incremental improvements were made to describe diffraction
based on rays with the uniform asymptotic theory of electromag-
netic diffraction [25]. The uniform theory of diffraction (UTD)
[26] has been established as an asymptotic high-frequency so-
lution for diffraction of electromagnetic waves. Similar asymp-
totic solutions [27], [28], [29] have been derived for acoustic
diffraction. Diffraction at a nearly rigid wedge was considered
in [30], and in [28] limiting cases with the sound source near
the diffracting edge were investigated. An independent approach
to an asymptotic solution was proposed in [31], [32]. Different
analytical solutions are reviewed in [24], and asymptotic ap-
proaches are compared in [33]. To overcome limitations of GTD
in terms of discontinuities and shape of the diffracting edge,
the incremental theory of diffraction [34] has been suggested,
calculating the diffracted field as a superposition of incremental
field contributions from points along the edge. The incremental
model has been further developed in [35] for applications in
ultrasonic nondestructive testing.

For simplification, infinite edges have often been considered
in acoustics, e.g., as an approximation of corners in rooms
terminated by reflecting, perpendicular boundaries or of suf-
ficiently wide (sound) barriers, however, also for finite edges
[5], [36]. The computational effort of the involved calculations
can be reduced by using approximations (e.g., [37] for the
Fresnel terms in UTD) or by evaluating a diffraction solution
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only at a low frequency resolution. A considerably simpler
empirical approximation for frequency-dependent attenuation of
wide sound barriers was suggested in [38]. For the directive line
source model [39], [40], empirical expressions have been derived
that are faster to calculate and can also represent absorbing
wedges [1].

Time-, and later frequency-domain solutions were presented
based on the concept of secondary sources located along the
edge [41], [42], reformulating and extending earlier (exact) time-
domain solutions [43], [44] to line integrals along the physical
edge. The line integral formulation, referred to as BTMS, also
makes finite edges and consequently objects composed thereof
easier treatable, including higher-order diffraction. An integral
formulation that enables higher-order diffraction modeling for
convex objects at reasonable computation times was introduced
in [45]. Also, efforts were made to minimize the computation
time when evaluating edge diffraction with BTMS [46], [47].

An important simplification for interactive VAEs is to con-
sider effects of diffraction only in the shadow zone, where the
direct sound GA component is obstructed, and perceptual effects
can be considered most prominent. In this case, it is desired
that the effect of diffraction disappears at the shadow boundary
and asymptotes against unity gain [16], [36]. A computation-
ally efficient, parametric infinite impulse response (IIR) filter
approximation of diffraction effects for the shadow zone based
on the infinite knife edge was proposed in [48]. In general, such
low-order IIR filters (also see, e.g., [2] for a warped IIR design)
offer high computational efficiency and the ability to conve-
niently interpolate filter coefficients in time-variant geometrical
conditions. Parametric IIR filters have also been optimized in
[49] by a machine learning approach to model diffraction of a
flat, finite object, without restrictions to the shadow zone.

Overall, several solutions for interactive diffraction simu-
lation exist, e.g., approximating the infinite edge frequency
response in the shadow region using bandpass bands [36], or
coarsely approximating the average filter characteristic for pro-
totypical object shapes [19]. However, no scalable filter solution
exists, suited to adjust the acoustic level of detail for simulating
diffraction. Such a solution is required to i) investigate the
perceptually required level of detail, as well as to ii) assess
the level of detail required for the function of (ear-level) signal
processing algorithms in ecologically valid communication and
conferencing scenarios.

Recently, [50] suggested a parametric filter representation of
diffraction at infinite and finite wedges based on the asymptotic
solutions [26], [27], [29], and including an approximation of
the exact BTMS solution. While this filter representation offers
a physically-based, fast and accurate theoretical description of
first-order diffraction at arbitrary wedges for any geometric
arrangement of source, receiver, and wedge, no applicable IIR
filters were derived. Furthermore, the suggested solution for
finite wedges, involving time-domain truncation or frequency
domain convolution with the according sinc function, is not well
suited for real-time applications. Finally, it remains unclear how
well diffraction at finite objects and apertures (e.g., doors) can be
accounted for by combining the filter representation for multiple
edges.

Here, a physically-based filter method is proposed to univer-
sally account for diffraction from infinite and finite wedges, as
well as from flat finite objects composed of edges. The suggested
universal diffraction filter approximation (UDFA) uses a combi-
nation of first-order and (fractional) half-order low-pass filters to
account for the diffracted sound field for an arbitrary geometrical
arrangement of source, receiver, and wedge. UDFA charac-
terizes the diffracted sound by filter parameters, derived from
simple expressions which are well suited for real-time applica-
tions, and is extendable using different underlying diffraction
solutions. In comparison to the (reference) BTMS solution and
acoustic measurements, it is demonstrated that UDFA accounts
well for first-order diffraction from infinite and finite edges, as
well as from finite flat rigid objects like a plates and apertures.
A parametric design for recursive (IIR) filters with scalable
precision is proposed, enabling straight forward interpolation
of the filter coefficients in time-variant geometrical conditions
in VAEs.

The remainder of this paper is structured as follows: Section II
outlines the underlying filter representation [50] for infinite
wedges and derives an exact solution for the heuristic filter ap-
proximation in [48]. Section III derives the filter approximation
for finite wedges. In Section IV, an IIR filter implementation of
the required half-order low-pass filters is proposed. Section V
provides an error and computation time evaluation. Section VI
applies UDFA to finite objects composed of multiple edges
and proposes a heuristic extension to approximate higher-order
diffraction effects. Finally, Section VII discusses the results, and
Section VIII concludes the paper.

II. APPROXIMATION OF INFINITE WEDGE DIFFRACTION

A rigid infinite wedge along the z-axis of a cylindrical coordi-
nate system is considered, comprised of two intersecting planes
as shown in Fig. 1. The source (blue cross) is arbitrarily assumed
to be closer to either wedge plane, Pe,s, than the receiver (red
circle), reflecting reciprocity of the problem. Pe,s serves as the
reference to all azimuth angles θ. The second wedge plane, Pe,r,
is located at the exterior wedge angle θw. Source and receiver
are located in the planes Ps and Pr with axial coordinates zs, zr,
radial distances rs, rr, and azimuth angles θs, θr, respectively. At
the apex point za, the incidence angleϕ between edge and vector
to the source in plane Ps is equal to the angle between edge and
vector to the receiver in plane Pr. The distances between source
and receiver and the apex point za are ds and dr, respectively.

Past the shadow boundary (SB) at θs + π, the source becomes
invisible to the receiver and only the diffracted field exists
(referred to as shadow zone, SZ). In addition to the incident GA
sound field existing in the “view” or “illuminated” zone (VZ),
a reflected GA sound field additionally exists in the reflection
zone (RZ), separated by the reflection boundary (RB) at π − θs
from the view zone. Depending on exterior wedge angle θw and
source plane angle θs, up to two reflection zones may exist (if
the SB is located inside wedge), i) at angles < π − θs, and ii) at
angles > 2θw − π − θs. Hereby, a RB represents the SB for an
image source in either wedge plane. A diffracted transmission
path with bending angle θb = θr − π − θs between the source
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Fig. 1. A wedge is located on the longitudinalz-axis of a cylindrical coordinate
system, spanning from z1 to z2, or ±∞ in case of an infinite wedge. The wedge
is formed by two intersecting planes, Pe,s and Pe,r facing source (blue cross)
and receiver (red circle), located in the planes Ps and Pr (grey) at an angle ϕ to
the edge at apex point za. The planes Ps and Pr are located at angles θs and θr,
with all azimuth angles referenced to Pe,s. The exterior wedge angle is referred
to as θw. SB and RB denote the shadow and reflection boundary, respectively.
The angle between the SB at θs + π and Pr is referred to as bending angle θb.

and receiver can be constructed using the apex point za on the
axial dimension along the edge, which serves as a center node
[42].

To describe edge diffraction, the exact BTMS [41] and the
asymptotic UTD [26] and Pierce [27], [29] solutions use up to
four diffraction terms. These terms exhibit discontinuities at the
(real and virtual) shadow and reflection boundaries, where the
GA component itself experiences a discontinuity [51]. The com-
bination of the incident, reflected, and diffracted components
results in a continuous sound field.

A. Filter Representation of Wedge Diffraction

In [50], a two-term filter representation (representing the
incident and reflected diffracted field), based on the asymptotic
solution in [27], [29] was derived, forming the basis of the here
suggested UDFA:

The asymptotic two-term solution for diffraction by an infinite
wedge in [27], [29] is given by

pD =
e−jkd

d

e−jπ/4

√
2

(Gν+AD (X+) +Gν−AD (X−)) , (1)

with the wave number k = 2πf/c, the distance between
source and receiver over the apex point d = ds + dr and
speed of sound c. The two diffraction functions AD(X±) =
sign(X±)[f(|X±|)− jg(|X±|)] are composed of auxiliary Fres-
nel functions. The subscripts± indicate that the respective func-
tions are evaluated for two angles,X+ = X (θ+) = X(θr + θs)
and X− = X (θ−) = X(θr − θs). The diffraction functions
AD(X±) can be represented by half-order low-pass filters H±

that asymptote against a 1/
√
f slope (−3 dB/octave) [50]:

pD= e−jkd

2d (Gν+sign (θ+ − π)H++Gν−sign (θ− − π)H−).
(2)

The gain Gν± (θ) = Gν (θ±) depends on the angular po-
sitions of source and receiver and the exterior wedge index
ν = π/θw:

Gν±(θ) =
sin (νπ)

(1− cos (νπ) cos (νθ))1/2
. (3)

For integer ν, the diffracted field disappears. For knife edges,
ν equals 1/2, resulting in Gν± (θ) = 1. The cutoff frequencies
fc± of the low-pass filters H± for the incident and reflection
component can be derived from (1) by assuming a fixed value
of X± =

√
2/π:

fc±(θ) =
2c

π2d∗ sin2(ϕ)
[Nν (θ)]

2. (4)

Here d∗ = 2dsdr/d is the characteristic distance and

Nν±(θ) =
ν
√
1− cos (νπ) cos (νθ)

cos (νπ)− cos (νθ)
, (5)

expresses the dependency of fc± on the source and receiver
angles and the exterior wedge index ν.

The low-pass characteristic of the diffraction function AD in
(1) can be approximated with a maximum magnitude error of
about ±0.1 dB and maximum phase error of about ±1° by a
modified fractional-order low-pass filter [50]:

H(f) =
(
(jf/fc)

2/b + (jf/Qfc)
1/br + 1

)−αb/2

, (6)

where α = 0.5 is the fractional filter order, and the parameters
b = 1.44,Q = 0.2, and r = 1.6provide a smooth roll-off around
the cutoff frequency.

B. Two- and Single-Term Approximation

Generally, the above described two-term solution [50] is used
“as is” in UDFA. The use of two terms results in a good approx-
imation of wedges with interior angles ≤ π/2 [37], [50], thus
covering the relevant cases of knife edges (approximating thin
screens and plates) and of typical square wedges in buildings and
man-made structures. Particularly for knife edges, the two-term
solution is sufficient, given that the four terms in BMTS and
UTD reduce to two filters in this case [50]. Otherwise, UDFA
may alternatively use the (four) filter representations [50] of
BTMS or UTD to extend the application range. Based on Fig.
4 in [37], we recommended UTD as basis for UDFA if interior
wedge angles > 2π/3 are in the focus.

As a simplification, diffraction might only be considered in
the shadow zone in UDFA. To ensure a smooth transition to the
GA direct sound component, unity gain at the shadow boundary
can be achieved by using a single filter (see, e.g., [48] for a
heuristically derived expression). The exact cutoff frequency for
a single low-pass filter with unity gain at DC and asymptotically
matching the two-term filter representation (2), (3), (4), can be
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Fig. 2. Reference BTMS wedge diffraction magnitude transfer functions
(solid) and UDFA using the two-term (dashed) and single-term approximation
(dotted, faint), normalized to path length ds + dr for different bending angles θb
over frequency (left column), and for different frequencies over bending angle
θb (right column). Bending angles are indicated in degrees for convenience.
The shadow, view, and reflection zone (SZ, VZ, RZ) are indicated by shaded
areas in the right column. Geometrical parameters: ds = dr = 2 m, ϕ = π/2.
Top row: θs = 0, θw = 2π; middle row: θs = π/4, θw = 2π; bottom row:
θs = π/4, θw = 3π/2.

derived as

fc,single =

(
Gν−

√
fc− +Gν+

√
fc+

2

)2

(7)

=
c(ν sin (νπ))2

2π2d∗ sin2(ϕ)

(∑
±

sign (θ± − π)

|cos (νπ)− cos (νθ±)|

)2

.

(8)

For a knife edge with the source or receiver located in one
of the wedge planes, the shadow- and reflection boundary are
coplanar, and this single-term approximation becomes identical
to the two-term solution, given that fc− = fc+ with θ− = θ+.
Here, the simplest expression [50] can be applied in UDFA
similar to [48], using the bending angle θb:

fc,single,k,0 =
c

π2d∗(1− cos(θb)) sin
2(ϕ)

. (9)

Fig. 3. Paths at finite wedges (2D projection of Ps and Pr, top row), and the
corresponding schematic impulse responses (bottom row). Source and receiver
are indicated by the cross and the circle. On the left-hand side, the apex point
is placed off-center within the wedge. On the right-hand side, the (virtual) apex
point is located outside the physical wedge. There are two different path lengths
across the edge corner points z1 and z2. Contributions to the finite-wedge
impulse response (thick, dark grey) by the two half wedges −−→z1za and −−→zaz2 are
shown as green solid and orange dotted traces. The thin solid trace represents
the diffraction impulse response of an infinite wedge and the thin dotted trace
represents that of an infinite half wedge extending to one side of za.

C. Comparison to the BTMS Solution

Fig. 2 shows the results of the two-term (2) and single-term
approximation (7) as bold dashed and faint dotted lines, respec-
tively, in comparison to the BTMS reference (thin, solid) for
a knife and square wedge as examples. The diffracted sound
pressure is normalized to the length of the diffraction path d
between source and receiver. The left panels show the magnitude
transfer functions for selected bending angles. The right panels
show the magnitude transfer functions at selected frequencies as
a function of bending angle. In the top row, the source is located
in one of the planes of a knife edge (θs = 0, θw = 2π). Here,
the single- and the two-term approximation are identical. Both
exactly represent the asymptotic diffraction solution in this case,
virtually matching the reference. All diffraction transfer func-
tions are low-pass shaped, with increasing cutoff frequencies for
decreasing bending angles.

In the middle row, the source is located outside the knife
edge (θs = π/4 , θw = 2π). Again, the two-term approximation
closely matches the reference. The single-term approximation
deviates from the reference at small bending angles (< 15◦)
inside the shadow and reflection zone. Large deviations also
occur at low frequencies in the view zone, where the reference
exhibits a band-pass behavior (purple and green traces in panel
c).

In the bottom row, results for a square wedge with the source
outside the wedge planes are shown (θs = π/4, θw = 3π/2).
The two-term approximation shows a good agreement with the
reference above 200 Hz, except in the view zone. Here, the
asymptotic behavior is reached only at increasing frequencies
as the angle is approached, at which the components H+ and
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H− cancel (in this example: at θb = −45◦) and the magnitude
of diffracted sound drastically decreases. For the single term
approximation, errors at low frequencies are superimposed with
errors near the zone boundaries and in the view zone, resulting
in a reasonable approximation only sufficiently far within the
shadow- and reflection zone. Panel (f) illustrates that, despite
the deviations observed in the view zone, the single-term ap-
proximation still asymptotes the reference otherwise.

In summary, the two-term approximation results in an ex-
cellent match for knife edges, reflecting the validity of the
underlying asymptotic solution for this case. For the square
wedge, a good approximation is achieved. Increasing deviations
to the reference are only observed at low frequencies in the view
zone, where the diffracted field is generally small. A quantita-
tive error analysis including other wedge angles is provided in
Section V. The single-term approximation delivers reasonable
results, when diffraction is considered only in the shadow or
reflection zone.

III. APPROXIMATION OF FINITE WEDGE DIFFRACTION

In the following, we consider a finite wedge of length L with
the end points z1 and z2, and define z1 = −L/2 and z2 = L/2.
Fig. 1 shows a specific case in which the apex point is in the
center of the finite wedge (za = 0). In general, the apex point
can be located anywhere within the physical edge or outside
(referred to as virtual apex point). We review properties of
finite wedge diffraction in the time domain and derive a filter
approximation. For (virtual) apex point locations far outside
the physical edge (|za| � L/2), a further simplification is
proposed and a combined approach for any apex point location
is suggested. As for the infinite edge, BTMS [41] serves as a
reference.

A. Finite Half Wedges

Infinite wedges can be conceptualized as consisting of two
infinite half wedges, extending to either side of the apex point,
with a diffraction impulse response (IR) equal to half of the total
infinite wedge IR. Accordingly, finite wedges can be assumed to
be composed of two finite half wedges, each spanning from the
apex point to one of the wedge corner points, if the apex point
is located within the physical edge (see geometrical depiction in
the top left of Fig. 3). The diffraction IR by a finite half wedge
is a truncated version of the infinite half wedge IR, using the
travel times tz1, tz2 from source to receiver via the respective
corner points z1, z2 (see also [44]). The depiction of the finite
wedge IR in Fig. 3(a) (see also [41], their Fig. 3) shows that the
initial part of the IR (dark grey; starting at tza, corresponding
to the path over the apex point) is identical to infinite wedge
(light grey). At tz1, corresponding to the edge corner point
closest to the apex point, a jump to 1/2 of the infinite IR can
be observed. After tz2, corresponding to the further corner point
from the apex point, the IR ends. If a (virtual) apex point za is
located outside the physical wedge (Fig. 3(b)), the contribution
of the shorter (virtual) half wedge to the closer corner point z1
(green) is subtracted from the contribution of the (partly virtual)
longer half wedge (to the farther corner point; orange dotted

Fig. 4. Edge diffraction phase (top row) and magnitude transfer function
(panels c–h) according to BTMS (solid) and UDFA (dashed) normalized to
path length ds + dr. Left column: Apex point at the center of the edge, za = 0.
Thick, faint traces show the corresponding infinite wedge transfer functions.
Right column: (Virtual) apex point outside physical the edge, za = L/2 + 2 m.
(a) And (b): Phase response of a 4-m wedged (same color coding as in c); the
dotted line additionally shows the response for the IIR filter approximation).
(c) And (d): Varied wedge length L. (e) And (f): Varied incidence angle
ϕ, (g) and (h): Varied bending angle θb. Default geometrical parameters:
L = 1.41 m, ds = dr = 4 m, ϕ = 90◦, θs = π/4, θb = π/3, θw = 2π.

line), resulting in a cancellation of the initial (virtual) parts of
the IR, such that the remaining IR starts at tz1 and ends at tz2
(dark grey trace in Fig. 3(b)).

The spectral properties of finite wedge diffraction are indi-
cated by the solid traces (BTMS) in Fig. 4. The phase response
for the example of a 4-m wedge is shown in the top row. The
remaining panels show magnitude transfer functions in different
configurations. The left column shows symmetric configurations
(za = 0) as an example for conditions with the apex point located
within the physical edge in comparison to the infinite wedge
(thick, faint traces). Infinite and finite wedges exhibit the same
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asymptotic high-frequency behavior of a half-order low-pass
(see solid, colored lines in e.g., Fig. 4(c)) for different wedge
lengths). For finite wedges, reduced low-frequency content and
spectral ripples occur, resulting from a convolution of the infinite
wedge IR with a sinc function, corresponding to the rectangular
time domain truncation window [50]. For wedge lengths that
are small compared to d∗, the low frequency gain scales linearly
with the wedge length (−6 dB per half length). The right column
of Fig. 4 shows cases in which the (virtual) apex point is
located outside the physical edge at a distance of 2 m from the
edge corner. In Fig. 4(d), a phenomenological similar behavior
compared to the symmetric case is observed (solid lines, BTMS),
with decreasing low-frequency content and an increasing cutoff
frequency for shorter wedge lengths L. Ignoring the ripples, the
asymptotic high-frequency behavior, however, resembles that of
a first-order low-pass with a −6 dB/oct slope in contrast to the
−3 dB/oct slope in the symmetric finite (and infinite) case. The
different slopes are related to the decay of the diffraction IRs
[44], [50]. For apex point locations outside of the wedge, the
remaining later part of the half wedge IR decays faster than the
initial 1/

√
t decay which causes the −3 dB/oct behavior.

B. Apex Point Inside the Physical Edge

Disregarding spectral ripples, UDFA describes the magnitude
response of diffraction from two finite half wedges starting at the
apex point by two half-order low-pass transfer functions with
a cutoff frequencies fc,fin,1,2 and a low-frequency (DC) gains
gfin,1,2.

The DC gain for each half wedge is obtained from evaluating
the integral of the infinite wedge IR h(t) provided in [50]
for each of the two diffraction (filter) terms (of the two-term
approximation) with the corresponding infinite wedge cutoff
frequency fc:

gfin,1 =

∫ t1

0

h (t) dt =

[
2

π
arctan(π

√
2fct)

]tz1
0

, (10)

Likewise, gfin,2 is obtained using tz2. Given that the impulse
response of a finite half wedge is a truncated version of a corre-
sponding infinite half wedge, its frequency response converges
towards that of the infinite half wedge at high frequencies. The
cutoff frequency of an according half-order low-pass filter with
fc,fin,1 can be derived from gfin,1 (for details, see Appendix A):

fc,fin,1 =
1

g2fin,1
fc. (11)

To improve the agreement with the BTMS reference near
the cutoff frequency, a heuristically derived adjustment of the
parameters b and Q in the transfer function (6) is proposed
(omitting the subscripts 1,2):

b′ = 1 + (b− 1) g2fin (12a)

Q′ = 0.5 + (Q− 0.5) g2fin, (12b)

which results in b′ = b for approaching the infinite edge (where
gfin = 1), and in b′ = 1 for small edge lengths. An according
behavior is obtained for Q.

Using the two-term approximation for each finite half wedge,
the transfer function for finite wedges Hfin(f) is combined as

Hfin(f) =
gfin,1±H(fc±,fin,1) + gfin,2±H(fc±,fin,2)

4
(13)

Results are shown in the left column of Fig. 4 for the apex
point located in the center of the edge. UDFA (dashed) matches
the low frequency gain plateau of the reference and asymptotes
the infinite wedge solution for varied edge length in panel
(c). The largest deviations between UDFA and the reference
appear around the cutoff frequency, where the ripples are not
represented. UDFA similarly matches the main characteristics
of the reference diffraction function for varied incidence angle
ϕ and varied bending angle θb as shown in panel (e) and (g)
as example configurations. Panel (a) shows that also the phase
response (solid) is matched disregarding ripples (dashed). As
expected for a half-order, minimum phase system, the phase is
0° in the pass band and converges towards an angle of −45° in
the stop band.

C. Apex Point Outside the Physical Edge

For cases in which the (virtual) apex point is located clearly
outside the wedge (see solid lines in the right column in Fig. 4
for za = L/2+ 2 m as an example case), the magnitude transfer
function can be efficiently approximated by a single first-order
low-pass filter, instead of subtracting transfer functions for both
underlying half wedges. The (DC) gain of the low-pass filter
results from the truncated segment of the infinite wedge IR
determined by paths across both corner points of the wedge,
assuming tz2 > tz1 :

gfin, off =

∫ tz2

tz1

h (t) dt (14)

As above, this gain is calculated for the two underlying filter
terms. When the distance between the apex point and the closer
wedge corner point is sufficiently large in relation to the wedge
length, the cutoff frequency of the filter function characterizing
an infinite half wedge starting at the closer wedge corner point
is small compared to the frequency response of the (rectangular)
truncation window. Assuming that the truncation has a dominant
influence on the frequency response, the duration tz2 − tz1 of
the window determines the cutoff frequency of an according
first-order low-pass filter (see Appendix B for details):

fc,fin,off =
1

π (tz2 − tz1)
. (15)

With this filter, UDFA (dashed lines, right column of Fig. 4)
outlines the top of the spectral ripples present in the (solid)
reference transfer functions. As for the apex point in the center
of the edge, the dependence of the diffraction function on wedge
length L, incidence angle ϕ, and bending angle θb is well
covered in panels (d), (f), and (h), respectively. The limitations
of determining the cutoff frequency solely from the truncation
window duration are apparent in the green and blue traces in
panel (d) and (f). Here, a decreasing ripple depth and an under-
estimation of the cutoff frequency indicate that the truncation
is not dominantly determining the transfer functions, violating
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Fig. 5. (a) Transition of za from center of the wedge to outside the wedge.
BTMS (solid), UDFA (dashed) and subtracted half wedges (dotted), in (b):
Components of UDFA (dash-dotted). The black bar at the top left of (a) represents
the edge, and the colored vertical bars indicate the location of the apex point.
Panel (b) shows UDFA components of example apex point on (brown) and
off (blue) the wedge (replotted from (a)). The darkest dash-dotted traces in b)
are the H(fc−) component, whereas the brighter components are H(fc+). The
off-edge componentH1st(fc,fin,off) can be identified as the one with the steepest
slope. Geometrical parameters:L = 1.41 m, ds = dr = 2 m, ϕ = π/2, θs =
π/4, θb = π/3, θw = 2π.

the assumption in (15). At low frequencies, deviations of the
underlying asymptotic filter approximation for infinite wedges
from the BTMS solution result in an overestimation of the filter
gain gfin,off when late parts of the integral (14) are evaluated.

In terms of phase behavior, shown in Fig. 4(b), UDFA
(dashed) follows the transition from 0° at low frequencies to-
wards −90° (disregarding the ripples) with deviations above
100 Hz for this example of a 4 m wedge. At higher frequencies,
the blended finite half wedge (see Section III-D.) causes a phase
angle transition towards −45°.

D. Arbitrary Apex Point Location

To account for arbitrary apex point locations, a transition
between the above two cases is required for |za| > L/2 in the
vicinity of the edge. When the apex point is located at one of
the wedge corner points, |za| = L/2, one of the two half wedges
disappears and the respective gain gfin of the corresponding filter
becomes 0. Moving the apex point further outside the wedge
results in cutting the initial part of the remaining half wedge
diffraction IR (see Fig. 3(b)). Given that this underlying mecha-
nism is not straightforwardly and efficiently implemented with
filters, we propose a strongly simplified approach by blending
between the remaining approximated half wedge and the above
first-order filter (valid for apex points far outside the wedge). The
blending function considers the initial decay of the diffraction
IR, gfin,tz1 , determined by the integral (10) up to the travelling
time tz1 to the closer wedge corner (see right hand-side of
Fig. 3), in relation to the according integral gfin,tz2 up to tz2.
In both cases, the higher cut-off frequency fc,max of the two
underlying terms with fc±,fin is used in (10), which dominates the
initial (high frequency) decay. The diffraction IR of remaining
half wedge is faded with the heuristically determined factor
for which the exponent was manually adjusted to match the
respective conditions in Fig. 4 (right column) and Fig. 5, as well

as considering the results of the error evaluation:

p =

(
1− gfin,tz1

gfin,tz2

)4

, (16)

resulting in a combined blended transfer function

Hblend = p gfin± H(fc±,fin) + (1− p) gfin,off± H1st (fc,fin,off).
(17)

Fig. 5(a) shows the effect of apex point location in relation
to the wedge (indicated by the black horizontal line and the
vertical, colored bars). The apex point at the center of the
wedge is indicated in red, at the corner of the edge in green,
and outside of the edge in blue. Intermediate locations are
indicated by intermediate colors. Apex point locations inside
the physical wedge (upper four traces) are described by UDFA
in a physically-founded way using two half wedges according
to (13) (dashed). For apex points located outside the wedge, the
overall slope of the target functions (solid) transitions towards
−6 dB/oct with increasing distance to the corner point of the
wedge, approximated with the blending according to (16) (see
lower three traces). The switch to the blending approach appears
visually smooth, however, might not provide a continuous first
derivative across the wedge corner point. At very high frequen-
cies, the blended transfer function converges to a −3 dB/oct
slope, deviating from the reference.

Using the (physically founded) subtraction of two half wedges
each approximated by half-order low-pass filters (dotted traces)
leads to considerably larger deviations than observed for the
suggested blending approach. This is caused by the infinite IRs
of the filter representation deviating from the underlying finite
(truncated) IRs.

Fig. 5(b) illustrates the contribution of individual components
(dash-dotted) to the UDFA transfer functions (dashed) for one
example apex point location within the physical edge (brown)
and one outside (blue), replotted from panel a). For the apex point
within the edge, there are two half-order filters (dashed-dotted,
red) for each of the two finite half wedges. The shorter half wedge
is characterized by less gain and higher cutoff frequencies. For
the apex point outside the physical edge, there are two half-order
filters for the remaining half wedge (blue) and a single first-order
filter for apex points far outside the edge.

IV. IIR FILTER IMPLEMENTATION

For a computationally efficient time-domain implementation
of UDFA, a recursive low-order filter design is suggested. The
required first-order filters can be straightforwardly implemented
as a bilinear transform design with two denominator and numera-
tor coefficients. Modifications can be incorporated, allowing for
a smooth transition to infinite cutoff frequencies and a prescribed
gain at Nyquist frequency.

For the approximation of the fractional half-order filter (6)
with parameters b = 1, Q = 0.5, as required for short (half)
wedges, IIR design approaches exist in literature with a focus on
audio applications and real-time parameter changes: A parallel
low-pass filter structure was presented in [52] and an analytical
design was proposed in [53]. While the latter design is optimally
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suited to approximate a regular half-order low-pass filter, it can-
not account for the here-required modified filter with a smoother
slope transition around the cutoff frequency (b > 1, Q < 0.5)
without numerical optimization of the filter coefficients. Since
such optimization would not be feasible at run-time, a table
lookup and interpolation of numerically optimized coefficients
can be a solution.

Alternatively, we propose a more generally applicable, step-
wise approximation of the desired modified fractional-order
filters with arbitrary parameters, using a serial arrangement of
first-order shelving filters and an additional overall gain factor
gfin for finite wedges. The knee frequencies and gains of the
shelving filters are derived from the target transfer function, eval-
uated at equal intervals on a perceptually motivated logarithmic
frequency scale. A series of two or four shelving filters, resulting
in one and two second-order section (SOS) filters, respectively,
was used to cover the audio frequency band up to 20 kHz, using
a sampling rate fs of 44.1 kHz. For a number of N shelving
filters, the design range between fmin and fmax is determined by

fmax =
fs N

4
, (18)

where fmax is limited to fs in case ofN > 4, and fmin was chosen
to be 20 Hz for N < 3 and 10 Hz otherwise. A number of N − 1
additional frequencies are determined between fmin and fmax

using a logarithmic spacing, resulting inN + 1 frequencies ft,n,
at which the target function is evaluated resulting in target gains
gt,n. In the following, the subscript n is omitted for improved
readability. The top row of Fig. 6 illustrates these sampling
points (black diamonds) of the underlying UDFA target function
(dashed trace) for an infinite wedge example case. Additionally,
the BTMS reference (faint, thick traces in the background), and
the IIR implementations are shown, with two shelving filters (N
= 2, single SOS, left) and four shelving filters (N = 4, two SOS,
right). First-order shelving filters of the form

Hsh(s) =
1 +

√
gsh s

1 + s/
√
gsh

, (19)

with s = jf/fsh were designed using gains gsh (high frequency
attenuation), representing the difference of two adjacent target
gains gt. Based on (19), the knee frequencies fsh were chosen
to match the target gains gi (triangles in the top row of Fig. 6)
at the geometrical center frequencies fi between two adjacent
frequencies ft:

fsh = fi

√
g2d − g2sh

gsh (1− g2d)

(
1 +

g2sh

12

)
, (20)

where gd is the ratio of gi and the previous element of gain gt.
The last bracketed term in (20) is an empirical correction to
compensate for the overlap of the shelving filters, minimizing
the deviation (< ± 0.2 dB) between the target transfer function
and the IIR design for four low-pass filter cutoff frequencies of
20, 200, 2000, 20000 Hz. The knee frequencies fsh are shown
as short black vertical bars in the top row of Fig. 6. The shelving
filters (grey) are displayed together with the resulting overall
magnitude response (dark, thin).

Fig. 6. Examples for the filter design. Left column: 1 SOS, right column: 2
SOS. BTMS reference (thick, solid), UDFA (dashed), and serial shelving (thin,
solid, dark) magnitude response. Top row: Grey traces visualize individual shelv-
ing filters, offset by gain of previous filters for clarity. Diamonds indicate target
frequencies ft and gains gt. Triangles indicate the intermediate frequencies fi
and gains gi. The short vertical bars indicate the adjusted shelving frequencies
fsh. Bottom row: Filters for wedges of different length with geometrical parame-
ters θb = π/6, ds = dr = 1 m, ϕ = π/2, θs = 0, θw = 2π, L1 = ∞ (red),
L2 = 1 m (cyan), L3 = 0.25 m (green), za = 0 m. The approach from [54]
is shown for comparison (dotted traces). The grey trace and right-hand y axis in
(d) correspond to a 1 m wedge with the (virtual) apex point located outside the
wedge at za = 2 m.

A comparison for three wedge lengths (infinite, 1 m, and
0.25 m, shown in red, cyan, and green) between the BTMS
reference, UDFA, and IIR implementations with the suggested
serial shelving approach and the analytical design according
to [53] (dotted traces) is shown in the lower two panels of
Fig. 6. In the example cases, an apex point in the center of the
edge (za = 0) was used for clarity, such that both half wedge
contributions are equal and can be summed prior to the IIR
design. The additional grey traces in panel (d) illustrate the
approximation for the apex point far outside the edge with a
single first-order low-pass filter. For visualization purposes, a
case with identical incident and reflection component is shown,
while they generally have to be implemented as separate filters.

For the infinite wedge (red traces), only the serial shelving
design with two SOS closely approximates the reference and
will therefore be used in the following. Errors occur predomi-
nantly around the cutoff frequency for all other approaches. A
combination of two shelving filters (one SOS, panel c) results
in a less smooth slope. While the single SOS implementation of
[53] (dotted) shows a smoother slope, the underlying unmodified
fractional order filter fails to achieve the desired attenuation
around the cutoff frequency for the infinite wedge (red).

The deviations between the target function and IIR implemen-
tations are less pronounced for shorter wedges (cyan, green).
This can be attributed to the transition of the modified fractional
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order transfer function for infinite edges to an unmodified frac-
tional order filter for small gains gfin (caused by short wedges),
as implemented in (12). Hence, the analytical design [53] is
suited for short wedges. The higher cutoff frequencies associated
with shorter wedges also mean that the frequency response is
modified in a smaller proportion of the (audio) frequency band,
enabling good results even with a single SOS filter (see green
traces in panel c).

The phase behavior of the IIR implementation is shown as
dotted line in Fig. 4(a) and (b). At low frequencies, UDFA
is closely matched, however at high frequencies, the IIR im-
plementation converges towards a phase angle of 0° (related
to the chosen design with prescribed Nyquist frequency gain).
Accordingly, increasing deviations between UDFA and the IIR
implementation are observed above 2 kHz.

V. ERROR AND COMPUTATION TIME EVALUATION

To quantitatively evaluate the accuracy of UDFA and its IIR
implementation (UDFA-IIR) in comparison to the BTMS refer-
ence, a large variety of wedges and geometrical arrangements
were assessed. Source and receiver were randomly positioned
in a 10 × 10 × 10 m3 cube with a uniform distribution of
their Cartesian coordinates. Either a knife edge or wedge with
a randomized interior angle of up to 120° (θw > 4π/3) was
centered in the cube. The wedge length was infinite or was
randomly drawn between 0.2 m and 10 m. Source or receiver
positions inside the wedge were excluded.1

To better quantify the effect of the approximations in UDFA,
the geometrical arrangements have been split in knife edges
and wedges, and subsequently in infinite wedges, and finite
wedges with the apex point located either within (|za| ≤ L/2)
or outside (|za| > L/2) the physical wedge extension. Within
these 3 groups, conditions were further separated in 3 zone
groups (VZ, SZ, RZ). In each of the overall 18 groups, 10000
geometrical arrangements were generated (180000 in total).
At 240 logarithmically-spaced frequencies between 20 Hz and
16 kHz, diffraction magnitude transfer functions were obtained
for UDFA, UDFA-IIR (two SOS design) and BTMS (ED Tool-
box; [54]) and normalized to the source and receiver distance
over the (virtual) apex point.

Table I shows the minimum, average, and maximum Root-
Mean-Square-Error (RMSE) between the BTMS reference and
UDFA magnitude transfer functions. Results for the shadow and
reflection zone were pooled. The Root-Mean-Square (RMS)
level is shown in the top row. Additionally, the average rela-
tive error (calculated as average absolute dB deviation of the
magnitude transfer functions) is provided.

As can be expected from the underlying asymptotic method,
UDFA shows low average RMSEs between -40 dB and -60 dB
for infinite wedges according to average relative errors smaller
or equal to 0.1 dB in the shadow- and reflection zone, and
average relative errors smaller than 0.5 dB in the view zone. In
agreement with Section II, the errors are smaller for knife edges

1To avoid potential singularity issues of BTMS [51] positions within 1.5° of
zone boundaries or extensions of the wedge planes were omitted.

TABLE I
ERROR MEASURES FOR UDFA (TOP ENTRY IN EACH CELL) AND UDFA-IIR
(BOTTOM ENTRY) RE THE BTMS REFERENCE. ALL RESULTS ARE SHOWN

IN DB

than for wedges with an interior angle θw > 4π/3. The larger
errors in the view zone are expected, given that the two terms in
UDFA partly cancel here (also resulting in a reduced RMS). For
finite wedges with the apex point inside the physical wedge, the
complexity of UDFA increases (using two finite half wedges)
and so does the error. Since UDFA does not account for spectral
ripples caused by the truncation of the wedge impulse responses,
the RMSE increases to approx. −35 dB in the shadow- and view
zone, and the average relative error is up to 0.67 dB in the view
zone. The largest deviations are observed for virtual apex points
outside the physical wedge, where the blending of two filters
in UDFA deviates from the otherwise physically-based design.
Here, the average relative error is up to 5.1 dB, however, paired
with an overall small diffraction term (average RMS level of
−47 dB).

For all conditions, error values for UDFA-IIR are generally
close to UDFA, indicating that an implementation with 2 SOS
is sufficient.

The computation time of UDFA transfer function calculation
at 30 logarithmically-spaced frequencies between 20 Hz and
16 kHz, the underlying filter parameter computation and the
IIR filter design were assessed in comparison to BTMS using
the conditions of the above test set. In addition, UTD with the
approximation proposed by Kawai [37] was added to the bench-
mark for infinite wedges. All computations were performed
in MATLAB (R2020b) on a personal computer (Windows 10,
i7-9700k CPU, 32 GB Ram). UDFA and UTD-Kawai were
implemented by the authors, for BTMS the respective function
of the ED Toolbox [54] was used.

Table II shows computations times in seconds required for
30000 calculations of the error evaluation cases for arbitrary
wedge angles. For infinite wedges (left column), UDFA shows a
large improvement over BTMS (considering a 100-m wedge as
infinite) and an about two-fold reduction of computation time in
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TABLE II
COMPUTATION TIMES IN SECONDS FOR 30000 GEOMETRICAL

CONFIGURATIONS FOR INFINITE WEDGES (L = ∞ , INCLUDING UTD-KAWAI

FOR COMPARISON), AND FOR FINITE WEDGES AVERAGED OVER 30000
CONFIGURATIONS WITH APEX POINT WITHIN AND OUTSIDE THE PHYSICAL

WEDGE. TRANSFER FUNCTIONS (TF) WERE EVALUATED AT 30 FREQUENCIES.
FOR UDFA SEPARATE TIMES ARE PROVIDED FOR THE IIR FILTER DESIGN AND

THE PARAMETER CALCULATION ALONE

comparison to UTD-Kawai (in line with two diffraction terms
in UDFA compared to four terms in UTD). The IIR design
is slightly slower than the transfer function calculation. The
calculation of the UDFA parameters is about 10 times faster
than UTD. For finite wedges (right column of Table II), the
BTMS computation time shortens proportional to the now on
average shorter wedge lengths and the associated number of
secondary edge sources. For UDFA, computation time almost
doubles, reflecting the calculation of two half wedges (instead
of one for infinite wedges) or of the blending approximation.
UTD is not applicable for finite wedges. The transfer function
computation is at least 250 times faster than for BTMS. The
computation times for the UDFA IIR design and the parameters
also increase by a factor smaller than 2 in relation to the infinite
edge.

VI. APPLICATION TO FLAT OBJECTS

Many real-life objects relevant in VAEs, such as door panels,
boards, and tabletops, can be considered 2-dimensional flat
surfaces, provided their thickness is smaller than the wavelength
and they can be assumed to be rigid. The same applies for
openings in walls, such as doors and windows which can be
considered apertures in an infinite rigid thin screen. First-order
diffraction by such objects or apertures can thus be approximated
by finite knife edges representing the surface boundaries. Ad-
ditional effects of higher-order diffraction will predominantly
occur at low frequencies [5], [55].

Here, UDFA and UDFA-IIR (2 SOS) were applied to three
basic configurations, in which flat rectangular objects act as an
occluding plate (interrupting the “line-of-sight” GA direct sound
path), reflector (with and without a GA specular reflection), or
aperture (opening in a rigid infinite plane). Results are compared
to first-order BTMS, higher-order (15th) diffraction HO-BTMS
simulations computed with the ED-toolbox [54], and to mea-
sured reference data from the benchmark for room acoustics
simulations (BRAS, [56]), where available. For each edge, a
diffracted path was computed via the apex point either within
the physical edge, or, if the (virtual) apex point was outside
the physical edge, via the closer end point of the edge. The
resulting diffraction paths are visualized as purple lines in the
geometrical insets in Fig. 7. The contributions from each of the
four finite knife edges comprising the objects were summed

Fig. 7. Magnitude transfer functions for diffraction by a flat 1 m × 1 m rigid
plate (panels a, b), aperture in a solid screen (panel c) and a 1 m× 2 m plate (panel
d). BRAS measurement (solid, yellow); HO-BTMS, 15th order (solid black);
BTMS (solid, grey); UDFA (dashed, pink); UDFA-IIR (solid, green); heuristic
higher-order extension (dotted, green). A projection of the geometrical scenario
is shown in each panel. The source is indicated as a blue cross, receiver positions
are indicated by red circles. Diffraction paths are shown in purple, green lines
indicate geometrical reflections, and a blue line in (c) indicates direct sound
propagation following the line of sight.

after distance attenuation and travel time differences were ap-
plied, corresponding to the diffracted path lengths. Depending
on the configuration as occluder, reflector, or aperture, a GA
contribution was added. For comparability, all diffraction func-
tions (including the reference solution and the measurements)
were normalized to the distance between the sound source and
receiver via a virtual path node at the center of the diffracting
object.
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A. Occluding Plate

In Fig. 7(a), we consider a flat 1 m × 1 m rigid square plate
with the receiver located in the shadow zone of all edges. Given
that no direct sound arrives, a comparison between measured
and simulated diffraction is possible. The source is placed on a
circle with a 4 m radius, centered at the middle of the plate, at an
angle of 30° to the normal of the plate. The receiver is placed on
a concentric circle with a radius of 1 m at an angle of 225°. An
according measured transfer function with a 25 mm MDF plate
in an anechoic chamber (BRAS Scene 02, LS01, MP04) is used
as reference (yellow trace in Fig. 7(a)). The dashed pink and
solid green traces show the (composed) UDFA and UDFA-IIR
results, respectively. The grey and black solid traces show the
first- and higher-order BTMS (reference) solution. Additionally,
the group of (faint) traces in the top part of Fig. 7(a) shows
the contributions of the individual edges, according to BTMS
(grey), UDFA (dashed, pink), and the UDFA-IIR (solid, green).
For better visibility, these lines are shifted upwards and use a
separate scale indicated on the right.

For the overall transfer function, a good agreement of all
solutions is observed, showing a general low-pass characteristic
and a ripple structure. Between 200 Hz and 6 kHz, the best
agreement between the measurement, (HO-) BTMS, UDFA,
and the IIR implementation (solid, green) is observed. The
ripples in the individual edge contributions from BTMS (top
traces in Fig. 7(a)) are not represented in UDFA(-IIR), however,
the main source of the well reproduced pronounced ripples in
the composed transfer function are travel-time-related (linear)
phase differences between the individual edge contributions (and
the direct or specular reflection component in Fig. 7(b)–(d)).

At high frequencies, less energy is observed in the measure-
ment compared to both BTMS references and the approxima-
tions, likely related to the measurement setup, absorption by the
MDF panel, and effects of double diffraction at the edges of the
25 mm thick MDF plate.

At low frequencies, the comparison is restricted to BTMS:
a difference is observed between HO-BTMS (black), which
shows a (physically correct) unit gain at low frequencies, and
UDFA (pink, dashed), which matches the (first-order) BTMS
simulation (grey) with a gain of about 2 dB. These higher-order
effects are addressed below in Section VI-E.

B. Reflector

In Fig. 7(b), the same 1 m × 1 m rigid square plate as above
is considered, with receivers on the same side as the sound
source, located in the same position as above. Results for three
receiver positions at a 4 m radius at 330° (BRAS Scene 02,
LS01, MP01), 315° (MP02) and 300° (MP03) are shown. Only
reflected and diffracted sound are considered, and the direct
sound component was removed by temporal windowing from
the BRAS measurements. For MP01, a specular GA reflection
exists in addition to the diffracted sound and all apex points
are located on the physical edges. For MP02 and MP03, only
diffracted sound is rendered and the apex point is outside the
physical edge for two sides of the plate.

For MP01, a close match between all traces is observed
between 200 Hz and 5 kHz. At higher frequencies, again,

differences between the measurement and all simulations are
observed. The simulated traces converge to a magnitude of
0 dB (also observed in Fig. 7(d), R1), which can be attributed
to the geometric specular reflection contributing a dominant
proportion of energy in the frequency range above the cutoff
frequencies of the diffraction components.

At low frequencies, the first-order diffraction represented
by UDFA(-IIR) exhibits a shelving behavior. In contrast, HO-
BTMS shows a high-pass characteristic at around 100 Hz
which can thus be attributed to higher-order diffraction (see
Section VI-E). For MP02 and MP03, a good match is also
observed between 200 Hz and 5 kHz. As for the occluding plate,
the simulations overestimate the energy at high frequencies,
compared to the measurements. The traces for MP02 and MP03
exhibit ripples, caused by the travel time differences between the
contributions of individual wedges and an enveloping 3 dB/oct
low-pass characteristic. For MP02, the diffracted sound in the
mid frequencies is attenuated by about 6 dB, compared to the
level of a geometrical reflection at the center point, in agreement
with the observations from [57], [58]. For MP03, the attenuation
effect is even stronger, as expected.

C. Aperture

Fig. 7(c) shows three receiver positions for a 1 m × 1 m
aperture. The sound source is located in the same position as
before. At a 4 m radius, three receiver positions are shown
at 210° (R1), 225° (R2) and 255° (R3). For R1, which is a
mirrored version of MP01 in the reflector case, the line of sight is
unobstructed, and a direct sound GA component is rendered. For
R2 (corresponding to MP02), the line of sight is just obstructed,
while R3 is clearly off to the side with a larger angle in relation
the plate normal than MP03. Given that BRAS does not provide
measurements for an aperture and higher-order simulations for
flat non-convex objects are not available in the ED-Toolbox, only
first-order BTMS results are shown as a reference (grey traces).

A clear similarity between the reflector and aperture is ob-
served, related to Babinet’s principle (see, e.g., [59], Ch. 13.2).
Similar to MP01 in Fig. 7(b)), superimposing GA and diffracted
sound for R1 results in a shelving characteristic with ripples and
convergence to 0 dB at high frequencies for both BTMS and
UDFA(-IIR). For R2 (no direct sound path), all methods are in
close agreement. An attenuation of about 6 dB is observed in
the mid frequencies with a shallow low-pass characteristic for
higher frequencies, similar to MP02 in the reflector case. For
R3, all traces are similar to a half-order low-pass with spectral
ripples. Here, for BTMS, an additional (low rate) ripple struc-
ture is observed, originating from the dominantly contributing
finite edge itself. Given that the ripples for finite edges are not
approximated by UDFA, some deviations of up to about 4 dB
at 1 kHz are observed here, however, for an overall relatively
small diffraction component.

D. Tilted Non-Square Plate

Fig. 7(d) shows a less symmetric arrangement with a non-
square plate and source-receiver positions on a plane tilted by
39° from the horizontal plane. As before, the source is located at
a distance of 4 m from the center point of the plate at an angle of
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30°, here inside the tilted source-receiver plane. The receivers
are placed at a shorter distance of 1 m. R1 is located at 330° with
a visible geometrical reflection and R3 is located at 45° without
a geometrical reflection. For R2, located at 240°, the plate acts
as an occluder. HO-BTMS (black traces) serves as a reference,
which is closely matched by UDFA(-IIR) above 150 Hz without
accounting for higher-order diffraction effects. Minor deviations
occur in the cases which do not involve a GA component (R2,
R3) in the form of dense ripples at high frequencies above 3 kHz.
These might be caused by differences in fine structure of the
individual edge transfer functions, which are more prominent
compared to the scenarios above, as the apex point for each of
the paths is off-center.

E. Heuristics to Account for Higher-Order Diffraction

At low frequencies, higher-order diffraction (between the
edges of the object) leads to a mismatch between UDFA and
HO-BTMS. In occluded cases, the combined transfer function
is overestimated at low frequencies, where unity gain occurs
for higher-order simulations (e.g., Fig. 7(a), R2 in Fig. 7(d)).
Otherwise, higher-order transfer functions converge towards a
common high-pass characteristic with a slope of about 12 dB/oct
(black traces in Fig. 7(b), R1 and R3 in Fig. 7(d)). A similar
difference between simulations with only first-order diffraction
and those including higher-order diffraction is shown in [55],
their Fig. 2.

To approximate the spectral effects of higher-order diffraction
(disregarding the exact underlying temporal effects of repeated
“bounces” between the different edges in the diffraction im-
pulse response), we propose using an additional (for simplicity
first-order) high-pass filter (see green, dotted traces in Fig. 7).
For rectangular reflectors, a limiting frequency fg, above which
diffraction losses at a reflector “can be considered negligible”,
was proposed in [57], [58]:

fg =
cd∗

2 S cos γ
, (21)

where d∗ is the characteristic distance to the reflection point, S
is the surface area of the reflector and γ is the angle of incidence
of the geometrical reflection on the plate (or extension thereof)
in relation to the plate normal. The high-pass filter is applied to
the sum of geometric reflection (where present) and diffraction
with a cutoff frequency of fg/2. The heuristic factor 1/2 is
based on the cases covered in Fig. 7. Generally, a factor < 1 is
required, given that first-order diffraction is already accounted
for by UDFA, while (21) approximates the spectral effects of
higher-order diffraction including first-order diffraction.

In Fig. 7(b) and for R1 and R3 in Fig. 7(d), it is observed that
the resulting low-frequency behavior does not strongly depend
on the receiver position, similar to the tight grouping of the HO-
BTMS (black) traces at low frequencies. While the suggested
(first-order) high-pass filter accounts for the main effects, the
energy at low frequencies tends to be overestimated, given the
steeper slope in the HO-BTMS simulations. The here suggested
high-pass filtering at fg/2 is considered a rough approximation

for objects with moderate aspects ratios for which [58] assumed
that length and width “do not differ too much”.

Unity gain at low frequencies for the occluded cases, observed
in Fig. 7(a) and for R2 in Fig. 7(d), is achieved by rendering the
high-pass filtered diffracted component, and an additional di-
rect sound component filtered by the complementary first-order
low-pass with the same cutoff frequency fg/2. By this, it is
ensured that occluders covering only a small solid angle become
“invisible” and GA occlusion is increasingly ineffective below
fg, where the wavelength is large compared to the dimensions of
the object. While the proposed serial arrangement (and splitting
of the frequency range) using first-order low- and high-pass
filters is not physically correct, the main (spectral) effects of
higher-order diffraction can be covered in a computationally
efficient way.

VII. SUMMARY AND DISCUSSION

UDFA has been introduced as a computationally highly-
efficient approach to approximate edge diffraction in the frame-
work of GA. A low-order IIR filter implementation was sug-
gested, for which filter coefficients are generated based on
target filter functions in an efficient way suited for interactive
real-time updates. UDFA is applicable to the approximation
of edge diffraction for all geometrical configurations including
infinite and finite wedges, as well as edge-composed objects with
a heuristic approach to represent higher-order diffraction. The
fast computational pipeline from geometrical, physically-based
parameters to filter coefficients distinguishes UDFA-IIR from
earlier contributions using IIR filters, e.g., [2], where precom-
puting diffraction IRs from BTMS was suggested and the filter
design was computationally involved, as well as from using FIR
filters [18]. The IIR implementation of UDFA has the advantage
that filter coefficients can be straightforwardly interpolated and
updated in a delay-line-based acoustic rendering framework
(e.g., [60]). Being based on an asymptotic diffraction solution,
UDFA by design ensures a continuous sound field across zone
boundaries. Additionally, with its underlying filter representa-
tion of diffraction, UDFA can have computational advantages
compared more recent approaches based around a fast evaluation
of BTMS [18], [47], when diffraction is considered for relatively
long wedges and/or high frequencies and avoids singularity-
issues at the (shadow- and reflection-) zone boundaries.

Depending on the target application, it is conceivable that at
a given computational cost, UDFA may enable the rendering
of more detailed geometry with a higher number of diffraction
paths or the rendering of fewer paths with greater spectral
accuracy. The accuracy which can be reached with UDFA is
scalable and can be adapted by increasing the number of un-
derlying terms in the filter representation to four [50] or by
increasing or decreasing the number of filter coefficients in the
IIR implementation.

A prominent feature of UDFA is the validity in all three
zones including the view and reflection zone, whereas some
earlier approaches [16], [48] only considered the shadow zone.
Additionally, when only considering the shadow zone, the cur-
rent (most efficient) single-term solution for infinite wedges
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can also be applied for finite wedges (including a DC gain),
resulting in a close approximation for sufficiently large bending
angles, while also converging to a flat response with unity gain
at the shadow boundary. By this, UDFA enables highly efficient,
simplified rendering of finite edges, reducing inaccuracies at low
frequencies as reported by [36], where the infinite wedge UTD
solution was used.

Modeling diffraction by non-rigid wedges, as is often required
in noise control, may be feasible with UDFA if the boundary con-
ditions are accounted for in the underlying analytical approach.
In principle this is possible in UTD [26], which has been also
expressed in a filter representation [50] that can serve as a basis
for UDFA.

A. Relation Between UDFA and Existing Analytical Solutions

The suggested (two-term) UDFA is based on the filter repre-
sentation of diffraction described in [50], which is in turn derived
from the asymptotic solution of [27], [29] for infinite wedges.
The filter representation can be considered exact when compared
to the underlying asymptotic solution, except for deviations
in the range of ±0.1 dB caused by the fractional-order filter
representation (6). For infinite wedges, the asymptotic solution
itself has limitations at low frequencies and at positions of
source or receiver close to the edge, particularly in the view
zone. Nevertheless, deviations of UDFA compared to the BTMS
reference remain small for infinite edges (see Table I, left).
Using a filter approach with four components (based on UTD
or BTMS) as described in [50] would further improve accuracy,
and particularly expand applicability of UDFA to a wider range
of wedge angles including θw < 4π/3.

For finite wedges with apex point within the physical wedge,
the finite (truncated) half wedge diffraction IRs are approxi-
mated by infinite diffraction IRs, hence neglecting ripples in the
magnitude transfer function. Accordingly, deviations to BTMS
increase (see Table I, middle), however, UDFA parameters are
still clearly physically-based.

For finite wedges with the apex point located outside the
physical wedge, UDFA omits the underlying mechanism of
subtraction of two truncated half wedge diffraction IRs and
blends in a first-order diffraction filter representing the response
far outside the physical wedge. This simplification leads to
increased deviations from BTMS (see Table I, right). Here, using
four terms could improve accuracy for the integral-derived gains
(10), (14).

While it is important to be aware of the limitations imposed
by the asymptotic solution and the simplifications in UDFA,
they might not be the bottleneck in terms of precision in VAE
applications. The current evaluation with composed objects
already showed that effects of higher-order diffraction dominate
deviations at low frequencies.

B. Composed Objects

In the application case of composed flat objects, depending
on the geometrical configuration, deviations between UDFA and
BTMS of up to 4 dB occur around the cutoff frequency. While
such deviations are likely perceptually detectable in a direct

comparison using broadband noise stimuli (e.g., [61]), percep-
tual effects in the context of VAE are less clear. Recently, [62]
investigated the perceived naturalness of several low-complexity
diffraction models for single-wedge diffraction in static and
dynamic scenarios. Models that omitted spectral ripples/comb
filtering received favorable ratings in terms of naturalness when
compared to BTMS. [63] investigated detection thresholds of
spectral ripples, using speech and 1.2 ripples per octave, in
the context of different room acoustic conditions and in the
presence of interfering sounds. They report detection thresholds
of between 6.1 dB and 7.2 dB peak-to-valley ratio. Generally,
the perceptual salience of spectral deviations depends on many
factors such as the source signal and the frequency range in
which they occur (e.g., [64]). [65] have used a minimum peak-to-
valley ratio of 5 dB for their spectral ripples to assess perceived
naturalness of spectrally distorted speech and music. Further
investigations of perceptual differences are required with regard
to perceptual plausibility and authenticity in static and dynamic
VAEs, particularly for diffraction by finite objects.

The current test cases demonstrate the relevance of the relative
delay and the basic low-pass characteristic of the response from
the individual edges to account for the prominent (large scale)
ripple structure in the overall transfer functions for objects.
The capability of representing these ripples distinguishes UDFA
from, e.g., the smooth spectra achieved by the recent volumetric
diffraction and transmission approach ([19], their Fig. 13).

Although the representation of flat objects by a combination
of finite edges disregards effects of not perfectly rigid and not
non-absorbing real-life objects, deviations from the measured
transfer functions from BRAS were mainly prevalent at high fre-
quencies, where an overall attenuation of both the approximated
and measured sound might likely lead to a reduced perceptual
salience of the differences.

Overall, UDFA offers a close spectral approximation for
diffraction from flat objects and apertures for most of the human
hearing range, enabling the efficient incorporation of numerous
objects into a VAE, such as doors, tables, and reflectors in concert
venues.

C. Higher-Order Diffraction

One area for future extensions is higher-order diffraction. At
low frequencies, effects of higher-order diffraction were promi-
nent for the current finite objects, as observed in the difference
between the first- and higher-order BTMS simulations (see also
[5], [55], [58]). The proposed heuristic “higher-order compensa-
tion” filter approach helps to avoid considerable low-frequency
errors that would otherwise occur, e.g., in the shadow zone of
small and distant objects. With restricting diffraction effects to an
according high-pass band it is ensured that objects covering only
a small solid angle from both the source’s and receiver’s perspec-
tive “disappear”. Future improvements may include increased
accuracy and strategies to handle three-dimensional objects.

Higher-order diffraction also needs to be considered for
diffraction around multiple room corners or around three-
dimensional objects, such as a rectangular column, where sound
can only reach the shadow zone via double diffraction. Here,
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UDFA would be applied to a series of diffraction nodes (see e.g.,
[18], [36]). For computational efficiency, is conceivable that for
flat objects, the current simplification using knife edges could be
extended by a further low-pass component mimicking effects of
double diffraction at high frequencies when the thickness of the
flat object with respect to the wavelength becomes relevant (for
the 25 mm MDF plate measured in BRAS: above about 10 kHz).

D. Computational Efficiency

The suggested UDFA approach enables a fast estimation of
the energetic contribution of sound propagation paths, doubling
performance re UTD (with Kawai approximation) for infinite
edges and reducing computation time by a factor of at least
250 for finite wedges re BTMS. Given that the path finding is
a major factor for computational costs, particularly in detailed
scenes [15], [36], energetic and perceptually motivated path
culling at early stages is desirable. As for an entire scene, the
number of rendered paths for a finite object that may be reduced
by prioritizing paths with a dominant energetic contribution
[66]. A potential application of UDFA is to determine gains
for parametric filter banks as used in [36]. In addition to low
computation times, UDFA has the advantage of being applicable
to finite wedges (in contrast to, e.g., UTD), avoiding excessive
low-frequency errors.

An implementation of UDFA as recursive filters has been
proposed based on a serial shelving filter approach with scalable
complexity. The implementation with two SOS filters closely
approximates the target functions and in the case of composed
objects leads to overall transfer functions (green traces, Fig. 7)
that are virtually identical to the UDFA result (dashed, pink
traces, Fig. 7). Computation times for the UDFA filter coef-
ficients are similar to evaluating the transfer function for a
30-band third-octave parametric filter bank. Further reductions
in computational complexity can likely be achieved with par-
allel arrangements of low-pass filters (e.g., [52]) or using the
proposed serial shelving approach to approximate either the
sum of both the shadow- and reflection component or even the
sum of two half wedges. As a further simplification, the target
diffraction function for an entire object can be derived using
UDFA and approximated by a single filter (see, e.g., [49] for a
machine learning based approach). The computation time for the
underlying UDFA parameters is exceptionally low (see bottom
row of Table II).

VIII. CONCLUSION

A universal, physically-based approach to approximate first-
order diffraction by infinite and finite wedges and by objects
composed thereof has been suggested, using a computationally-
efficient filter representation. UDFA offers simple-to-derive pa-
rameters of diffraction low-pass filter functions, implemented
as low-order IIR filters with scalable precision. The BTMS
reference simulation and measured transfer functions can be well
matched by combining the approximated diffraction functions of
the individual edges of flat rectangular rigid objects, constituting
an important group of objects in VAE, like tables or door
openings. To approximate prominent effects of higher-order

diffraction observed at low frequencies for such objects, an
additional heuristically motivated high-pass and complementary
low-pass filter have been proposed. The following conclusions
can be drawn:
� Spectral characteristics of diffraction from infinite and

finite wedges can be approximated by a combination of
modified fractional- and first-order low-pass filters.

� The proposed serial shelving IIR implementation closely
approximates the target transfer functions in the audio-
frequency range using two SOS filters.

� Measurements of diffraction from flat objects can be
matched in a wide frequency range. The low-pass charac-
teristic and the travel-time delay of the contributions from
the underlying individual edges are most relevant for the
resulting diffraction magnitude response.

� The accuracy and computational cost of UDFA is scalable.
Depending on the application, a single filter can be used,
implemented in a single SOS, while for highest accuracy,
each contributing half wedge can be composed of multiple
filter components.

APPENDIX A
RELATION OF CUTOFF FREQUENCIES

The impulse response of a finite half wedge is a truncated
version of the impulse response of an infinite half wedge. When
the apex point is located within the physical wedge, the onset
of the impulse response remains unchanged and accordingly the
truncated half wedge transfer function converges to the that of
the infinite half wedge at high frequencies. With

lim
f→∞

((jf/fc) + 1)−α = ((jf/fc))
−α, (23)

and assuming a cutoff frequency fc,fin and a gain gfin for the finite
half wedge, the two converging asymptotic transfer functions are

gfin((jf/fc,fin))
−α = ((jf/fc))

−α, (24)

resulting in the relation

fc, fin =
1

g
1
α
fin

fc, (25)

which is equivalent to (11) with α = 1/2.

APPENDIX B
CUTOFF FREQUENCY FOR RECTANGULAR WINDOW

The approximation of wedge diffraction with an apex point
located outside the physical wedge by a first-order low-pass filter
(III.C) is based on the assumption that the travel time differ-
ence around both corner points Δt = (t2 − t1) is comparatively
short, leading to a truncated edge impulse that is converging
towards a rectangular function. With sinc (x) = sin(πx)/(πx),
the magnitude frequency response |Hr(f)| of such rectangular
function with amplitude 1 and duration Δt is

|Hr(f)| = |sinc(Δtf)| . (26)
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By choice, a cutoff frequency fc,fin,off of a first-order low-
filter is determined, such that the slope of its magnitude transfer
function is a tangent to the extrema of |Hr(f)|.

The locations of the extrema xn of the sinc-function are
non-trivial to describe analytically, however, for large positive
arguments, they converge towards the extrema of the sine func-
tion

xn =
1

2
+ n, (27)

where n are positive integers at the location of maxima of
|Hr(f)|. To obtain an expression for the cutoff frequency
fc,fin,off that approximately fulfills the chosen criteria, the fol-
lowing equation has to be solved for fc,fin,off at f = xn/Δt:

∣∣∣∣∣
(
jxn/Δt

fc,fin,off
+ 1

)−1
∣∣∣∣∣ = |sinc(xn)| (28)

Assuming xn/Δt � fc,fin,off , the equation becomes more
manageable and can be solved for fc,fin,off :

fc,fin,off =

∣∣∣∣j xn sinc(xn)

Δt

∣∣∣∣ =
∣∣∣∣j sin(πxn)

π Δt

∣∣∣∣ . (29)

For large n, according to (27), the sine in (29) becomes ±1,
yielding (15).
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