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Improving Semi-Supervised Differentiable
Synthesizer Sound Matching

for Practical Applications
Naotake Masuda and Daisuke Saito, Member, IEEE

Abstract—While synthesizers have become commonplace in mu-
sic production, many users find it difficult to control the parameters
of a synthesizer to create a sound as they intended. In order to assist
the user, the sound matching task aims to estimate synthesis param-
eters that produce a sound that is as close as possible to the query
sound. Recently, neural networks have been employed for this task.
These neural networks are trained on paired data of synthesis pa-
rameters and the corresponding output sound, optimizing a loss of
synthesis parameters. However, query by the user usually consists
of real-world sounds, different from the synthesizer output sounds
used as training data. In a previous work, the authors presented
a sound matching method where the synthesizer is implemented
using differentiable DSP. The estimator network could then be
trained by directly optimizing the spectral similarity between the
original sound and the output sound. Furthermore, the network
could be trained on real-world sounds whose ground-truth synthe-
sis parameters are unavailable. This method was shown to improve
the match quality in both objective and subjective measures. In this
work, we experiment with different synthesizer configurations and
extend this approach to a more practical synthesizer with effect
modules and envelope generators. We propose a novel training
strategy where the network is fully trained using both parameter
loss and spectral loss. We show that models trained using this
strategy is able to utilize the chorus effect effectively while models
that switch completely to spectral loss underutilizes the chorus
effect.

Index Terms—Audio synthesis, synthesizer, music information
retrieval, semi-supervised learning, neural network.

I. INTRODUCTION

SYNTHESIZERS are widely used in modern music pro-
duction and sound design, owing to their ability to create

unique and diverse timbre. Sound designers can create sounds
by directly interacting with the parameters of the synthesis
algorithm through the interface of the synthesizer. Despite the
prevalence of synthesizers, most novice music producers find it
difficult to design a sound with the synthesizer. This is because
it is often unclear what adjustments to the synthesis parameters
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are needed to get the desired sound. Thus, many producers rely
on presets, preconfigured parameter settings for the synthesizer
crafted by sound designers. For such producers, the sonic palette
of the synthesizer is limited by the availability of presets, and
the full potential of the synthesizer is out of reach.

There have been numerous works on utilizing machine learn-
ing methods to facilitate the use of conventional synthesizers.
A common approach is sound matching, estimation of synthe-
sis parameters that best replicate the target sound. Techniques
such as genetic algorithm, linear regression, and neural network
(NN) have been applied to various synthesizer architectures.
Among these methods, NNs have been shown to return the best
matches in a reasonable amount of computing time [1]. In such
cases, NNs are trained to predict the synthesis parameters from
the features of the target audio as a regression/classification
problem, minimizing the error of estimated parameters against
ground-truth parameters.

However, this parameter loss may not be the ideal loss for the
sound matching task. In fact, it has been found that the model
with the best performance in terms of parameter loss does not
perform the best in terms of spectral features of the actual output
sound [2]. Since we are interested in the auditory similarity to
the target sound, it may be better to optimize the network using a
loss function directly related to the output audio. Unfortunately,
conventional synthesizers do not allow for backpropagation of
the gradients, which prevents the optimization of such a loss
function.

Another problem with previous NN-based methods is that
models are trained only on sounds created by the same synthe-
sizer used for creating matches (we will refer to these sounds
as in-domain sounds). Sounds that we want to imitate using
a synthesizer using a sound matching system usually consist of
real-world sounds from various sources (out-of-domain sounds).
Since out-of-domain sounds are not labeled with the ground-
truth parameter values that create the best match, only in-domain
sounds can be used for training.

Earlier, the authors presented a novel approach to the problem
of synthesizer sound matching by implementing a conventional
synthesizer using differentiable DSP [3]. Differentiable DSP [4]
allows for backpropagation of the gradients, meaning that we
can optimize not only the parameter loss but also the estimation
network using a loss function based on the spectral features of
synthesized audio. Since the network can be optimized without
the parameter loss, unlabeled out-of-domain sounds can be used
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as training data. The use of out-of-domain sounds was shown
to be instrumental in improving the perceptual quality of the
estimated match.

In this work, we extend the capabilities of our synthesizer with
differentiable versions of ADSR envelopes and effect modules
(chorus and reverb). While differentiable implementations of the
reverb effect has been explored previously [4], to our knowledge,
this work is the first to estimate the parameters of the chorus
effect and ADSR envelope in a differentiable manner. The ADSR
envelope is present in most conventional synthesizers, since
they are crucial for the interpretability and controllability of the
parameter dynamics. Furthermore, we find that models trained
on spectral loss tend to underutilize the chorus effect, because
the spectral loss does not provide proper gradients to adjust
the chorus delay parameter. Thus, we propose a novel training
scheme where the network is trained on in-domain sounds and
out-of-domain sounds alternately, and both spectral loss and
parameter loss is used until the end of training. Finally, we inves-
tigate in detail the relationship between synthesizer architecture
and the difficulty of parameter estimation. We experiment with
a model conditioned on the fundamental frequency estimated
by an external network to separate the problem of frequency
estimation. We also examine the effects of making oscillators
unordered in terms of frequency.

In Section II, we cover the related works for this work includ-
ing previous works in synthesizer sound matching. In Section III,
we explain the architecture of the proposed method including
the differentiable synthesizer. To analyze the behavior of this
differentiable synthesizer, we examine the values and analytic
gradients of spectral loss on a synthetic benchmark in Section IV.
From these results, we design the sound matching experiments.
The experiment setup is explained in Section V and the results
are shown in Section VI. We discuss our findings in Section VII
and end with a conclusion in Section VIII.

II. RELATED WORKS

A. Synthesizer Sound Matching

Synthesizer sound matching refers to the estimation of syn-
thesizer parameters that can closely replicate the target sound.
This can be seen as an inverse problem of sound synthesis. One
important thing to address is the motivation for such a task.
Why must we go through the effort of recreating a sound with
a synthesizer? One reason is that a sound matching algorithm
can assist the user of a synthesizer during sound design. For
example, a user can query the system with a sound that is
similar to but not exactly according to their intended sound.
Then, the estimated parameters can be tweaked further using
the synthesizer interface to better fit the user’s needs. In this
case, the sound matching results serve as a starting point for
sound design. Another reason is playability. By recreating a
sound using the synthesizer, its pitch, duration and velocity can
be changed flexibly. A sampler may serve similar purposes, but
requires time-stretching of audio, which may alter the timbral
qualities in undesired ways.

A simple way of achieving sound matching would be to view
it as a sound retrieval problem from a database of synthesizer

Fig. 1. NN-based synthesizer sound matching. (a) A synthesizer renders audio
according to synthesis parameters. (b) An estimator network is trained to estimate
the parameters from the sound, optimizing the parameter loss.

presets [5]. This requires that each preset in the database is
rendered into audio and coupled with the corresponding preset.
Then, a query-by-example sound retrieval algorithm [6] can be
used to find the entry with the audio that is closest to the query
sound. A limitation of this approach is that a large database of
presets that sufficiently cover the capabilities of a synthesizer is
not available for most synthesizers, as the distribution of presets
is limited and often not free.

Earlier work in sound matching used genetic algorithm (GA)
to estimate the FM synthesis parameters to match a target
spectrum frame [7]. The fitness function is defined as how close
the produced spectrum is to the target spectrum. Some work
have expanded upon this with different fitness functions [8]
and synthesis algorithm [9]. As these work deal with matching
spectra of a static tone, they may be better described as tone
matching.

Subsequent works in GA-based sound matching have focused
on the more complex task of matching the entire sound whose
spectra vary over time. The fitness function is typically defined
as the distance in terms of time-varying audio features such as
spectrogram or mel-frequency cepstrum coefficients (MFCC).
Many synthesizers such as physical modeling synthesizer [10],
FM synthesizer [1], [11], and combination of many synthesis
algorithms [12] have been used with GA-based sound matching.
The main disadvantage of GA is that it takes anywhere from 10
minutes to several hours to match a single sound, since fitness
of each individual can only be evaluated by rendering audio. For
example, a single session with population size of 200 running for
200 generations would require 40,000 renders of the synthesizer.

In recent years, supervised machine learning methods such as
multiple linear regression [13] and neural networks (NNs) [1],
[2], [14] have been used for sound matching. In this approach,
sound matching is approached as a regression (for continuous
synthesis parameters) or classification (for discrete/categorical
parameters) problem, where the synthesis parameters are esti-
mated from features of the target sound (Fig. 1). For training
such a model, a synthesizer is often randomly sampled to create
a dataset consisting of synthesis parameters and the resulting
audio. When a large dataset of handcrafted presets are available,
they can be used for training data as well.
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A similar field to synthesizer sound matching is intelligent
music production, which aims to automate the process of mixing
and mastering by estimating the parameters of audio effects.
For example, siamese network was used to estimate the param-
eters of a dynamic compressor from the original and processed
audio [15]. Another work dealt with the mixing parameters
of a multi-track project such as pan, gain and reverb for each
track [16].

While NNs allow for fast estimation of synthesis parameters
during inference, they optimize the parameter loss and not the
actual match quality of the synthesized audio. This is because
gradients can not be propagated through the conventional syn-
thesizer. To circumvent the same problem in the case of black-
box audio effects, stochastic gradient approximation methods
were applied [17]. However, the gradients obtained for the audio
effect are only approximate.

Finally, it is also important to consider that the users of a
sound matching application want to reproduce out-of-domain
sounds. For example, use of vocal imitation as a query for sound
matching has been proposed [5]. Perhaps a user will want to
imitate acoustic instrument sounds using a synthesizer. Such
sounds cannot be matched perfectly, and the synthesis algorithm
imposes an upper bound on the match quality. However, synthe-
sizers can imitate some of their qualities, perhaps leading to the
discovery of unique timbre. Thus, out-of-domain sounds should
be the focus of sound matching.

However, match quality of out-of-domain sounds been ne-
glected in most works. In [2], models were evaluated in terms
of spectral distance against out-of-domain sounds. Still, conven-
tional neural network models must be trained on labeled data,
consisting of pairs of audio output and the synthesis parameters
used to produce it. As such, out-of-domain sounds are unseen
during training, resulting in a domain-gap during training and
inference.

B. Neural Audio Synthesis

Recently, audio synthesis methods based on neural networks
have garnered attention. Since a neural network is a black-box
with millions of model parameters, they do not allow for direct
interaction with parameters like a conventional synthesizer. As
such, neural networks must offer another way to control the
synthesis. This is achieved through either model conditioning
or learning a latent representation of musical sounds.

For example, SING is a neural audio synthesis model that can
be conditioned by the pitch, velocity, and instrument labels [18].
Embeddings for the instrument can be learned to adjust the
timbre more flexibly [19]. Alternatively, an autoencoder can be
used to learn the latent representation of musical sounds with
which a user can control the output. A basic autoencoder with
feedforward layers was used to reconstruct spectral frames [20].
A WaveNet autoencoder has been used to model raw audio
of musical sounds [21]. Although most neural audio synthesis
methods have high latency, some newer models such as RAVE
boast real-time audio synthesis [22].

Compared to conventional synthesizers, these neural audio
synthesis models can potentially create more realistic sounds

and offer a different way to control the synthesis result. However,
their controls are not as flexible as a conventional synthesizer
and have yet to be employed in common music production
workflows.

C. Differentiable DSP

While neural audio synthesis models generate raw audio using
only neural networks, differentiable digital signal processing
(DDSP) integrates conventional signal processing modules into
deep learning, exploiting their strong inductive biases on mu-
sical audio. In the original DDSP paper, the parameters of
a differentiable audio synthesis model were estimated by a
neural network in an end-to-end manner [4]. More specifically,
a differentiable version of an additive synthesis model called
the harmonics-plus-noise model, a variant of the sinusoids-plus-
noise model [23], was used. While this model can technically
be viewed as a synthesizer, its controls are much more compli-
cated than conventional synthesizers, as the amplitude of each
harmonic and the full frequency response of the filter at each
frame must be specified.

The idea of DDSP has seen numerous applications in the
past few years. Adversarial loss was used with a hierarchical
generator network to improve the quality of the output of a
DDSP synthesis model [24]. Pitch detection was accomplished
by using differentiable DSP in a self-supervised framework [25].
Other synthesis algorithms such as waveshaping synthesis [26]
and wavetable synthesis [27] has been introduced to the DDSP
framework.

DDSP has seen applications in audio effects as well. An
infinite impulse response (IIR) filter was implemented using
differentiable DSP and its parameters were trained to emu-
late a guitar pedal [28]. Similarly, differentiable biquad filters
were used for parametric equalizer matching, where optimizing
spectral loss was shown to be superior to parameter loss [29].
Mixing parameters such as reverb and panning has been recon-
structed from both the wet and dry signal using DDSP-based
modules [16].

A line of work similar to DDSP but in the field of images is
differentiable rendering, which aims to integrate conventional
image rendering into a deep learning framework [30]. Different
types of stroke renderers (oil-painting, watercolor, etc.) were
implemented in a differentiable manner to produce stylized
versions of photos [31]. In another work, 3D attributes of
an object were estimated from a 2D image in an end-to-end
framework [32]. This network was first trained by a 3D attribute
prediction loss using ground-truth labels, and a projection loss
with unlabeled data was introduced afterwards.

III. PROPOSED METHOD

A. Overview

A diagram of the proposed method is shown in Fig. 2. Two
different datasets can be used for training the model: in-domain
and out-of-domain (described in detail in Section V-D). Mel-
spectrogram is calculated for each sound and fed into the es-
timator network (Section III-B). The estimated parameters are
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Fig. 2. The architecture of the proposed method. The estimator network outputs the estimated synthesis parameters, which can then be rendered to audio using
the differentiable synthesizer.

used for calculating the parameter loss for data in the in-domain
dataset whose ground-truth parameters are known. Then, the
estimated parameters are fed into the differentiable synthesizer
(Section III-C) to render audio. Spectral loss is calculated using
the rendered audio and the original audio. Both the parameter
loss and the spectral loss are used to optimize the estimator
network.

B. Estimator Network

The estimator network takes the melspectrogram of the target
sound as input. First, 1D convolutions are applied to the melspec-
trogram frames over the frequency dimension. This is intended
to obtain a representation of the instantaneous timbre of the
audio. Then, the output sequence is fed into a gated recurrent unit
(GRU). Finally, a linear layer is used to compute the synthesis
parameter to be fed into the synthesizer. Since the synthesizer
assumes parameter values to be normalized between 0 and 1, a
sigmoid function is applied to the output of the linear layer.

Past works have explored the use of 2D convolutions over
time-frequency features of audio [2], [14]. In these works, the
features are downsampled and a final linear layer is used to
calculate a static parameter over the entire sound. On the other
hand, our network can estimate time-varying parameters from
the outputs at every frame, and also static parameters by using
only the last output.

C. Differentiable Synthesizer

A synthesizer much akin to conventional synthesizers used in
music production is implemented using differentiable DSP mod-
ules in PyTorch. The original DDSP paper [4] used a harmonic-
plus-noise model for accurate reconstruction of musical sounds.
On the other hand, our task is synthesizer sound matching, i.e.,
estimation of parameters of a conventional musical synthesizer.
So our synthesizer is intentionally limited in terms of synthesis

Fig. 3. The full architecture of the synthesizer. Dynamic parameters whose
values change during the sound are written in red. These dynamic parameters
can be modulated by an ADSR envelope.

capability but features more interactable parameters such as
cutoff frequency. The overall synthesizer structure is shown in
Fig. 3.

While this synthesizer has fewer parameters than the
harmonics-plus-noise model in the original DDSP, we find that
parameter estimation is more difficult for this synthesizer than
the harmonics-plus-noise model. We suppose that this is due
to the complexity of the relationship between the output sound
and synthesis parameters. In the harmonics-plus-noise model,
a change in a single parameter only affects certain bins of the
output spectrogram, since the parameters correspond to partials
of the sound. On the other hand, a single parameter in a typical
synthesizer, such as cutoff frequency, can affect many spectral
bins, and many parameters can affect the same bin. Another
difficulty for parameter estimation is that our synthesizer cannot
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accurately recreate the out-of-domain sounds. The estimator
must utilize the synthesizer to roughly imitate features of the
target sound, which imposes a unique challenge.

1) Main Section: The core of our synthesizer is an additive-
subtractive synthesis engine that approximates a classical sub-
tractive synthesizer using additive synthesis. This corresponds to
the modules Oscillator A/B and Filter in Fig. 3. This design is in-
spired by popular additive-subtractive synthesizer software such
as Harmor by Image-Line and Razor by Native Instruments.
This synthesizer features two oscillators with varying frequency
and amplitude. The frequency of the second oscillator unit f2 is
defined by f2 = αf1(α ≥ 1). This is to keep the ordering of the
oscillators so that the second oscillator is at a higher pitch than
the first.

Each oscillator can be interpolated between a sawtooth wave
and a square wave. The sawtooth and square wave oscillator with
fundamental frequency f can be decomposed into sine waves as
follows:

xsawtooth(t) =
2

π

∞∑
k=1

sin(k · 2πft)
k

, (1)

xsquare(t) =
4

π

∞∑
k=1

sin{(2k − 1)2πft}
2k − 1

. (2)

The strength of each sinusoid is linearly interpolated between
the two extremes by the saw/square wave mix parameter.

Then, the output of two oscillators are mixed and fed into
a filter with the same frequency response as that of a 2-pole
low-pass filter. This filter alters the timbre by attenuating the
harmonics above the cutoff frequency and accentuating the
harmonics around the cutoff frequency according to its reso-
nance parameter. While a differentiable implementation of a
resonant IIR filter has been proposed [28], IIR involves recurrent
computation which is expensive in a deep learning framework.
Thus, we efficiently approximate a resonant filter by applying
the frequency response as a multiplier to the amplitudes of the
harmonics.

The parameters of the main section are as follows: the am-
plitude, frequency, and saw/square wave mix of each oscillator
and the cutoff frequency and resonance of the filter.

2) Effects: We implemented two audio effects commonly
found in synthesizers: chorus and reverb. The two effect modules
are shown at the bottom of Fig. 3. The output of the filter module
of the main section is fed into the chorus and the output of the
chorus is fed into the reverb.

The chorus effect is a delay unit with variable delay. This
delay amount is modulated by a low-frequency oscillator (LFO)
to create an effect similar to pitch vibrato. This delayed signal
is mixed with the original signal to create the chorus effect. The
variable delay is implemented using differentiable grid sample
operations [33]. The delay parameter controls the base value of
the delay, and the mix parameter controls the ratio between the
original and delayed signal.

The reverb effect is implemented as finite impulse response
(FIR) convolution, similar to the original DDSP [4]. The impulse
response is a decaying white noise. The decay parameter controls

Fig. 4. Diagram of an ADSR envelope (top) and its decomposition (bottom)
where the note-on time (start of envelope) and the base value are zero.

the speed of the decay and mix parameter controls how much of
the reverb signal is mixed with the original.

3) Modulation: The parameters of the synthesizer can
change over time to create movement in a sound. Conventional
synthesizers use modulation sources such as ADSR envelope
generators to control the movement of some important synthesis
parameters.

In this synthesizer, the amplitude of two oscillators and cutoff
frequency of the filter are modulated by separate ADSR en-
velopes (ADSR 1, 2, and 3 in Fig. 3). The parameters of the
ADSR envelope are: attack time ta, decay time td, sustain level
vs, release time tr, base value vb and peak value vp. The output
of the ADSR envelope starts at base value and rises (or falls)
to the peak value and falls (or rises) back to the base value. A
diagram of the ADSR envelope is shown in the top of Fig. 4. The
attack time parameter dictates the time it takes for the envelope
to reach peak level. The decay time parameter controls the length
of the decay stage. After the decay stage, the output level is held
at a level dictated by the sustain parameter. After the note off
point (Noff ), the release stage, whose length is defined by the
release parameter, begins, and the level gradually approaches
the base value. For the envelopes controlling the amplitude, the
base value is zero to ensure that the sound begins and ends in
silence.

We can implement this ADSR envelope in a differentiable and
parallelized manner by splitting it into three stages as shown
in the bottom of Fig. 4. Assuming that the note on time and
base value is zero and vp > vs > 0, the value v(t) of the ADSR
envelope at time t is expressed as follows:

v(t) =

∣∣∣∣vpta t
∣∣∣∣
[0,vp]

+

∣∣∣∣vs − vp
td

(t− ta)

∣∣∣∣
[vs−vp,0]

+

∣∣∣∣−vs
tr
(t−Noff )

∣∣∣∣
[−vs,0]

, (3)

where |x|[a,b] denotes a clamping operation equivalent to
min(max(x, a), b).
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D. Loss Function

The estimator network can be trained using both the parameter
loss and the spectral loss. The parameter loss is defined as the
L1 loss between the estimated parameter and the ground-truth
synthesis parameter. All synthesis parameters are normalized to
be between 0 and 1.

For the spectral loss, we use a multiscale spectral distance
which measures the distance between two sounds using spectro-
grams calculated in multiple FFT sizes [4]. We adopt a variant
where spectral convergence is used along with log-spectrogram
loss [22]. This distance is defined as:

Di =
‖Si(x)− Si(x̂)‖F

‖Si(x)‖F
+ ‖logSi(x)− logSi(x̂)‖1 , (4)

where ‖ · ‖F and ‖ · ‖1 are the Frobenius norm and L1 norm
respectively, and Si(·) is the magnitude spectrogram of signal x
at a certain FFT size. We use FFT sizes of (64, 128, 256, 512,
1024, 2048) with 75% overlap between frames.

The total loss used to train the estimator network is then:

Ltotal = α
∑
i

Di + βLparam, (5)

where Lparam is the parameter loss and α, β are multipliers for
each loss.

IV. SYNTHETIC BENCHMARK EXPERIMENT

In order to design our training strategy for the sound matching
model, we first evaluate the behavior of the multiscale spectral
loss coupled with the differentiable synthesizer in a synthetic
benchmark experiment.

A. Experimental Setup

The goal of this experiment is to find out if the spectral loss
can provide a useful gradient when a single synthesis parameter
needs to be adjusted. We started with a single sound x generated
using the synthesizer f in a typical parameter setting denoted as
v = (v0, v1, . . . , vn) for a synthesizer with n parameters. Thus,
the synthesis process can be denoted asx = f(v). The values for
v were chosen to produce a typical sound showcasing most of the
functions of the synthesizer. We created variants of this sound by
modifying a single parameter so that v′ = (v0, . . . , v

′
k, . . . , vn).

For this parameter, we performed a sweep over the possible value
range. We then calculate the multiscale spectral lossL(x,x′) be-
tween the original sound x and the modified sound x′ = f(v′).
From this, we can see how the spectral loss relates to changes
in a certain parameter. This loss should be close to zero when
the modified parameter is close to the original value. We also
perform backpropagation through the differentiable synthesizer
to calculate the analytic gradient dL

dv′
k

with regards to the modified

parameter v′k.

B. Results

We show the results of the synthetic benchmark experiment
in Fig. 5. While the synthesizer has 19 parameters in total, we
show the results for 11 parameters. For most parameters, the loss

TABLE I
FEATURES OF THE USED SYNTHESIZER ARCHITECTURES

curve is smooth, and the gradient is in the red region, indicating
that the gradient dL

dv′
k

is positive when v′k > vk and negative

when v′k < vk. This property indicates that the gradient descent
with regards to spectral loss should be effective in tuning the
parameter v′k to the correct value vk.

However, the loss and the gradient for the oscillator frequency
(OSC1 Freq, top right of Fig. 5) are more concerning. The loss
decreases sharply around the original value, and the gradients
are more chaotic, suggesting that spectral loss may not be useful
for tuning an oscillator, at least when the frequency value is
drastically different from the target frequency. This is in line with
the findings of previous work, where spectral loss was found
to be ineffective for tuning a pure sine oscillator [34]. They
found that this is because a severely out-of-tune oscillator only
affects spectral bins away from the correct spectral bins, and
the obtained analytic gradient is near zero. In our case, we note
that there are some local optima for the loss. This is because
when the frequency of one oscillator is a multiple of the other’s,
some of the harmonic partials align, resulting in lower values
for spectral loss.

Another parameter of concern is the delay parameter for the
chorus (Chorus Delay, left and second from bottom of Fig. 5).
The gradient are mostly zero except for the small region near
the original value vk. We suppose that this is due to the chorus
delay parameter causing changes in pitch that the spectral loss
is not suited for handling, as we saw in the case of oscillator
frequency.

V. SOUND MATCHING SETUP

We explain the setup of the experiments, including the details
of the synthesizer and the estimator network. In V-B, we design
a training strategy considering the findings of the synthetic
benchmark experiment in Section IV.

A. Synthesizer Architectures

Our main experiments deal with 4 different synthesizer ar-
chitectures: Raw, Raw-Env, FX, FX-Env. As shown in Table I,
only the FX, FX-Env models use the effect modules (chorus
and reverb). We experiment with Raw and Raw-Env models in
Section VI-A. We experiment with FX and FX-Env models in
Section VI-B.

For the Raw and FX models, the envelope is not used during
training. Thus, the network estimates the dynamic parameters
such as filter cutoff and oscillator amplitude in a frame-by-frame
manner. Other static parameters take only one value for the
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Fig. 5. Results of the synthetic benchmark experiments. The red vertical line indicates the original parameter value vk . In the top left, we show the spectrogram
and waveform of the original sound. For each modified parameter, we show the graph of the loss and the analytic gradient.

entire sound. For the Raw-Env and FX-Env models, we use
the envelope during training. This means that the network does
not estimate dynamic parameters frame-by-frame, but instead
estimates the parameters of the envelope.

In Section VI-C, we experiment with synthesizers Raw-f0
and FX-f0, where the frequency of an oscillator is estimated by
a separate network for fundamental frequency detection [35].

In Section VI-D, we experiment with the Unordered model,
where the frequency of each oscillator is estimated separately.
This means that either oscillator 1 or 2 can be higher than the
other. This setting is common in many conventional synthesiz-
ers, but we hypothesize this may be one of the major obstacles
for sound matching.

B. Training Strategy

In Section IV, we saw that spectral loss may be unsuited
for estimating the frequency of the oscillator, especially when
the distance between estimated frequency and the ground-truth
frequency is large. Thus, we adopt a pre-training procedure,
where the network is first trained with parameter loss on the

in-domain data and then fine-tuned with spectral loss on the
out-of-domain data. It is expected that the model learns to
estimate the frequency in the pre-training stage.

This can also be seen as a case of semi-supervised learn-
ing [36]. The labeled in-domain data is used to train the network
to predict parameters that cannot be learned efficiently with the
spectral loss. The unlabeled out-of-domain data is used to close
the domain-gap between training and inference.

To examine the effect of loss functions and training data, the
performance of networks trained using three different training
strategies are compared.
� Parameter-loss only strategy (hereinafter, denoted as

P-loss). The network is trained using only parameter loss
for 400 epochs. This is in line with conventional NN-based
sound matching methods and serves as the baseline of our
experiment.

� In-domain spectral loss strategy (Synth). The network is
pre-trained using parameter loss for 50 epochs. For the
next 150 epochs, a spectral loss is gradually introduced by
increasing the weighting of the spectral loss linearly and
decreasing that of the parameter loss (Fig. 6). Finally, the
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Fig. 6. Weight scheduling of each loss during training. Spectral loss is denoted
in green, and parameter loss is denoted in orange.

strategy is trained for 200 epochs using only the spectral
loss on the in-domain dataset.

� Out-of-domain spectral loss strategy (Real). This network
is trained in the same way as the Synth strategy for the first
200 epochs. Then, the strategy is trained for 200 epochs
using the spectral loss on the out-of-domain dataset.

� Mixed strategy (Mixed). For synthesizers with effects, we
experiment with an alternative strategy, Mixed, where both
parameter loss and spectral loss are used for the entirety of
the training. This is because the spectral loss seems to be
ineffective for learning to control the delay parameter for
the chorus effect, as we saw in Section IV. In the Mixed
strategy, The network is pre-trained in the same way as
the P-loss model for the first 50 epochs. In the following
150 epochs, the weight of spectral loss is increased to be
0.5 and the weight of parameter loss is annealed to be 0.5.
In the last 200 epochs, both the parameter loss and the
spectral loss is used until the end (Fig. 6), and 50% of both
in-domain and out-of-domain dataset are used as training
data. For the out-of-domain dataset, the parameter loss is
treated as zero.

Adam optimizer was used with the initial learning rate of
0.005. The learning rate is decreased with an exponential decay
rate of 0.99 every epoch (16000 iterations). These hyperparame-
ters were tuned using the P-loss model. The network was trained
with a batch size of 64. To match the scale of the parameter loss
and spectral loss, the L1 parameter loss is multiplied by a factor
of 20 during training.

C. Estimator Network

Melspectrogram frames with 128 bands were extracted from
the input waveform with an FFT size of 1024 samples and a
hop size of 256 samples. Each frame is fed into 3 layers of 1D
convolution with batch normalization after each layer. Then, the
output is fed into a gated recurrent unit (GRU) layer with 1024
units. Finally, the output of GRU is fed into a linear layer with
the same output dimension as the number of parameters for the
synthesizer used.

As another baseline, we experimented with the Conv2D model
composed of 2D convolutional layers that takes spectrogram as
input, following the architecture of previous work [14]. This
network is trained using only the parameter loss and in-domain

data. Kernel size, padding and stride has been adjusted to process
longer audio, and batch normalization was added after each
convolution layer to improve performance. Since the original
paper approached the sound matching problem as a classification
problem by discretizing the parameters, they used a softmax
output layer. This has been changed to a sigmoid layer to fit with
our regression framework. Since this network can only estimate
static parameters for an entire sound, it was only tested with
Raw-Env and FX-Env architectures.

D. Dataset

1) In-Domain: The in-domain dataset is generated by ran-
domly sampling synthesis parameter settings and rendering
them with the same synthesizer used during training. The value
of each synthesis parameter is uniformly randomized. This
includes parameters for the oscillator and the filter, as well
as the parameters for the ADSR envelope. The note-off point
triggering the release stage of the envelope is at 3 seconds,
and the audio was recorded for 4 seconds. Parameter settings
that resulted in silence were removed from the dataset. 20,000
sound-parameter pairs were generated, and partitioned into an
80-10-10 train-validation-test split.

2) Out-of-Domain: For the out-of-domain sounds, the
NSynth dataset [21] was used. This dataset includes acoustic
and synthetic musical sounds from sample libraries. They were
played with MIDI notes in various pitch lasting 3 seconds and
recorded for 4 seconds at sampling rate of 16 kHz. 20,000 sounds
were randomly selected from the full dataset and partitioned into
an 80-10-10 train-validation-test split.

E. Measures for Match Quality

For spectral measures of match quality, we show the log-
spectral distortion (denoted as LSD), and mel-cepstral distortion
(MCD), and loudness loss (Loud). LSD is a measure between
two spectra and is defined as:

DLS =

√∑
i

10 log10
S(i)

Ŝ(i)
(6)

MCD is a measure commonly used for measuring the quality
of voice conversion and is calculated as the euclidean distance
of mel-frequency cepstrum coefficients (MFCCs) [37]. When
calculating the MFCCs, silent sections were trimmed from the
audio, and the 1st MFCC which corresponds to signal power
was discarded. The MFCC sequences were aligned using DTW
before calculating their distance. Since MFCCs are known to
correlate with timbre [38], MCD is expected to be a measure
for how close the timbre of two sounds are. Loudness loss is
calculated as the average L1 distance between the loudness of
the target sound and the output sound at each spectral frame.
Loudness was calculated using A-weighting with an FFT size
of 2048 and a frame rate of 50 Hz.

For in-domain sounds, we can calculate the L1 parameter
loss between the ground-truth parameters of the target sound
and the estimated parameters (denoted as Param). Note that all
parameters are normalized to be between 0 and 1.
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TABLE II
IN-DOMAIN SOUND ESTIMATION RESULTS FOR SYNTHESIZERS

WITHOUT EFFECTS

TABLE III
OUT-OF-DOMAIN SOUND ESTIMATION RESULTS FOR SYNTHESIZERS

WITHOUT EFFECTS

For subjective evaluation of match quality, paired compari-
son tests were conducted using a crowd-sourcing service. 150
participants in total were gathered indiscriminately, with no
requirements of musical experience. It is expected that most
participants do not have experience in using synthesizers. We
believe that this selection is adequate for a measure of perceptual
sound similarity, as one of the main targets of a sound matching
system are synthesizer novices. Each participant answered 18
questions. In each question, participants first listen to the target
sound with a headphone. Then, they listen to matches produced
by two models and answer which match was the closest to the
target sound. The order in which the matches are presented
was randomized. Out-of-domain sounds were used as the target
sound, since they are closer to queries in a real sound matching
application than in-domain sounds.

VI. SOUND MATCHING RESULTS

We perform objective and subjective evaluation of the sound
matching results and discuss our findings. Audio examples and
source code are available on the accompanying webpage1.

A. Without Effects

The objective measures of sound matching for synthesizers
without effects (Raw, Raw-Env) are shown in Tables II and
III. For both Raw and Raw-Env synthesizers, the model with
P-loss strategy performed well for in-domain sounds, but for
out-of-domain sounds it performed poorly. The model with
Real strategy, which used out-of-domain data during training,
performed the best against the out-of-domain test set as well.
This suggests that the gap between in-domain data and out-of-
domain data is significant and should be addressed by domain
adaptation. The baseline Conv2D model underperformed the

1[Online]. Available: https://hyakuchiki.github.io/SSSSM-DDSP/

Fig. 7. Spectral loss on out-of-domain sounds during training estimators for
the Raw-Env synthesizer. The gray lines at 50th epoch and 200th epoch indicate
the change in the weighting of the loss and training data.

Fig. 8. Subjective evaluation of the match quality for synthesizers without
effects. The matches produced by the three strategies were compared in a round-
robin manner. Error bars denote 95% confidence intervals.

proposed network with P-loss strategy in all measures. While
the Synth strategy was inferior to the P-loss strategy in terms of
parameter loss, it was superior to the P-loss strategy in terms
of some spectral measures. This is in line with the findings
of previous research [2] in that better parameter loss does not
always result in better spectral matches.

Using the synthesizer with envelope (Raw-Env) resulted in
overall worse matches in terms of spectral measures compared
to the models with frame-by-frame estimation. This is expected,
as the dynamics of the output sound is restricted by the simplistic
envelope model.

To examine the behavior of the network in regards to the
training procedures, we monitored the LSD for the in-domain
and out-of-domain validation set during training. This is shown
in Fig. 7. For the Synth and Real strategies, we can see that
introducing the spectral loss from the 50th epoch caused a grad-
ual decrease in LSD. After the 200th epoch, the Real strategy
used the out-of-domain data for training, and this caused the
sharp drop in LSD after this point. From this, we can see the
effectiveness of using out-of-domain sounds. The P-loss strategy
was ineffective in improving spectral loss beyond a certain point.

The results of subjective evaluation is shown in Fig. 8. For
both synthesizers, matches produced by Real strategy was sig-
nificantly preferred over those produced by P-loss and Synth
strategy. This result suggests that using out-of-domain sounds
during training is crucial for producing perceptually similar
matches in a sound matching application. There was no sig-
nificant difference between the Synth and P-loss strategies.

https://hyakuchiki.github.io/SSSSM-DDSP/
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Fig. 9. Examples of sound matching results produced by the Raw-Env syn-
thesizer. The parameters were estimated from out-of-domain sounds from the
test set using a model trained with the Real strategy.

Examples of sound matching are shown in Fig. 9. The first
target sound was a sustained synth lead. Some fluctuations in
amplitude could not be produced with a simple ADSR envelope
we adopted for the synthesizer, but the model replicated most
of the spectral characteristics. The second target sound was a
low-pitched orchestral hit, whose complex timbre cannot be
reproduced with a synthesizer. The model seemed to produced
a slightly detuned bass sound to reproduce some characteristics
of the target sound.

B. With Effects

The objective measures of sound matching for synthesizers
with effects (FX, FX-Env) are shown in Tables IV and V. The
P-loss strategy performs the best in most objective measures on
the in-domain dataset, but the Real strategy performed the best
in most objective measures on the out-of-domain dataset.

Upon examining the distribution of the estimated parame-
ters, we found that strategies switching to only spectral loss in

TABLE IV
IN-DOMAIN SOUND ESTIMATION RESULTS FOR SYNTHESIZERS WITH EFFECTS

TABLE V
OUT-OF-DOMAIN SOUND ESTIMATION RESULTS FOR SYNTHESIZERS

WITH EFFECTS

Fig. 10. Distribution of chorus parameters when estimating for the in-domain
test set of the FX-Env synthesizer. The black bar indicates the extremes of the
distribution, while the red line indicates the mean of the parameter distribution.

the second half of training (Synth and Real) underutilize the
chorus effect. We visualize the distribution of chorus param-
eters estimated for the in-domain data in Fig. 10. Although
all ground-truth parameters are distributed uniformly, Synth
and Real strategies show a very skewed distribution. The mix
parameter for the chorus effect remains high for the Synth and
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Fig. 11. Results of subjective evaluation of the match quality for synthesizers
with effects. Scale values were calculated from the paired comparisons using
case 5 of Thurstone’s method.

TABLE VI
IN-DOMAIN SOUND ESTIMATION RESULTS FOR MODELS WITH FREQUENCY

CONDITIONING

Real strategies, but the delay parameter is lower compared to
the P-loss strategy. This makes the audible effects of the chorus
module very subtle. This underutilization of the chorus effect
seems to be caused by the mismatch between spectral loss and
the chorus delay parameter we observed in Section IV. By using
the parameter loss throughout training, the Mixed strategy is
able to keep a uniform distribution of chorus effect parameters,
which indicates that the chorus effect is properly utilized.

We show the results of the subjective evaluation in Fig. 11. We
see that while the Real strategy performed the best, the Mixed
strategy improves the performance on out-of-domain sounds
compared to the P-loss schedule.

C. Frequency Conditioning

We experiment with a synthesizer architecture where the
frequency of the oscillator is separately estimated by CREPE,
a network specialized for pitch detection [35]. This synthesizer
features only one oscillator compared to the twin oscillator setup
in other synthesizer settings. Specifically, we experiment with a
synthesizer without FX (Raw-f0) and with FX (FX-f0).

As shown in Table VI, the P-loss model performed the best in
terms of parameter loss but Synth model performed better in
terms of spectral measures and loudness. Also, as shown in
Table VII, the Real model performed the best in terms of

TABLE VII
OUT-OF-DOMAIN SOUND ESTIMATION RESULTS FOR MODELS WITH

FREQUENCY CONDITIONING

TABLE VIII
IN-DOMAIN SOUND ESTIMATION RESULTS FOR SYNTHESIZERS WITH

UNORDERED/ORDERED OSCILLATORS

TABLE IX
OUT-OF-DOMAIN SOUND ESTIMATION RESULTS FOR SYNTHESIZERS WITH

UNORDERED/ORDERED OSCILLATORS

matching out-of-domain sounds. Through an informal subjec-
tive evaluation conducted by the authors, we found that the
audible differences between each model was smaller than in the
case of Raw and FX, since all models provided fairly adequate
matches.

While a one-to-one comparison of the these results with their
CREPE-less counterpart (Raw, FX) are impossible due to the
difference in the synthesizer architecture, separate estimation of
frequency seems to be effective for sound matching. However,
it would be difficult to apply this approach for estimating poly-
phonic sounds such as chords, whose fundamental frequency
cannot be reliably estimated.

D. With Unordered Oscillators

We experiment with a synthesizer whose oscillator frequen-
cies are unordered; either oscillator can be at a higher pitch
than the other. This means that for any synthesizer preset, there
is another that sounds exactly the same but with parameters
swapped between the two oscillator.

In Tables VIII and IX, we compare the sound matching results
for synthesizers with unordered oscillators (Unordered) and
ordered oscillators (Raw). The results for Raw is taken from the
previous experiment (Section VI-A). We note that the results of
Unordered synthesizer is inferior to that of the Raw synthesizer.
We suspect that this reduction in performance is because when
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the oscillators are unordered, it is unclear which part of the
sound should be matched with a particular oscillator. This is
similar to the “permutation problem” noted in audio source
separation, where sound sources can be assigned to clusters
in different ways [39]. This problem may have been present
in many previous synthesizer sound matching systems that use
synthesizers with unordered oscillators [1], [2].

Even in this setting, the trends seen in other experiments were
present. As shown in Table VIII, the Synth model was shown
to improve performance in terms of spectral measures for in-
domain sounds. Also, the Real performed the best in terms of
out-of-domain sounds (Table IX).

VII. DISCUSSION

A. Utilization of Effects

We believe that underutilization of the chorus effect seen in
Section VI-B is concerning, even if the chorus effect is not
advantageous for maximizing the perceptual similarity of the
match sound to the target sound. Every feature of the synthesizer
is important for creating the “signature sound” of the synthesizer,
and underutilization of a feature would mean that this signature
sound may be lost. It is expected that users may want to produce
a good match while still keeping the characteristics of the syn-
thesizer. Synthesizer matching should perhaps be viewed more
as a style transfer problem.

In Section VI-B, we analyzed the utilization of the chorus
effect through the distribution of estimated parameters. A more
sophisticated measure for indicating the presence of unique
characteristics of the synthesizer is left for future work.

B. Loss Function

In section IV, the gradients of the spectral loss were shown to
be ineffective for tuning some parameters such as the frequency
of the oscillators. Thus, there maybe more effective measures for
match quality than spectral loss. While perceptual distance mod-
els using neural audio embeddings [40] may be an interesting
alternative, they did not improve match similarity in preliminary
experiments we conducted so far.

C. Envelopes

In a conventional synthesizer, dynamic parameters are not
specified every frame but rather through ADSR envelope gen-
erators for ease of use. Thus, when adopting our method in a
conventional synthesizer application, the estimated parameters
of the Raw-env and Chorus-Env models can be used directly,
but the models with frame-by-frame estimation requires pro-
cessing to obtain ADSR parameters. In previous work, the
frame-wise parameters were smoothed and the split-points were
estimated [41].

D. Domain Adaptation

The main advantage of our differentiable synthesizer is that
out-of-domain sounds can be used for training. In fact, the Real
model out-performed others in terms of matching out-of-domain

sounds in most settings. From this, we see that the domain gap
present in synthesizer sound matching should be addressed if
possible.

In the case of sound matching for non-differentiable synthe-
sizers using neural networks, alternative techniques may be ef-
fective in closing the domain-gap. Since ground-truth synthesis
parameters are unknown for out-of-domain sounds, unsuper-
vised domain adaptation [42] techniques such as domain adver-
sarial training using gradient reversal layers may be used [43].

E. Using Presets

The use of hand-crafted presets as training data may relieve
the aforementioned domain gap. Since presets are handcrafted
for use in music production and often mimic the sound of
other musical instruments, the characteristics of preset sounds
should be much closer to real sounds than sounds generated
by randomizing the parameters of the synthesizer. In some of
the previous work, presets were used as training data, as they
dealt with popular synthesizers for which parseable presets
are abundantly available (over 10 K) [2], [44]. Our method is
effective for learning to control custom-designed synthesizers
for which presets are not available.

VIII. CONCLUSION

In this paper, we presented a novel framework for synthesizer
sound matching by implementing a synthesizer using differen-
tiable DSP. This framework works in a semi-supervised manner,
utilizing labeled in-domain data and unlabeled out-of-domain
data. We showed that the use of out-of-domain sounds as training
data is effective for improving the quality of matches against
out-of-domain sounds. Since out-of-domain sounds represent
the type of sounds that a user will want to match in a sound
matching application, our method will be effective in improving
the user experience of such application.
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