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Abstract—A method to perform offline and online speaker di-
arization for an unlimited number of speakers is described in
this paper. End-to-end neural diarization (EEND) has achieved
overlap-aware speaker diarization by formulating it as a multi-
label classification problem. It has also been extended for a flexible
number of speakers by introducing speaker-wise attractors. How-
ever, the output number of speakers of attractor-based EEND is
empirically capped; it cannot deal with cases where the number
of speakers appearing during inference is higher than that during
training because its speaker counting is trained in a fully super-
vised manner. Our method, EEND-GLA, solves this problem by
introducing unsupervised clustering into attractor-based EEND.
In the method, the input audio is first divided into short blocks,
then attractor-based diarization is performed for each block, and
finally, the results of each block are clustered on the basis of the
similarity between locally-calculated attractors. While the number
of output speakers is limited within each block, the total number
of speakers estimated for the entire input can be higher than the
limitation. To use EEND-GLA in an online manner, our method also
extends the speaker-tracing buffer, which was originally proposed
to enable online inference of conventional EEND. We introduce a
block-wise buffer update to make the speaker-tracing buffer com-
patible with EEND-GLA. Finally, to improve online diarization,
our method improves the buffer update method and revisits the
variable chunk-size training of EEND. The experimental results
demonstrate that EEND-GLA can perform speaker diarization of
an unseen number of speakers in both offline and online inferences.

Index Terms—Speaker diarization, online diarization, EEND.

I. INTRODUCTION

IDENTIFYING who spoke when from the input audio is re-
ferred to as speaker diarization [1], [2]. It is a core technology

of spoken language understanding of multi-talker conversations
in various scenarios such as everyday conversations [3], [4], [5],
doctor-patient conversations [6], meetings [7], lectures [8], and
video contents [9].
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While cascaded methods for diarization have been widely in-
vestigated in the literature [10], [11], [12], [13], progress on end-
to-end methods has enabled highly accurate speaker diarization
[14], [15], [16], [17], [18], [19], [20]. One reason for this advance
is the easy handling of overlapping speech. In cascaded methods,
the speaker embeddings extracted for each short segment are
clustered to perform diarization. Therefore, overlap-aware
speaker diarization cannot be done unless overlap detection and
speaker assignment are performed as post-processing [21], [22],
[23]. However, most end-to-end models can naturally handle
overlapping speech because they estimate speech segments of
multiple speakers simultaneously like multi-label classification.
Another reason is the ease of optimization as an entire diarization
system. In cascaded methods, each module (speech activity
detector, speaker embedding extractor, clustering model, etc.)
is trained independently, which makes it difficult to optimize
the overall diarization system. In contrast, end-to-end methods
use a single neural network to obtain diarization results directly
from the input audio, making optimization easier than cascaded
methods. This is also the same for online diarization. Online
diarization with cascaded methods requires all the modules
above to enable online use. On the other hand, an end-to-end
method still requires a single model by simply replacing
the network architecture with the one that enables online
inference [24]. In other methods, an end-to-end model trained
for offline use can be used for online purposes by using a buffer
to store the previous input-result pairs [25], [26].

Although end-to-end methods have several advantages over
cascaded methods, they still have room for improvement. The
biggest challenge is in the estimation of the number of speakers.
In cascaded methods, the number of speakers is estimated as
the result of clustering; thus, the number of speakers can be
flexibly determined and unlimited. In contrast, most end-to-end
methods fix the number of output speakers due to their network
architecture [14], [27]. Most methods that enable the inference
of a flexible number of speakers conduct it by outputting null
speech activities for absent speakers, so the maximum number
of speakers is limited [18], [28]. Some methods use speaker-
wise auto-regressive inference to avoid setting the maximum
number of speakers by the network architecture; but in practice,
the number of output speakers is still capped by the training
dataset [15], [16], [29], [30]. A few studies, one of which is
the basis for this paper, integrated the end-to-end approach
with unsupervised clustering to solve this problem [31], [32],
[33], [34]. The methods showed promising results on various
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benchmark datasets, but their online inferences have not been
investigated in the literature.

In this article, we propose end-to-end neural diarization
with global and local attractors (EEND-GLA), which integrates
attractor-based EEND (EEND-EDA) [15], [16] with clustering
to conduct speaker diarization without limiting the number
of speakers. In addition to the attractors calculated from the
entire recording (i.e., global attractors) in the same manner
as in EEND-EDA, we also utilize attractors calculated from
each short block (i.e., local attractors) to obtain block-wise
diarization results. Because the set of speakers and their output
order may be different among the blocks, we use clustering to
find the appropriate speaker correspondence between the blocks
on the basis of the similarities between the local attractors. Here,
we assume that the number of speakers appearing in a short
period is low, and so the number of speakers within each block
can be limited and fixed with a maximum number. However, the
total number of speakers is estimated as the result of clustering;
it is no longer limited by the network architecture or training
datasets. To enable online inference of EEND-GLA, we also
propose a block-wise speaker-tracing buffer, which extends the
original speaker-tracing buffer [25], [26] to update the buffer
elements in a block-wise manner. With this modification, we can
assume that the number of speakers within each block is limited
in the buffer as well because each block stores time-consecutive
elements.

This paper is organized on the basis of our previous paper [33],
in which the fundamental algorithm of EEND-GLA was pre-
sented. Our contributions that differ from those of the previous
paper are summarized as follows.
� We propose a block-wise speaker-tracing buffer, which

enables the online inference of EEND-GLA.
� We improve the speaker-tracing buffer by introducing

speaker-balanced sampling probabilities.
� We revisit variable chunk-size training to improve online

diarization, especially at the very beginning of inference.
� We evaluate our method on offline and online diarization

settings consistently over various prior studies.
The organization of this paper is as follows. Section II reviews

offline and online diarization methods in the literature. Section
III details conventional attractor-based EEND (Section III-A)
and speaker-tracing buffer that enables its online inference (Sec-
tion III-B). Section IV presents proposed EEND-GLA (Section
IV-A) and some modifications to the speaker-tracing buffer to
make it compatible with EEND-GLA and improve its perfor-
mance (Sections IV-B to IV-D). Sections V and VI describe
the experimental settings and results, respectively. Section VII
concludes the paper.

II. RELATED WORK

A. Offline Diarization

The conventional cascaded approach for speaker diarization
consists of the following operations: 1) speech activity detection
(SAD), 2) speaker embedding extraction from each detected
speech segment, 3) clustering of the embeddings, and 4) optional
overlap handling. The oracle SAD is sometimes used in the

experiments, but the remaining parts are actively being studied in
the literature: better speaker embedding extraction methods [35],
[36], [37], [38], clustering methods [11], [13], [39], and overlap
assignment methods [22], [40], [41]. The cascaded approach
is based on unsupervised clustering; thus, the number of output
speakers can take an arbitrary value and can be set flexibly during
inference.

Different end-to-end approaches for speaker diarization have
been studied, but they have drawbacks when performing speaker
diarization without any restrictions. Some methods such as
personal VAD [42] and VoiceFilter-Lite [43] are not suited
for speaker-independent diarization because they require a tar-
get speaker’s embedding vector (e.g., d-vector) for inference.
Target-speaker voice activity detection (TS-VAD) accepts mul-
tiple speakers’ embeddings, but they have to be obtained in ad-
vance from another diarization method such as a cascaded-based
approach [17] or end-to-end neural diarization (EEND) [44]. The
initial models of TS-VAD and EEND [14], [27] fix the output
number of speakers with their network architectures, so they are
not suited for diarization of an unknown number of speakers.
The recurrent selective attention network (RSAN) [45], or some
extensions of TS-VAD [28] and EEND [15], [18], [29] can deal
with a flexible number of speakers. However, the TS-VAD-based
methods explicitly determine the maximum number of outputs
with their network architecture, except for a few recent attempts
such as multi-target filter and detector (MTFAD) [46] and
Transformer-based TS-VAD [47]. The EEND-based methods
do not have such explicit limitations, but the maximum number
of speakers is empirically known to be bounded by their training
datasets. Whether or not RSAN can deal with an unlimited
number of speakers is unclear because only the speaker count-
ing accuracies on zero, one, and two-speaker conditions were
reported in the paper and each was observed during training.
Making the number of output speakers not only flexible but also
unlimited is an important challenge for end-to-end diarization.

The combination of an end-to-end approach and clustering is
a promising direction to solve the problem of the limitation of the
number of speakers. For example, EEND as post-processing [23]
and overlap-aware resegmentation [12] use EEND to refine the
results obtained with cascaded diarization systems. Multi-scale
diarization decoder [48] also employs a similar post-processing
approach. In these methods, the initial results are based on
the clustering of speaker embeddings; hence, the number of
output speakers can be arbitrary. However, this nullifies the main
advantage of the end-to-end approach, that is, simplicity. The
other approach is EEND-vector clustering [31], [32], [34]. It
uses EEND for shortly divided blocks and then finds the speaker
corresponding between them using speaker embeddings. It is
relevant to our method in this paper, but some differences exist
between them. One is that EEND-vector clustering requires
unique speaker identity labels over the recordings in the training
set. This means that we must know whether or not a pair of
speakers that appeared in different recordings has the same iden-
tity. Such information can be easily obtained from simulation
data but is not always suitable for real recordings. EEND-GLA
only requires the speaker labels within each recording; thus,
we can use such real recordings for training. This property is
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also powerful when conducting, for example, unsupervised or
semi-supervised domain adaptation [49]. Another difference is
that EEND-vector clustering requires a somewhat long length
of blocks (e.g., 30 s) to obtain reliable speaker embeddings to
achieve the best performance. However, because the number
of output speakers within a block is limited by the network
architecture, the length would result in a limited output number
of speakers in the final results. Another problem is that the
length causes a severe latency if we want to use it for online
inference. However, EEND-GLA splits a sequence into short
blocks after generating frame-wise embeddings from acoustic
features using stacked Transformer encoders. As a result, the
frame-wise embeddings can capture the global context, so we
can use a lower block length (5 s in this paper) than EEND-vector
clustering.

B. Online Diarization

There are also cascaded and end-to-end approaches to online
diarization. In cascaded approaches, of course, all modules
have to work in an online manner. The most crucial part is a
clustering of speaker embeddings, and many methods have been
proposed for that in the literature, e.g., UIS-RNN [50], UIS-
RNN-SML [51], constraint incremental clustering in overlap-
aware online speaker diarization [52], and turn-to-diarize [53].
Basically, online clustering is not as good as offline clustering.
In particular, VBx [13], the current state-of-the-art offline clus-
tering method for diarization, relies on two-stage clustering to
refine the results and thus is difficult to be used for online infer-
ence. In fact, even if the rest of the modules are similar between
offline and online methods, replacing VBx with online clustering
reportedly causes a significant drop in performance [52].

On the other hand, end-to-end approaches have also been ex-
plored in online diarization. Online diarization with end-to-end
models has two directions. One is to train a model with frame-
wise or block-wise inputs separately from the offline model. For
example, Online RSAN [54], [55] is trained with block-wise
inputs to extend the original RSAN [45] for an online manner.
This method uses speaker embeddings to convey information
between blocks to make the order of output speakers consistent.
BW-EDA-EEND [24] replaced the Transformer encoders in
EEND with Transformer-XL [56] to extend EEND-EDA [15],
[16] to deal with block-wise inputs. In this method, the hidden
state embeddings obtained during the processing of previous
blocks are used to process the current block, thereby solving the
speaker permutation ambiguity between blocks. This direction
is beneficial to optimize online diarization itself, but the train-
ing cost is doubled if we need to prepare diarization systems
for both offline and online inference independently. The other
possibility is to divert an offline diarization model for online
inference. For this purpose, speaker-tracing buffer [25], [26]
has been proposed to implement online inference of EEND with
no modification of the network architecture. It stores acoustic
features and their corresponding diarization results of the se-
lected past frames to solve the speaker permutation ambiguity
(see Section III-B for a detailed explanation). Because it was

reported that EEND-EDA with speaker-tracing buffer outper-
formed BW-EDA-EEND [26], we focused on this direction in
this study.

III. CONVENTIONAL METHOD

A. Attractor-Based End-to-End Neural Diarization

End-to-end neural diarization (EEND) is a framework to esti-
mate multiple speakers’ speech activities from the input audio.
In particular, attractor-based EEND (EEND-EDA) [15], [16]
also estimates the number of speakers simultaneously. Given
T -length F -dimensional acoustic featuresX ∈ RF×T , they are
first converted to the same length ofD-dimensional frame-wise
embeddings E ∈ RD×T using stacked Transformer encoders:

E = TransformerEncoder(X) ∈ RD×T . (1)

Then, the encoder-decoder-based attractor calculation module
(EDA) calculates attractorsas ∈ (0, 1)D for each speaker s ∈ N
from E in (1) in a sequence-to-sequence manner as

a1,a2, · · · = EDA(E). (2)

The decoder calculation in (2) continues as long as the attractor
existence probability ẑs calculated from as is not less than 0.5,
and the largest s that fulfills ẑs ≥ 0.5 is the estimated number
of speakers Ŝ, as follows:

ẑs = σ (Linear (as)) ∈ (0, 1), (3)

Ŝ = min {s | s ∈ Z≥0 ∧ ẑs+1 < 0.5} , (4)

where σ(·) is the element-wise sigmoid function. Finally, the
estimations of speech activities Ŷ are calculated as dot products
between the frame-wise embeddings and attractors with their
existence probabilities greater than or equal to 0.5:

Ŷ = σ

([
a1 · · · aŜ

]T
E

)
∈ (0, 1)Ŝ×T . (5)

During training, the following loss is used for network opti-
mization:

Lglobal = Ldiar + αLexist, (6)

where α is the weighting parameter, which was set to 1 in this
study. The first termLdiar is the permutation-free diarization loss,
which optimizes the output speech activities, defined as

Ldiar =
1

TS
arg min
φ∈Φ(S)

H
(
Y, PφŶ

)
, (7)

whereΦ(S) is a set of all the possible permutations of (1, . . . , S),
Pφ ∈ {0, 1}S×S is the permutation matrix that corresponds to
the permutation φ, H(·, ·) is the sum of element-wise binary
cross entropy, and S is the ground-truth number of speakers.
Note that the estimation of speech activities Ŷ is calculated using
the ground-truth number of speakers during training, i.e., Ŷ ∈
(0, 1)S×T . The second term Lexist is the attractor existence loss,
which optimizes the number of output attractors, defined as

Lexist =
1

S + 1

S+1∑
s=1

H (zs, ẑs) , zs =

{
1 (s ∈ {1, . . . , S})
0 (s = S + 1)

.

(8)
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Fig. 1. Online diarization using speaker-tracing buffer proposed in [25], [26].

Following the previous study [16], the attractor existence loss is
used to update only the parameters of the linear layer in (3).

B. Online Diarization With Speaker-Tracing Buffer

A speaker-tracing buffer has been proposed to enable online
inference of EEND without additional training [25], [26]. The
speaker-tracing buffer stores the past acoustic features and the
corresponding estimation to solve the speaker permutation am-
biguity. The schematic diagram of online diarization using a
speaker-tracing buffer is shown in Fig. 1.

In the situation of online diarization, chunked acoustic fea-
tures sequentially arrive, and the length of each chunk is ν. Sup-
pose X (buf)

n−1 ∈ RF×T (buf)
n−1 and Y (buf)

n−1 ∈ RŜn−1×T (buf)
n−1 are features

and the corresponding estimations stored in the buffer just before
the n-th input, respectively, where T (buf)

n−1 is their length and Ŝn−1
is the previously estimated number of speakers. Givenn-th input
Xn ∈ RF×ν , it is concatenated with the features in the buffer
and processed by EEND fEEND as

[
Ŷ (buf)
n−1 Ŷn

]
= fEEND

([
X (buf)
n−1 Xn

])
∈ (0, 1)Ŝ

′
n×(T (buf)

n−1+ν), (9)

where Ŝ ′n is the newly estimated number of speakers1, and Ŷ (buf)
n−1

and Ŷn are the estimated results that correspond toX (buf)
n−1 andXn,

respectively. Here, the previously estimated number of speakers
Ŝn−1 and the newly estimated one Ŝ ′n may differ, e.g., Ŝn−1 = 2
and Ŝ ′n = 3 in Fig. 1. To align them to the same number, we first
update each of Ŷ (buf)

n−1 ∈ (0, 1)Ŝ
′
n×T (buf)

n−1 and Ŷn ∈ (0, 1)Ŝ
′
n×ν to

have Ŝn = max(Ŝn−1, Ŝ ′n) rows by zero padding. The order of
speakers is then permuted to be aligned to that of Ŷ (buf)

n−1 as

[
Ŷ (buf)
n−1 Ŷn

]
← Pψ

[
Ŷ (buf)
n−1 Ŷn

]
, (10)

ψ = arg max
φ∈Φ(Ŝn)

〈
Y (buf)
n−1 , PφŶ

(buf)
n−1

〉
F
, (11)

1Ideally, Ŝ′n is not less than Ŝn−1.

where 〈A,B〉F denotes the Frobenius inner product between
real-valued two matrices A = [aij ] and B = [bij ] defined as2

〈A,B〉F :=
∑
i,j

aijbij . (12)

Note that (11) is executable in polynomial time by using the
well-known Hungarian algorithm. Finally, the permuted Ŷn is
output as the estimated result for Xn.

For the next (i.e., (n+ 1)-th) input, the buffer is updated with
the current input features and the corresponding results. If the
buffer length M is large enough to store all the features and
results, i.e., T (buf)

n−1 + ν ≤M , we update the buffer using

X (buf)
n ←

[
X (buf)
n−1 Xn

]
, (13)

Y (buf)
n ←

[
Ŷ (buf)
n−1 Ŷn

]
. (14)

If T (buf)
n−1 + ν > M , only M frames among them are selected to

be stored. The original speaker-tracing buffer mainly utilized the
following two update strategies.

1) First-in-first-out (FIFO): acoustic features and results
of the latest M frames are always stored in the buffer.
Speakers who do not appear in the last M frames are not
tracked with this strategy; thus, this strategy alone is not
preferable.

2) Sampling: the features and results of informative M
frames to solve speaker permutation ambiguity are se-
lected among T (buf)

n−1 + ν and stored. In the previous stud-
ies [25], [26], sampling probabilities based on Kullback-
Leibler (KL) divergence were used. The KL divergence
at the t-th frame ωt is calculated from the speaker-
normalized posteriors ȳs,t and the discrete uniform dis-
tribution with the posterior probability of 1

Sn
as

ωt =

Sn∑
s=1

ȳs,t log (ȳs,tSn) , (15)

ȳs,t =
ys,t∑Sn

s′=1 ys′,t
. (16)

2In the original STB paper, mean normalization is applied for each of A and
B before the calculation of the Frobenius inner product, but it does not affect
the result so we omit it here.
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Fig. 2. t-SNE visualization of frame-wise embeddings extracted from simu-
lated 5-speaker mixtures (top) and 6-speaker mixtures (bottom). The EEND-
EDA used for extraction was trained using {1,2,3,4}-speaker mixtures.
Single-speaker frames are denoted by the dots with colors corresponding to
the speaker identities and overlapped frames are denoted by the crosses in light
gray. Frames of silence were excluded from the visualization.

The sampling probabilities ω̃t are defined as the normal-
ized KL divergence so that the sum is one:

ω̃t =
ωt∑
t′ ωt′

. (17)

With the aforementioned speaker-tracing buffer, a trained
EEND model can be used for online inference as it is. However,
EEND is generally trained with a fixed length of chunks, e.g.,
500 frames, so the diarization performance decreases at the
very beginning of the inference where the number of frames
is low. To cope with this problem, variable chunk-size training
(VCT) was proposed [25]. For VCT, the length of each chunk
is varied by masking the input minibatch. It has been evalu-
ated in two-speaker conditions [25] but has not been evaluated
in the flexible-number-of-speaker conditions [26]. Even the
two-speaker experiments have a limited analysis of how VCT
improved the diarization error rates (DERs). These aspects will
be analyzed in Section VI-A.

IV. PROPOSED METHOD

A. EEND With Global and Local Attractors

While EEND-EDA can treat a flexible number of speakers,
the maximum number of speakers to be output was empirically
revealed to be limited by the dataset used during training. For
example, if EEND-EDA is trained using mixtures, each of which
contains at most four speakers, it cannot produce a valid result
for the fifth or later speaker even if a mixture contains more
than four speakers. To reveal which part causes this limitation,
we visualized the frame-wise embeddings that were output from
the last Transformer encoder using t-SNE [57] in Fig. 2. Even
though EEND-EDA was trained on mixtures, each of which
consists of at most four speakers, five or six speakers’ speeches
were clearly separated in the embedding space. The visualization
revealed that EDA fails to estimate attractors for the unseen-
number-of-speaker cases.

The proposed method assumes that the number of speakers
that appear in a short period is bounded in practice. We first
conduct attractor-based diarization for each short block and then

find inter-block speaker correspondence on the basis of the sim-
ilarity of the attractors. We call the attractors calculated within
each block local attractors. Even if the number of speakers
within each block is limited owing to EDA, the total number of
speakers within a recording can be higher than the upper bound.
Our method also utilizes global-attractor-based diarization just
as EEND-EDA does.

1) Training: Fig. 3 illustrates the proposed diarization based
on global and local attractors, which we call EEND-GLA. The
global-attractor-based diarization is identical to EEND-EDA
described in Section III-A; in this section, we introduce local-
attractor-based diarization. Given frame-wise embeddings E,
we first split them into short blocks, each of which has a length of
λ. Here, we assume that the sequence of frame-wise embeddings

is split into L blocks, i.e., E :=
[
E(1) · · · E(L)

]
, where

E(l) ∈ RD×λ for l ∈ {1, . . . , L} and L := T
λ

.3 From the l-th

block, local attractorsa(l)
1 , . . . ,a

(l)
Sl

=: A(l) are calculated using

(2), and the speech activities for the l-th block Ŷ (l) ∈ (0, 1)Sl×λ

are calculated using (5). Here, Sl is the number of speakers
that appeared in the l-th block, which satisfies 0 ≤ Sl ≤ S. The
diarization loss L(l)

diar and attractor existence loss L(l)
exist for the

l-th block are calculated using (7) and (8), respectively.
The local attractors are clustered to find inter-block speaker

correspondence. Since the local attractors themselves are op-
timized to minimize the diarization error, non-parametric sim-
ilarities between them are not fit for speaker clustering, like
cascaded methods require a scoring model based on probabilistic
linear discriminant analysis. EEND-GLA includes the scoring
model equivalent that is jointly optimized with the diarization
and attractor existence losses. We first convert them by using the
following Transformer decoder:

B(l) = TransformerDecoder
(
A(l), E,E

)
∈ RD×Sl , (18)

where the first, second, and third arguments for the Transformer
decoder are query, key, and value inputs, respectively. Here,
the converted attractors B are expected to be speaker discrim-
inative within each input audio. Thus, we refer to them as
relative speaker embeddings, as contrasted to general speaker
embeddings with global discriminability such as x-vectors. The
relative speaker embeddings from all the blocks are gathered
B = [bi]i := [B(1), . . . , B(L)] ∈ RD×S∗ and optimized to min-
imize the pairwise loss defined as follows:

Lpair =
∑

i,j∈{1,...,S∗}

1

S2cicj

(
χij (1− sim (bi, bj))

+ (1− χij) [sim (bi, bj)− δ]+
)
, (19)

χij =

{
1 (bi and bj correspond to the same speaker)

0 (otherwise)
, (20)

where S∗ :=
∑L
l=1 Sl is the total number of local attractors,

sim(bi, bj) :=
bT
i bj

‖bi‖‖bj‖ is the cosine similarity between bi and

3For simplicity, we assume that the length of the sequence T is divisible by
λ, but in practice, the length of the last block can be shorter than λ.
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Fig. 3. End-to-end neural diarization with global and local attractors (EEND-GLA). The attractor existence losses are omitted from the illustration.

bj , and [·]+ is the hinge function. ci (cj) is the number of local
attractors that correspond to the i-th (j-th) attractor’s speaker,
and this correspondence is obtained by finding the optimal
speaker permutation when calculating the diarization loss using
(7). This pairwise loss aims to make the angle between relative
speaker embeddings of the same speaker as small as possible and
those of different speakers at leastarccos δ. In this paper, we used
δ = 0.5 during pretraining and δ = 0 during adaptation. Note
that this loss definition is based on the contrastive loss used for
instance segmentation in computer vision [58], [59]. The process
of grouping pixel-wise embeddings into instances is very similar
to our problem setting of grouping local attractors into speaker
identities. While x-vectors or frame-wise embeddings cannot
be hardly assigned to one of the speaker identities because of
overlaps, the local attractors can be divided by speaker identities
because each of them corresponds to one speaker.

As a result, the loss based on local attractors is defined as

Llocal =
1

L

L∑
l=1

(
L(l)

diar + αL(l)
exist

)
+ γLpair, (21)

where γ is the weighting parameter for which we set γ = 1 in
this study. The total loss of EEND-GLA is defined as a sum of
global- and local-attractor-based losses:

Lboth = Llocal + Lglobal. (22)

2) Inference: During inference, the number of speakers
within each block Ŝl ∈ Z≥0 is estimated using (4), and speech
activities of Ŝl speakers are estimated using (5). Speaker cor-
respondence between blocks can be found by clustering the
relative speaker embeddings B, and the problem here is how
to determine the number of clusters.

Some conventional methods based on spectral clustering [10],
[11] consist of the following steps: 1) construct an affinity matrix
from frame-wise embeddings, 2) calculate its graph Laplacian,
3) use eigenvalue decomposition, and 4) determine the number

of speakers as the value that maximizes the eigengap. Some
tricks were used in these studies to reduce the effect of noise
in the affinity matrix. In one study, an affinity matrix calculated
from frame-wise d-vectors was smoothed by using Gaussian
blur [10]. Another study utilized p nearest binarization to the
affinity matrix to remove unreliable values [11]. In our case,
local attractors are extracted not only for each block but also for
each speaker within a block. Smoothing should be applied along
the time axis of each speaker, but in this case, smoothing cannot
be performed because the proper inter-block correspondence of
the speakers has not been obtained. In our method, a few local
attractors are calculated every five seconds, and hence p nearest
neighbor binarization is also not suitable because it generally
requires dozens of embeddings per cluster.

Therefore, in EEND-GLA, we use the unprocessed affinity
matrix to estimate the number of clusters. However, if we esti-
mate it based on the eigengaps of graph Laplacian, noises cause
a lot of tiny clusters because the size of clusters is not considered
in this approach. Thus, we use the affinity matrix directly instead
of its graph Laplacian to penalize small clusters more. Given the
positive-semidefinite affinity matrix R = (rij) ∈ [−1, 1]S∗×S∗ ,
where rij = sim(bi, bj), the number of clusters Ŝ can be esti-
mated using its eigenratios instead of eigengaps as

Ŝ = arg min
1≤s≤S∗−1

λs+1

λs
, (23)

where λ1 ≥ · · · ≥ λS∗ are the non-negative eigenvalues of R,
which are obtained with matrix decomposition:

R = V diag (λ1, . . . , λS∗)V
−1, (24)

where each row of V ∈ RS∗×S∗ is the eigenvector that corre-
sponds to the eigenvalues. Note that the eigenvalues indicate the
number of elements of each cluster where local attractors are
softly assigned.

We used the hinge function to calculate the pairwise loss in
(19), and we also know that attractors from the same block
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correspond to different speakers. Thus, instead of R, we use
the affinity matrix R′ = (r′ij) defined as

r′ij =

⎧⎪⎨
⎪⎩

1 (i = j) (bi and bj are from

the same block)
1

1−δ [sim (bi, bj)− δ]+ (otherwise)

, (25)

where 1(cond) is the indicator function that returns 1 if cond
is true and 0 otherwise. Matrix decomposition is then applied
to R′ to obtain eigenvalues λ′1 ≥ · · · ≥ λ′S∗ in the same manner
as in (24). Although R′ is no longer positive-semidefinite, its
eigenvalues are still good indicators of cluster size. We only
use the eigenvalues greater than or equal to one to estimate the
number of speakers Ŝ as follows:

Ŝ = arg min
1≤s≤S∗−1

λ′s≥1

λ′s+1

λ′s
. (26)

Although we set the affinity value between a pair of local
attractors from the same block to be zero in (25), naive clus-
tering methods cannot force them to be assigned to different
clusters. Thus, we utilize a clustering method that can use
cannot-link constraints. COP-Kmeans clustering [60], which
is used in EEND-vector clustering [31], [32] is one possible
choice, but it sometimes results in failure because it cannot
find the solution that fulfills the given constraints. Thus, we use
the CLC-Kmeans algorithm [61], which is the modified version
of the COP-Kmeans clustering, for inference of EEND-GLA.
To avoid having no solution due to cannot-link constraints,
we update the estimated number of speakers before applying
clustering as

Ŝ ← max

(
Ŝ, max

1≤l≤L
Ŝl

)
. (27)

EEND-GLA is optimized using both global- and local-
attractor-based losses as in (22), and we can use not only
local attractors but also global attractors for inference. Al-
though local-attractor-based inference can deal with an arbi-
trary number of speakers, we found that global-attractor-based
inference performs better when the number of speakers is low
because it is trained in a fully supervised manner. Therefore,
we use the results from global and local attractors depending
on the estimated number of speakers. Assume that EEND-GLA
is trained on mixtures each of which contains at mostN speakers.
If the estimated number of speakers using global attractors is less
than N , we use the inference results based on global attractors.
If it is equal to or larger than N , we use the inference results
based on local attractors. In this paper, the value of N is set to
four based on the simulated datasets we used for training, which
are detailed in Section V. Even after the domain adaptation with
real datasets with a larger number of speakers, we keep the value
of N unchanged during inference.

B. Block-Wise Speaker-Tracing Buffer

As introduced in Section III-B, the original speaker-tracing
buffer (STB) includes a frame-wise (FW) selection step to
meet the requirement of the buffer length. Hereafter, for sake

of distinction, we refer to it as FW-STB. When trying to use
FW-STB with EEND-GLA to perform online diarization of an
unlimited number of speakers, the frame-wise selection can
become a problem if the selected frames are not consecutive
in the whole buffer. The FIFO strategy ensures that the frames
in the buffer are consecutive, but as mentioned in Section III-B,
it has difficulty in capturing long context. On the other hand,
while the sampling strategy can maintain long-range speaker
consistency, the buffer can potentially contain non-consecutive
frames of many different speakers; thus, the assumption of a
limited number of speakers in a limited sequence of frames in
the buffer does not hold.

To overcome this dilemma, we propose a block-wise speaker-
tracing buffer (BW-STB). The core idea of BW-STB is that it
guarantees that the buffer consists of blocks, and each block con-
tains the features and the corresponding results of consecutive
frames. If each block in the buffer is short enough that we can
assume a limited amount of speakers, EEND-GLA can be used
in the same way as the offline inference in which local attractors
are obtained from the blocks formed by consecutive frames.
However, a naive implementation that waits for block-length
features to accumulate and then processes them would result
in block-length latency. Thus, we use a frame-wise FIFO buffer
and block-wise sampling buffer together to enable a low-latency
online inference of EEND-GLA.

Fig. 4 shows the proposed BW-STB. For simplicity, we as-
sume that the buffer lengthM is divisible by and longer than the
block length λ, and λ is divisible by the online processing unit
ν. M -length BW-STB is divided into blocks of length λ each.
The first M

λ
− 1 is updated via block-wise sampling, and the last

one is updated in a frame-wise FIFO manner. We call them the
sampling buffer and the FIFO buffer, respectively. The features
in BW-STB before the n-th inputXn ∈ RF×ν can be written as

X (buf)
n−1 =

[
X (samp)
n−1 X (FIFO)

n−1
]
∈ RF×M , (28)

X (samp)
n−1 =

[
X (samp)
n−1 [1] . . . X (samp)

n−1
[
M
λ
− 1

]] ∈ RF×(M−λ).

(29)

Here,X (samp)
n−1 are the features in the sampling buffer, where each

X (samp)
n−1 [k] ∈ RF×λ (k ∈ {1, . . . , M

λ
− 1}) are the features of

consecutiveλ frames.X (FIFO)
n−1 ∈ RF×λ is the features in the FIFO

buffer, which contains those of the latest consecutive λ frames.
In addition, each buffer contains the corresponding diarization
results Y (samp)

n−1 ∈ (0, 1)Ŝn−1×(M−λ) and Y (FIFO)
n−1 ∈ (0, 1)Ŝn−1×λ.

Given the input Xn, the features in the FIFO buffer are first
updated as

X (FIFO)
n = X (FIFO)

n−1

[
Oν,λ−ν Oν,ν

Iλ−ν Oλ−ν,ν

]
+Xn

[
Oν,λ−ν Iν

]
,

(30)
where Ia is an a× a identity matrix. Note that the first λ− ν
columns of X (FIFO)

n are identical to the last λ− ν columns of
X (FIFO)
n−1 , and the last ν columns of X (FIFO)

n are identical to Xn.
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Fig. 4. Online diarization using speaker-tracing buffer with block-wise update.

TABLE I
EXAMPLE OF SAMPLING WEIGHTS DETERMINED BY (15) AND (32)

Then, the diarization results are calculated from the concatena-
tion of the features in the sampling and FIFO buffers as[

Ŷ (samp)
n−1 Ŷ (FIFO)

n

]
= fEEND

([
X (samp)
n−1 X (FIFO)

n

])
. (31)

With this estimation, the number of speakers is aligned via zero
padding as described in Section III-B, and then the speaker order
of Ŷ (samp)

n−1 and Ŷ (FIFO)
n is aligned to that of Y (samp)

n−1 using (10)–
(12). Next, we output the last ν columns of the updated Y (FIFO)

n ,
which correspond to the input Xn.

The sampling buffer is updated every time the FIFO buffer
is fully replaced, i.e., after processing the n-th input where
n ≡ 0 mod λ

ν . During updates, M
λ
− 1 blocks are selected from

X (samp)
n−1 [1] . . . X (samp)

n−1 [M
λ
− 1] and X (FIFO)

n , and they are stored

as X (samp)
n in the sampling buffer. The sampling probability of

each block is calculated as a sum of ω̃t of the frames in the block
calculated using (17).

With the aforementioned BW-STB, the online inference hav-
ing the algorithmic latency of ν(
 λ) is enabled. Note that
online diarization is performed using the FIFO buffer in the
same way as FW-STB from the first to λ

ν -th iterations because
the sampling buffer is empty.

C. Speaker-Balanced Sampling Probabilities

The score in (15) is designed to weigh more on frames where
a single speaker dominates the conversation; as a result, the
speaker-tracing buffer becomes informative enough to solve
the speaker permutation ambiguity in (10)–(11). However, in
the case where some speakers dominate the conversation, the
buffer contents might be biased toward those speakers, and
hence the permutation ambiguity cannot be solved correctly.
For example, in the two-speaker example shown in Table I,
ω̃t is maximized at t ∈ {1, 2, 3, 4, 5, 8}, where (y1,t, y2,t) ∈
{(0.001, 0.999), (0.999, 0.001)}. If t = 8 is not selected to be
stored in the buffer and the third speaker emerges in the next

Fig. 5. Batch creation in the VCT.

input, we cannot distinguish between the second and third
speakers.

To make the buffer unbiased, we introduce the weighting
factor rt into the sampling probability ωt to balance the number
of frames to be stored for each speaker. We propose the following
alternative:

ωt = rt

Sn∑
s=1

ȳs,t log (ȳs,tSn)︸ ︷︷ ︸
(15)

, (32)

where rt is defined as

rt =

Sn∑
s=1

ys,t∑T
t′=1 ys,t′

. (33)

By this modification, in Table I, the sampling probability of
t = 8 becomes about a five times larger value (0.497) than that
of t ∈ {1, 2, 3, 4} (0.101); thus, it is more likely to prevent
the buffer from storing information that is biased toward the
dominant speaker, i.e., the first speaker.

D. Variable Chunk-Size Training Via Minibatch Reshaping

The VCT described in the last paragraph of Section III-B var-
ied the length of sequences by masking a part of each sequence
(Fig. 5(b)). However, its calculation efficiency is low because
the masked part does not contribute to the network optimization
while still consuming GPU memory during training.

Therefore, we consider a method to use inputs of various
lengths in the training process by reshaping the minibatch in-
stead of masking. If the minibatch at an iteration has minibatch
size B and input length T , we first reshape it to be a new
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TABLE II
DATASETS USED IN OUR EXPERIMENTS

minibatch with the size B′ = BT
T ′ and length T ′, and then use

it for training. For Fig. 5, the original minibatch has the size of
four (Fig. 5(a)), and the reshaped minibatch has the size of eight
by setting T ′ = T

2 (Fig. 5(c)). In this paper, we set B = 64 and
T = 2000, and in each iteration, with a probability of 50%, we
set T ′ to one of {50, 100, 200, 500, 1000} to conduct VCT.

V. EXPERIMENTAL SETTINGS

The initial training of each EEND-based model was based on
the simulated mixtures shown in Table II(a). These were made
with NIST SRE and Switchboard datasets as speech corpora,
MUSAN [65] as a noise corpus, and simulated room impulse
responses [66], following the protocol used for the original
EEND [14]. Following our previous studies [16], [33], we first
trained each EEND-based model using Sim2spk from scratch
for 100 epochs and then finetuned it using the concatenation
of Sim{1,2,3,4}spk for another 50 epochs. The Adam opti-
mizer [67] with Noam scheduler [68] was used during the
training using the simulated datasets. For online purposes, the
model was adapted using the adaptation set of Sim{1,2,3,4}spk
for an additional 100 epochs using variable chunk-size training
(VCT). This time, the Adam optimizer with a fixed learning
rate of 1× 10−5 was used. Note that the adaptation set of each
simulated dataset was the subset of the corresponding training
set. The training process took about two weeks with a single
NVIDIA Tesla V100 GPU.

We also used the real datasets shown in Table II(b) for evalu-
ation. The model pretrained using Sim{1,2,3,4}spk was further
adapted to the CALLHOME, DIHARD II, and DIHARD III
datasets, respectively. The adaptation was conducted for another

TABLE III
STEP-BY-STEP IMPROVEMENT IN THE ONLINE INFERENCE OF EEND-EDA ON

THE CALLHOME DATASET

100 epochs using the Adam optimizer with a learning rate of
1× 10−5. For online purposes, VCT was used instead.

For EEND-GLA, we used four- or six-stacked Transformer
encoders, each outputting 256-dimensional frame-wise embed-
dings. We call each EEND-GLA-Small and EEND-GLA-Large,
respectively. For EDA, we used an encoder-decoder based on
single-layer long short-term memory with 256-dimensional hid-
den units. Note that the order of the input sequence is shuffled
before being fed into EDA following the conventional study [16].
For the inputs to the models, 345-dimensional acoustic features
extracted for each 100ms were used, and they were obtained
in the following steps: 1) extract 23-dimensional log-mel filter-
banks for every 10ms, 2) apply frame splicing (±7 frames), and
3) subsample by a factor of 10.

Unless otherwise specified, the length of an online processing
unit ν was set to 1 s, and the buffer length was set to 100 s.
The block length λ of the BW-STB was set to 5 s following
EEND-GLA [33]; as a result, the length of sampling and FIFO
buffers are 95 s and 5 s, respectively.

For evaluating offline diarization, we utilized several cascaded
methods [12], [13], [22], [46], [69] and end-to-end methods [15],
[16], [29], [32] for comparison. For evaluating online diariza-
tion, we used FW-STB with EEND-EDA based on four-stacked
Transformers [26]. In addition, we referred to the results of
various conventional online diarization methods [24], [26], [50],
[51], [52], [70], [71] on various datasets. Some cascaded com-
parison methods [50], [51], [70] used the oracle SAD; for a fair
comparison, we used SAD post-processing [16] for the results
of EEND-based methods to recover missed speech and filter
false-alarmed speech.

For the evaluation protocol, we used DERs. Following the
previous studies [16], we forgave 0.25 s of its collar tolerance
in the evaluations of the simulated datasets and CALLHOME,
while we did not allow such a collar in the evaluations of the
DIHARD II and DIHARD III datasets.

VI. RESULTS

A. Evaluation of the Variations of Speaker-Tracing Buffer

Before we dive into the evaluation of EEND-GLA, we eval-
uated the effects of each modification on the speaker-tracing
buffer using EEND-EDA. Step-by-step improvement on the
CALLHOME dataset is shown in Table III. The DERs were
significantly reduced by using VCT. In a comparison of the
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Fig. 6. Frame-wise breakdown of diarization error on CALLHOME.

results in the third and fourth lines, VCT by reshaping outper-
formed that by masking in all the conditions. Introducing the
speaker-balancing term in the sampling probability as in (32)
improved the DERs except when the buffer length was too short
to store enough information to solve the speaker permutation
ambiguity, as in the fifth line. Finally, replacing FW-STB with
BW-STB did not affect the diarization performance as shown in
the last line, except when the buffer length was 10 s, where the
sampling buffer consisted of only one block.

For the detailed error analyses, we show the frame-level
breakdown of the diarization error of FW-STB with and without
VCT in Fig. 6. Each graph was smoothed along the time axis
using the Savizky-Golay filter [72] for visualization purposes.
We clearly observed that VCT drastically decreased the error
caused by missed speech at the very beginning of recordings
with a slight increase in false alarms. Note that the DERs shown
in Fig. 6 are different from those in Table III because the results
are without a collar.

In the following experiments, we used FW-STB and BW-STB
in the last two lines in Table III, i.e., VCT by reshaping and
speaker-balanced sampling probabilities were utilized.

B. Evaluation of Offline and Online Diarization for an
Unlimited Number of Speakers

1) Simulated Dataset: We first evaluated EEND-GLA on the
simulated datasets. The results are shown in Table IV.

For the evaluation of offline processing, Kaldi’s x-vector
clustering recipe4 was used as a baseline. The x-vector extractor
was trained using the same set of datasets that were used to
create the simulated datasets in Table II(a). Note that the baseline
has no way to handle overlapping speech. EEND-EDA and
EEND-GLA-Small performed evenly on the datasets of the
seen number of speakers, while EEND-GLA-Small significantly

4https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2

TABLE IV
DERS (%) ON THE SIMULATED DATASETS WITH 0.25 s COLLAR TOLERANCE.

UNLESS OTHERWISE SPECIFIED, EACH ONLINE SYSTEM HAD AN

ALGORITHMIC LATENCY OF 1 S.

outperformed EEND-EDA on the datasets of the unseen number
of speakers. It clearly showed that EEND-GLA-Small could deal
with a higher number of speakers than that observed during
training by introducing clustering. It is worth mentioning that
EEND-EDA sometimes outputs more than four attractors, but
the results in Table IV in which ignoring the fifth and subsequent
attractors improved the DERs indicate that these attractors were
not correctly calculated to represent the fifth and subsequent
speakers. Using EEND-GLA-Large improved the DERs for the
seen number of speakers, but those for the unseen number of
speakers were degraded. We considered this to be because the
network was overtrained on the seen number of speakers with
the larger model. For comparison, we also showed the DERs of
EEND-EDA trained using mixtures, each of which contained
at most five speakers. It showed a better DER on five-speaker
mixtures, but the DER on six-speaker mixtures degraded rapidly.
EEND-GLA achieved DERs comparable to EEND-EDA for
five-speaker mixtures and significantly outperformed it for six-
speaker mixtures.

In terms of online processing, STB-based methods outper-
formed BW-EDA-EEND [24] in all but single-speaker data
even though the online processing unit was 1 s, which was ten
times shorter than that of BW-EEND-EDA. Online inference
of EEND-GLA-Small using BW-STB significantly improved
DERs on five- and six-speaker mixtures, which were not ob-
served during training. EEND-GLA-Large improved the DERs
for the seen number of speaker conditions of EEND-GLA-Small
but degraded the DERs for the unseen number of speaker con-
ditions, the same as in offline inference.

Table V shows the offline DERs of EEND-GLA-Small ob-
tained with various training and inference strategies. Even when
only local attractors were used during both training and infer-
ence, it achieved better DERs than EEND-EDA for the unseen

https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2
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TABLE V
OFFLINE DERS (%) OF EEND-GLA-SMALL WITH VARIOUS TRAINING AND

INFERENCE STRATEGIES. LOSS: THE TRAINING OBJECTIVE USED FOR

TRAINING. INFERENCE: ATTRACTORS USED DURING INFERENCE

TABLE VI
CONFUSION MATRICES FOR SPEAKER COUNTING ON THE SIMULATED

DATASETS

numbers of speakers but worse ones for the seen numbers of
speakers (first row). Using the global attractors jointly for train-
ing improved the performance for the seen numbers of speakers,
but it was still not as good as EEND-EDA when only the local
attractors were used for inference (second row), especially when
the number of speakers was low (i.e., one- or two-speaker cases).
This is because a small error in the number of speakers (e.g.,±1)
led to a high degradation of DER. Using the results based on
global attractors when the number of speakers was low resulted
in good DERs for both seen and unseen numbers of speakers
(third row).

We also show the confusion matrices for speaker counting
on the simulated datasets in Table VI. The speaker counting
accuracy of EEND-GLA-Small with BW-STB outperformed
that of EEND-EDA with FW-STB, and the gaps between them
were larger especially when the number of speakers was higher
than four. Note that EEND-EDA with FW-STB sometimes pro-
duced the results of more than four speakers, but they did not
help estimate the speech activities of more than four speakers
correctly as we stated in this section.

2) CALLHOME: Table VII shows the DERs on the CALL-
HOME dataset. In the evaluation of offline processing,

TABLE VII
DERS (%) ON CALLHOME WITH 0.25 s COLLAR TOLERANCE. UNLESS

OTHERWISE SPECIFIED, EACH ONLINE SYSTEM HAD AN ALGORITHMIC

LATENCY OF 1 S

TABLE VIII
DERS (%) ON DIHARD II WITH NO COLLAR TOLERANCE. EACH ONLINE

SYSTEM HAD AN ALGORITHMIC LATENCY OF 1 S

EEND-GLA-Small and EEND-GLA-Large outperformed the
conventional methods with 11.92% and 11.84% DERs, respec-
tively.

In online diarization, compared with the original FW-
STB [26], our updates on VCT and the sampling probabilities
improved the DERs from 19.51% to 14.93%. EEND-GLA-
Small and EEND-GLA-Large with BW-STB further improved
DERs to 14.80% and 14.29%, respectively. Our method also
outperformed BW-EDA-EEND [24] by a large margin.



HORIGUCHI et al.: ONLINE NEURAL DIARIZATION OF UNLIMITED NUMBERS OF SPEAKERS USING GLOBAL AND LOCAL ATTRACTORS 717

TABLE IX
DERS (%) ON DIHARD III WITH NO COLLAR TOLERANCE. UNLESS

OTHERWISE SPECIFIED, EACH ONLINE SYSTEM HAD AN ALGORITHMIC

LATENCY OF 1 S

3) DIHARD II and III: Table VIII shows the results on the
DIHARD II dataset. In offline diarization, EEND-GLA-Small
and EEND-GLA-Large improved the DERs from EEND-EDA,
especially when the number of speakers was higher than four.
Compared with the cascaded method [73] or the cascaded
method incorporated with EEND for post-processing [12],
EEND-GLA-Large performed on par with them when the num-
ber of speakers was low, but not when the number of speakers
was high.

In online diarization, the DER of EEND-EDA was improved
by using the proposed FW-STB from 36.09% to 33.37%, and
BW-STB further improved the DERs to 31.47% and 30.24%
with EEND-GLA-Small and EEND-GLA-Large, respectively.
If we focus on the comparison methods, overlap-aware speaker
embedding [12], [52] had a large gap in the DERs between
offline and online inference (26.25% vs. 34.99%). This is
because its offline performance was highly boosted by using
VBx [13], which is not suited for online inference. However,
the gap between the DERs of offline and online inference of
EEND-GLA was only about two points and outperformed the
comparable method in both cases where the number of speakers
was low or high. We also show the DERs with UIS-RNN [50]
and UIS-RNN-SML [51], which are based on fully supervised
clustering of d-vectors extracted using a sliding window, under
the condition that the oracle SAD was used. In this case, too,
the EEND-GLA-based methods outperformed these comparable
methods.

We also show the DERs on the DIHARD III dataset in Table
IX. The results were almost the same as those of the DIHARD
II dataset. EEND-GLA-Large achieved 19.49% DER in offline
diarization, which was as accurate as the best performing con-
ventional method [12], and 20.73% DER in online diarization,

Fig. 7. Real time factor of EEND-GLA-Small with BW-STB calculated using
Sim5spk. The filled areas represent the standard deviations. The DERs are
16.95% and 18.18%with 10 frames/s and 20 frames/s conditions, respectively.

which was about seven points better than that of the conventional
method [52].

C. Real Time Factor

To show that our method is applicable for real-time inference,
we calculated the real time factor of EEND-GLA-Small with
BW-STB. For the calculation, we used Sim5spk, in which clus-
tering of relative speaker embeddings is always necessary (cf.
Table VI(d)). The calculation was on an Intel Xeon Gold 6132
CPU @ 2.60 GHz using seven threads without any GPUs. Again,
we used the buffer length of 100 s buffer and the online process
unit length of 1 s. Fig. 7 shows the real time factor calculated
as the processing time for each online process unit. The real
time factor increased approximately linearly until the buffer was
filled, and then it became constant. It indicates that, at least for
buffer length of 100 s, the inference speed of EEND-GLA is not
constrained by clustering of local attractors described in Section
IV-A, which hasO(n3) time complexity. The convergence value
of the real time factor was about 0.16 with 10 frames per second
and 0.38 with 20 frames per second. These results demonstrate
that our method is fast enough for real-time inference.

VII. CONCLUSION

In this paper, we proposed EEND-GLA, a neural diarization
method that can treat an unlimited number of speakers. In
EEND-GLA, diarization is performed on the basis of global
attractors extracted from the entire input and local attractors
extracted from each chunked input, respectively. To enable
online inference of EEND-GLA, we also proposed a block-wise
speaker-tracing buffer; it is partitioned into blocks, and each
block stores temporally continuous features and the correspond-
ing results. The novel speaker-balanced sampling probabilities
for buffer update and variable chunk-size training via minibatch
reshaping were also proposed to improve online diarization.

The experimental results showed that EEND-GLA performed
well on both offline and online inferences. In particular, EEND-
GLA significantly outperformed the conventional methods on
various datasets in online diarization. The performance of the
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cascaded methods heavily relies on the clustering algorithm;
offline diarization can utilize two-stage clustering like VBx,
while online diarization cannot. Thus, a severe gap remains
between the DERs of offline and online inference of the cascaded
methods. In contrast, the offline and online DERs of EEND-GLA
are less far apart than those of the cascaded methods because the
inference is the same for offline and online given input features.
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