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Abstract—Automatic speaker verification is susceptible to vari-
ous manipulations and spoofing, such as text-to-speech synthesis,
voice conversion, replay, tampering, adversarial attacks, and so
on. We consider a new spoofing scenario called “Partial Spoof”
(PS) in which synthesized or transformed speech segments are em-
bedded into a bona fide utterance. While existing countermeasures
(CMs) can detect fully spoofed utterances, there is a need for their
adaptation or extension to the PS scenario. We propose various
improvements to construct a significantly more accurate CM that
can detect and locate short-generated spoofed speech segments at
finer temporal resolutions. First, we introduce newly developed
self-supervised pre-trained models as enhanced feature extractors.
Second, we extend our PartialSpoof database by adding segment
labels for various temporal resolutions. Since the short spoofed
speech segments to be embedded by attackers are of variable length,
six different temporal resolutions are considered, ranging from as
short as 20 ms to as large as 640 ms. Third, we propose a new
CM that enables the simultaneous use of the segment-level labels
at different temporal resolutions as well as utterance-level labels
to execute utterance- and segment-level detection at the same time.
We also show that the proposed CM is capable of detecting spoofing
at the utterance level with low error rates in the PS scenario as
well as in a related logical access (LA) scenario. The equal error
rates of utterance-level detection on the PartialSpoof database and
ASVspoof 2019 LA database were 0.77 and 0.90%, respectively.

Index Terms—Anti-spoofing, deepfake, PartialSpoof, self-
supervised learning, spoof localization, countermeasure.

I. INTRODUCTION

S PEECH technologies play a crucial role in many aspects
of life, e.g., keyword spotting in smart home devices,
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speaker recognition in online banking, diarization of meet-
ing recordings, and speech recognition for captioning news
broadcasts. However, such technologies are also vulnerable to
spoofing — synthesized, transformed, or manipulated speech
can fool machines and even humans. A number of initiatives
and challenges such as ASVspoof [1], [2], [3], [4] have hence
been organized to encourage research in countermeasure (CM)
solutions, which are needed to protect speech applications and
human listeners from spoofing attacks. Several types of spoofing
scenarios have been considered and explored, including logical
access (LA), DeepFake (DF), and physical access (PA). The LA
scenario is designed for text-to-speech (TTS) synthesis and voice
conversion (VC) attacks with and without telephony codecs,
reflecting a use case of authentication in call centers. The DF
scenario is similar to the LA scenario, but takes into account
audio under strong compression for media streaming without an
authentication process. The PA scenario targets the development
of CMs against replay attacks.

In the LA and DF scenarios, entire audio signals are gen-
erated using TTS or VC algorithms. Missing in past work is
the consideration of scenarios in which synthesized or trans-
formed speech segments are embedded into a bona fide speech
utterance such that only a fraction of an utterance is spoofed.
There are many possible motives for attackers to take such an
approach. To give a few examples, specific words or phrases
may be replaced with different ones, and negation words, such
as “not” may be generated using TTS or VC, and inserted into an
original utterance to completely change the meaning of a given
sentence. If an attacker has an audio file containing a phrase
such as “Search Google” for a particular person, the attacker
can replace the word “Search” with the synthesized phrase
“OK” and attempt a presentation attack against a text-dependent
automatic speaker verification (ASV) system running on the
person’s device. An attacker could also use segments of units
smaller than words. If an attacker synthesizes certain vowels
and replaces the original vowels with the synthesized ones, he
or she can manipulate words such as “bat,” “bet,” “bit,” “bot,”
and “but.” If the attacker has knowledge of phonology, he or she
can use even smaller units and manipulate the consonants /b/, /g/,
and /d/ by synthesizing and replacing only the transitional part of
the second formant, which is an acoustic cue for the consonants.
With modern speech-synthesis technologies having the ability to
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produce high-quality speech resembling a given target speaker’s
voice, these types of partial audio manipulations are becoming
more likely to occur. We call this new spoofing scenario “Partial
Spoof” (PS).

We believe that speech utterances containing such short gen-
erated spoofed audio segments will likely be difficult to detect
using CMs trained for the LA or DF scenarios since they typ-
ically use aggregation operations over time, in which case the
short segments will have little bearing on the final CM score.
Therefore, new CMs for the PS scenario are needed.

How should CMs be implemented for the PS scenario? We
propose that CMs for the PS scenario should have two functions.
The first involves the simple utterance-level detection of utter-
ances containing any short spoofed segments. This is similar to
the standard spoof vs. bona fide classification in the LA and DF
scenarios. The second function is to detect which segments in
an utterance are spoofed. This is to show which specific parts of
an audio sample may have been generated using TTS or VC and
to improve the explainability of the CMs. We refer to the former
as “utterance-level detection” and the latter as “segment-level
detection.” While earlier we described examples of spoofing at
the phone and word levels, in practice, there is no restriction on
the speech unit to be used by attackers. Segment-level detection
should be carried out without prior knowledge of the length of
the unit used by the attacker and needs to support variable-length
segments.

In our previous study [5], we constructed a speech database
called “PartialSpoof” designed for the PS scenario and reported
initial results for utterance- and segment-level detection. In
this preliminary work, segment-level detection was applied
in a straightforward manner with a fixed temporal resolution.
Whether the detection is per-utterance or per-segment, the fea-
tures needed for CMs are likely to be similar. Therefore, in our
subsequent work [6], we constructed a CM that simultaneously
executes detection at the utterance level and (fixed) segment level
using multi-task learning. However, these two studies showed
that there is much room for improvement.

We thus extend our previous studies to improve the utterance-
and segment-level detection of CMs in the PS scenario. We use
self-supervised pre-trained models based on wav2vec 2.0 [7]
and WavLM [8] as enhanced feature extractors. We also extend
the PartialSpoof database. Specifically, we add segment-level
labels for various temporal resolutions, instead of only for a
fixed temporal resolution. The spoofed audio segments to be
embedded by attackers are of variable length; thus, by using
these labels, CM models can be trained to execute detection
at various temporal resolutions. In the extended PartialSpoof
database, there are six different temporal resolutions for these
segment-level labels, ranging from as fine as 20 ms to as coarse as
640 ms. We also propose a CM that enables the simultaneous use
of the segment-level labels at different temporal resolutions as
well as utterance-level labels to execute utterance- and segment-
level detection at the same time.

The remainder of this paper is structured as follows. In Sec-
tion II, we explain the PS scenario in more detail and review rel-
evant topics. In Section III, we explain our PartialSpoof database
with new segment labels at various temporal resolutions. In

Section IV, we define the tasks and overview existing CMs for
the PS scenario. Then, in Section V, we introduce the proposed
CM. We present experiments and results in Section VI, and
conclude the paper and discuss future work in Section VII.

II. WHAT IS THE PS SCENARIO?

A. Spoofing in the PS Scenario and Related Scenarios

In the PS scenario, we consider manipulated audio in which
generated audio segments are embedded in a bona fide speech
utterance and vice versa. The speaker characteristics of the
embedded segments are similar to those of the true speaker.
However, due to differences in the performance of TTS or VC
methods, there are differences in speaker similarity. Although
the PS scenario resembles other scenarios in which spoofing and
CMs have already been widely studied, there are some crucial
differences.

The conventional LA and DF scenarios assume that speech
in a single utterance is generated using a single TTS or VC
method. In the PS scenario, however, a single speech utterance
may contain audio segments generated using more than one
TTS or VC method, even if the entire utterance consists only
of spoofed segments.

The PS scenario is also closely related to copy-moves
and splicing, which are scenarios well-studied for tampering
forgery [9], [10]. The copy-move method of audio forgery
involves the copying and pasting of segments within the same
bona fide audio sample. Splicing forgery involves assembling
a speech utterance using spliced segments obtained from other
audio recordings1. Spoofed audio in the PS scenario is hence a
special case of splicing forgery in which segments do not come
from other bona fide audio recordings but are generated using
TTS or VC.

B. New Realistic Threats

Certain companies have started to develop technologies and
services that enable users to modify specific segments of a
speech recording using TTS or VC without affecting other
segments, making the final utterance match as closely as possible
to the original, e.g., [13], [14], [15]. Although such technologies
and services are desirable for users who would like to manip-
ulate their own speech without re-recording, they increase the
possibility of misuse in the form of impersonation and fraud.
They may also pose a threat to other speech-based applications
such as text-dependent ASV. There is thus a need to develop new
CMs that are capable of detecting partially-spoofed utterances.

C. Databases for PS Scenario

During the same time as when we built the initial PartialSpoof
database in 2021 [5], another database was also proposed for the
PS scenario [16] for which a single multi-speaker TTS system
was used to replace a single word within an utterance. This later
became a part of the Audio Deep synthesis Detection (ADD)

1In the TTS field, “unit selection” techniques [11], [12] apply a similar splicing
operation on the basis of dynamic time warping to reduce concatenation artifacts.
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challenge database [17]. In addition to the limited number of
TTS systems, the database has predetermined the target for
replacement as a word, which is a form of prior knowledge
even on the detection side. In contrast, we consider a spoofing
scenario based on variable-length spoofed segments generated
using several multi-speaker TTS and VC systems.

III. NEW PARTIALSPOOF DATABASE

With the goal of stimulating research on CM models suit-
able for the PS scenario, an early version of the PartialSpoof2

database [5] containing the spoofed speech needed for model
training was built and made available to the research community
in 2021. In the PS scenario, attackers may create partially-
spoofed audio in various ways. Attackers may insert segments of
spoofed speech generated by TTS or VC into a natural utterance
to add new content or substitute parts of the original utterance
with spoofed speech to replace content. Alternately, instead
of starting with a natural utterance and inserting or replacing
segments with spoofed speech, they may start with an utterance
generated by TTS or VC and insert or replace segments with
natural speech, for example, in the case in which the attackers
only have a small amount of bona fide data. Thus, it is necessary
for the database to contain spoofed speech with different pro-
portions of generated audio segments within a single utterance.
We call the ratio of the duration of generated audio segments in
an utterance to the total duration of the utterance “intra-speech
generated segment ratio.” An efficient way to achieve this is
to prepare pairs of speech utterances consisting of one that is
entirely generated using TTS or VC and one original bona fide
speech utterance then randomly substitute short segments within
the pair. This enables us to create a large number of spoofed
audio files with different intra-speech generated segment ratios.
This is a key concept of the PartialSpoof database and we
describe its construction policies and procedures as well as
newly generated segment-level labels for a new version of the
PartialSpoof database.

A. Construction Policies

Since the methods used by attackers are unknown in practice,
these will likely be different from the training data used to train a
real system. Therefore, we should assume that TTS/VC methods
for generating spoofed audio segments in the training set are
mostly different from those in the evaluation set. To achieve
this, each subset of the ASVspoof 2019 LA database [18] was
used to construct each corresponding subset of the PartialSpoof
database. It was also assumed that the attacker could use gener-
ated audio segments at a variety of acoustic units, not limited to
linguistic units such as words. Hence, we used variable-length
speech segments found by voice activity detection (VAD) re-
gardless of the content of the speech.

Finally, we assumed that the attacker could carry out not
advanced but basic digital signal processing (DSP) to reduce
artifacts of the spoofed audio for the purpose of a reliable as-
sessment of CMs. Since it is unrealistic to assume that advanced

2https://zenodo.org/record/5766198

Fig. 1. Procedure to automatically construct our PartialSpoof database.
(0 refers to spoof, and 1 refers to bona fide.).

processing will be carried out, the DSP and VAD used by the
attacker were assumed to be basic methods, and certain errors
and artifacts were assumed to occur naturally.

B. Construction Procedure

The following is the procedure for constructing the Partial-
Spoof database automatically. As shown in Fig. 1, the entire
processing pipeline involves five stages:

Step 1. Normalization and VAD: When substituting segments
into another speech utterance, the volume of the segments and
utterance may be different. If there are significant volume mis-
matches, it becomes straightforward to detect the substituted
segments, which would interfere with the CM’s ability to learn
fine-grained mismatches. Therefore, we first normalized the
waveform amplitudes of the original and spoofed utterances
contained within the ASVspoof 2019 LA database to −26 dBov
according to the ITU-T SV56 standard [19]. Next, to select the
variable-length candidate segments, three types of VAD [20],
[21], [22] were used, and a majority vote was taken. Segments
detected as speech regions by two or more types of VAD within
a human speech utterance were considered as candidate regions
to be replaced with generated segments. Candidate segments
within spoofed utterances were also found in the same manner.

Step 2. Selection: The next step was to determine which
segments found by the VAD should be replaced with which

https://zenodo.org/record/5766198


816 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

TABLE I
DETAILS OF TRIALS IN PARTIALSPOOF DATASET. NUMBER OF AUDIO FILES,
TOTAL DURATION, MAXIMUM NUMBER OF UNIQUE TTS AND VC METHODS

WITHIN ONE UTTERANCE, AND STATISTICS OF AUDIO LENGTH FOR EACH

SUBSET ARE SHOWN

segments from the other class of the same speaker. We
considered both directions, that is, replacement of a randomly
chosen segment from a bona fide utterance with a spoofed
segment and substitution of a spoofed segment into a bona
fide segment. The following conditions were used to select the
segments: (1) segments are chosen not from the same utterance
but from different utterances of the same speaker; (2) the same
segment cannot be injected into an utterance more than once;
(3) original and substitute segments must be of similar duration.

Step 3. Substitution and concatenation: We then conducted
substitution of the speech segments. To concatenate the seg-
ments without significant artifacts, we computed time-domain
cross-correlation to find the best concatenation points. When
searching for these points, parts of the silent regions around
the corresponding speech were considered and the waveform
overlap-add method was used.

Step 4. Labeling: After the concatenation of the segments,
each utterance was annotated with fine-grained segment labels at
various temporal resolutions in addition to utterance-level labels.
Speech frames generated by TTS/VC and those from the bona
fide utterances were labeled as spoof and bona fide, respectively.
Each segment or utterance that contains one or more generated
frames was labeled as spoof, otherwise bona fide.

Step 5. Post-processing: To balance the subsets, intra-speech
generated segment ratios of the concatenated audio were quan-
tized into ten levels, and then random sampling was done for each
level. As a result, audio files with a small intra-speech generated
segment ratio and those with a large intra-speech generated
segment ratio were equally included in the database and in each
subset.3 The number of files that we randomly sampled was also
the same as the spoof class of the ASVspoof 2019 LA database.

C. Database Statistics

The total number of samples for each temporal resolution
is shown in Table II. The sample size increases as resolution
increases from utterance (utt.) to 20 ms. The percentage of
samples belonging to the spoof class in each temporal resolution
is shown in Table III. If any part of the generated waveform is

3The result of this process is that there is less mismatch between the subsets
regarding the intra-speech generated segment ratio. It is also possible to design
and adopt mismatched conditions; however, in this paper, we consider the
matched condition to simplify our analysis.

TABLE II
NUMBER (IN THOUSANDS) OF SAMPLES IN EACH TEMPORAL RESOLUTION

TABLE III
PERCENTAGES (%) OF SPOOF CLASS IN EACH TEMPORAL RESOLUTION

contained in the target segment to be annotated, it is labeled as
spoof. We can see that the finer the temporal resolution of the
segment, the less likely it is to contain generated audio signals;
thus, the number of samples in the bona fide class increases
at finer-grained resolutions. As can be seen from the table, the
data have a bias toward the spoof class on a per utterance basis,
but the extreme bias is eliminated on finer segment bases. In
multi-task learning using labels at multiple temporal resolutions,
such differences in bias may lead to more robust model learning.

D. Limitations

In the PartialSpoof database, the variable-length speech seg-
ments found by the VADs are replaced without considering the
meaning of sentences and words as well as the phonemes before
and after the segments. Therefore, the speech in the database is
not partially-spoofed speech that is intended to deceive listeners
and deliver wrong linguistic messages to them but an approxi-
mation of it. On the other hand, since partially-spoofed segments
of the PartialSpoof database are of variable length, CMs built
on this database can execute segment-level detection at various
temporal resolutions, and their accuracy can be evaluated.

IV. OVERVIEW OF COUNTERMEASURES FOR PS SCENARIO

In this section we switch to the defender’s side and explain
the tasks of CMs and existing CM architectures for the PS
scenario. We use the notations listed in Table IV to facilitate
the explanation.

A. Task Definition

A CM for the PS scenario is required to conduct utterance-
and segment-level detection on an input waveform x1:T . The
two tasks can be defined more formally as follows.
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TABLE IV
LIST OF MATH NOTATIONS USED IN THIS PAPER

� Utterance-level detection: learn a function fθ to
convert x1:T to an utterance-level score su

fθ : RT×1 → R; x1:T �→ su, (1)

� Segment-level detection: learn a function fρ to
convert x1:T to segment-level scores s1:M

fρ : RT×1 → RM×1; x1:T �→ s1:M . (2)

Depending on the CM, fθ and fρ may share common architec-
ture components and parameters since both tasks may be tackled
by networks which operate upon similar hidden features.

In real applications, a CM needs to assign a bona fide or
spoof label to the trial by comparing the su with an application-
dependent threshold. It may also classify each segment on the
basis of sm, ∀m ∈ {1, . . . ,M}. In this study, we follow the
conventions in the research community and do not require the
CM to produce hard decisions. Given su and s1:M computed
from test set trials, we calculate EERs to measure the utterance-
and segment-level detection performance of the CM.

B. Existing CM Architectures for PS Scenario

The definition of the utterance-level detection task in the PS
scenario is identical to that in the LA (also PA and DF) scenario.
Segment-level detection is different and more challenging be-
cause the required output is a sequence of scores, where each
score must be derived from segments of comparatively shorter
duration. Accordingly, CMs that conduct only utterance-level
detection for the LA or other scenarios cannot be applied directly
to the PS scenario.

Previous studies modified the utterance-level CMs for other
conventional scenarios so that the CMs can do segment-level de-
tection as well [5], [6], [16]. One approach involves the addition
of a sub-network for segment-level detection to a conventional
utterance-level CM. Another approach involves the application
of a non-trainable re-scoring step to derive segment-level scores
s1:M . We describe these modifications after first introducing the
utterance-level CM.

1) Conventional Utterance-Level CM: A conventional
utterance-level CM consists of a front-end and back-end,

as shown in Fig. 2(a). The front-end extracts an acoustic
feature sequence a1:N from the input x1:T , after which the
back-end converts a1:N into an utterance-level CM score su.
The CM usually uses DSP algorithms in the front-end, and
the conversion from x1:T to a1:N is hardwired by the DSP
designer. In contrast, the back-end can be implemented using
various machine learning models that can transform a1:N into
a scalar su.

We now explain a back-end based on a light convolutional
neural network (LCNN) since it is related to this study and
used in many CMs. It computes the utterance-level score by

a1:N
LCNN−−−→ h1:M

Pooling−−−−→ eu
Linear−−−→ su, where h1:M is a hid-

den feature sequence with length M ≤ N determined by the
LCNN stride, and eu is an embedding vector of fixed dimension
produced by global average pooling. Finally, su is computed
from eu using linear transformation. The back-end is typically
trained by minimizing the standard cross-entropy (CE) or other
advanced criteria given an utterance-level score su and ground-
truth label yu for a sufficiently large dataset.

2) Adapting Utterance-Level CM for PS Scenario: The con-
ventional utterance-level CM has to be modified so that it can
produce segment-level scores for the PS scenario. Two studies
proposed to revise the LCNN-based back-end [5], [16]. As
shown in Fig. 2(c), [5] and [16] remove pooling layer(s) from
the utterance-level CM to derive s1:M from h1:M . While there
are differences in the implementations, the common idea is to
add a sub-network to transform hidden features into segment-

level scores h1:M
Linear−−−→ s1:M . The revised CM may have a

bipartite structure as shown in Fig. 2(b). Note that the linear
transformation is applied independently to each segment, i.e.,
sm = Linear(hm), ∀m ∈ {1, . . . ,M}.

Segment scores s1:M are deterministically aligned with the
input a1:N . Specifically, if the LCNN uses a stride equal to 1 for
all layers, M will be equal to N , and each sm is aligned with
an=m

4. For strides greater than 1, the score-sequence length
M becomes shorter than N , and the sm is aligned with the
(N
Mm)-th input frame5. No matter how the two sequences are

aligned, sm reflects the degree to which them-th segment is bona
fide, and thus can be used for segment-level detection. Training
can be conducted by minimizing the CE loss between s1:M and
segment labels y1:M and the utterance-level CE loss between
the su and yu. This method is referred to as multi-task learning
in our previous study [6].

It is also possible to carry out both utterance-level and
segment-level detection using only the segment-level detection
branch, as shown in Fig. 2(c). Here, the utterance-level score
su is derived from the segment-level scores s1:M , for example,
in accordance with su = minm sm [6]. An advantage of this
approach is the need to compute only the segment-level CE loss
during training.

4Strictly speaking, sm is computed given the acoustic features within the
receptive field of the CNN, and the receptive field is centered around an=m

and covers adjacent frames. The size of the receptive field is determined by the
convolution kernel and dilation size.

5For example, if the CNN consists of k layers each with a stride equal to 2,
M will be equal to N/2k , and sm will be aligned with an, where n = 2km.
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Fig. 2. Conventional utterance-level CM (a), existing CMs for PS scenario (b-d), and proposed CM for PS (e). Grey box in (d) indicates that linear layer is copied
from the branch on its left side. Conventional studies [5], [16], [17] and [23] used (a), [6] and [24] used (b), [5], [6] and [16] used (c), and [6] used (d). Note that
this figure illustrates the CMs during scoring.

3) Attaching Re-Scoring Step for PS Scenario: The second
approach involves not the adaptation of the utterance-level CM
but the addition of a non-trainable re-scoring step to derive
segment-level scores s1:M [5]. For the LCNN-based utterance-

level CM, the transformation h1:M
Pooling−−−−→ eu

Linear−−−→ su can be
written as su = weu = 1

M

∑M
m=1 whm, wherew is the param-

eter of the linear layer. We can interpret whm as a score for the
m-th segment. Therefore, given the transformation vector w for
utterance-level scoring, the re-scoring step to compute the s1:M
can be defined as

h1:M
Linear−−−→ s1:M : sm = whm, ∀m ∈ [1,M ]. (3)

This approach is illustrated in Fig. 2(d).
An advantage of this approach is that the utterance-level CM

can be used directly for the PS scenario without further training.
It does not require segment-level labels. However, its potential
is limited because without re-training, there is no adaptation to
the spoofed segments in the PS scenario [5].

C. CMs Built for ADD Challenge 2022

One track of the ADD challenge 2022 is utterance-level
detection of partially-spoofed audio [17]. Most participants
used a conventional utterance-level CM, as shown in Fig. 2(a)
(e.g. [23]) whereas one team used a similar multi-task structure,
as shown in Fig. 2(b) [24].6

V. PROPOSED CM FOR PS SCENARIO

A. Motivation

The above CMs have achieved encouraging results in existing
studies [5], [6], [16], but there is still room for improvement. For
example, compared with a deterministic DSP-based front-end, a

6Interested readers are encouraged to see the challenge website and its details
at http://addchallenge.cn/add2022.

trainable data-driven front-end may extract more discriminative
features. As for the back-end, the commonly used LCNN only
learns to conduct segment-level detection at a fixed temporal
resolution. For example, using the LCNN configuration in [5],
the back-end transforms the input a1:N into hidden features
h1:M , where M = N/16, and segment scores sm are computed
once for every 16 frames. So we can hypothesize that it would
be better to use a more flexible DNN architecture that can
leverage segment labels at different temporal resolutions during
training and conduct segment-level detection accordingly. The
hypothesis motivated us to propose a new CM that consists of a
self-supervised learning (SSL)-based front-end and a back-end
that supports multiple temporal resolutions. The new front-end
is expected to extract more discriminative acoustic features in
a data-driven manner, while the new back-end enables the CM
to better identify spoofed segments with varied length. Fig. 2(e)
illustrates the architecture of our CM.7

B. Front-End

An SSL speech model is a DNN that processes a waveform
using trainable non-linear transformations. Because they are
trained using task-agnostic self-supervised criteria on speech
data from various domains, pre-trained SSL models can extract
robust and informative acoustic features for many down-stream
tasks [25]. SSL-based front-ends have also been shown to im-
prove CM performance for the LA scenario [25], [26], [27].

Inspired by the above studies, we use an SSL-based front-end
to extract acoustic featuresa1:N from an inputx1:T . While there
are many types of SSL models, we investigated wav2vec 2.0 [7]
and HuBERT [28]. These SSL models consist of a CNN-based
encoder and cascade of Transformer blocks [29]. Following
previous studies [25], we extract output features from all the
Transformer blocks and use their trainable weighted sum as

7https://github.com/nii-yamagishilab/PartialSpoof

http://addchallenge.cn/add2022
https://github.com/nii-yamagishilab/PartialSpoof
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a1:N . During CM training, we fine-tune the pre-trained SSL
front-end in conjunction with the back-end.

Note that the number of acoustic feature frames N is deter-
mined by the waveform length T and CNN encoder configura-
tion. For the pre-trained SSL models we tested, the relationship
is N = T/320. This means that, given an input waveform with
a sampling rate of 16 kHz, the extracted acoustic features a1:N

have a ‘frame shift’ of 20 ms.

C. Back-End

Given a1:N , our back-end computes s1:M at multiple tem-
poral resolutions. This enables the proposed CM to handle
the challenging segment-level detection task in a more flexible
manner: by learning multiple functions {f0

ρ , f
1
ρ , . . . , f

K
ρ }, where

the function f k
ρ converts x1:T to segment-level scores sk1:Mk at

the k-th temporal resolution, ∀k ∈ {0, . . . ,K}. Without loss of
generality, we assume there are K temporal resolutions in total.
Lower indices indicate finer temporal resolutions. To simplify
the notation, we drop the subscript in data sequences (e.g., sk1:Mk

becomes sk) for the rest of the paper.
As illustrated in Fig. 2(e), the back-end computes s1:M at

different temporal resolutions in a fine-to-coarse order. First,
the acoustic features a1:N are used to compute the score se-
quence s0 ∈ RN at the frame level, which is the finest temporal
resolution supported by the proposed CM. The n-th score s0n
indicates the likelihood that the n-th frame is bona fide. Next,
a1:N is down-sampled to h1 and used to compute s1. This
process is repeated to compute segment-level scores for each
temporal resolution.

For utterance-level detection, the hidden feature sequences
hK at the lowest temporal resolution are pooled into the
utterance-level embedding vector eu which is then transformed
into the utterance-level score su. This scoring module has the
same architecture as those for segment-level detection. Com-
bined with the front-end, the proposed CM computes the scores
for the PS scenario in the following order:

The scoring modules at different temporal resolutions are
independent but use the same architecture, and we compare a few
candidate architectures in Section VI-B. The down-sampling
modules are also independent but use the same architecture.
They contain a max-pooling operator with a stride equal to 2,
followed by a 1D convolution layer with a kernel size of 1 and
equal number of output and input channels. Therefore, if the
input to the back-end a1:N is of dimension RN×D, hk at the k-th

temporal resolution will be in RN/2k×D, and the corresponding
score sequence sk is of dimension RN/2k×1. This means that the
temporal resolution of the s1:M is reduced by a factor of 2 after
each down-sampling module.

Since acoustic features are extracted every 20 ms (i.e., the
‘frame shift’ of the SSL-based front-end), a frame-level score
s0n is produced every 20 ms. This is the finest supported temporal
resolution. For the k-th temporal resolution, one segment score
sm is produced every 20× 2k ms. We set K = 5, and the indices
k = 0 to k = 5 correspond to temporal resolutions of 20, 40, 80,
160, 320, and 640 ms, respectively. This setting was determined
empirically, taking into account the ground-truth labels provided
in the extended PartialSpoof database. Although the temporal
resolutions do not have explicit linguistic meanings, we hope
that each time resolution may capture the following content:
� 40 ms: consonants and parts of vowels,
� 80 and 160 ms: consonants and vowels, and
� 320 ms: monosyllabic words and parts of longer words.

D. Training Strategies

Supposing that ground-truth labels are available for all tem-
poral resolutions, the proposed CM can be trained using two
types of strategies:

1) Multiple Temporal Resolutions: For the k-th temporal res-
olution, a loss Lk is computed given the score sk and label yk.
Similar to the CMs described in Section IV, the loss function
can be CE or other advanced metrics. The gross loss function
can thus be written as L =

∑K+1
k=0 Lk 8, where we use LK+1 to

denote the utterance-level loss.
2) Single Temporal Resolution: As described earlier, CM

training using multiple temporal resolutions requires ground-
truth labels for all temporal resolutions. While such labels are
provided with the PartialSpoof database, they might not be
available for other databases. In such a case, the CM can still
be learned without application of the scoring modules and loss
functions at temporal resolutions that have no segment-level
labels. A special case is the learning of a CM for a single temporal
resolution. For example, if we only have segment-level labels at
the k-th temporal resolution, training can be carried out using
only the back-end layers required to compute sk, in which case
the training loss is computed over sk and yk. After training, the
CM can only produce scores sk, but not scores for other segment
or utterance levels.

VI. EXPERIMENTS

We conducted experiments to test the proposed CM on the
PartialSpoof database. We first conducted a pilot study to select
the most suitable SSL-based front-end and back-end scoring
module. We then conducted a comparative study to compare the

8In practice, the CM can be trained initially for the finest temporal resolution
before more coarse resolutions, or the other way around. Furthermore, we may
either fix or continue to fine-tune the scoring modules of a previous temporal
resolution when moving to the next one. However, no obvious significant
difference was observed among the aforementioned methods in our preliminary
experiments. Hence, in this study we trained the CM at all temporal resolutions
simultaneously.
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Fig. 3. Comparison of proposed CMs trained at single temporal resolution and multiple temporal resolutions training strategies. Two figures on the left side show
EERs of segment-level detection, and the right-side figure shows EERs of utterance-level detection. Each CM was trained three times with different random seeds.

two CM training strategies. After that, we analyzed differences
in the tendencies of the proposed CM’s performance on the
development and evaluation sets. Furthermore, we conducted
a cross-scenario experiment using the ASVspoof 2019 LA
database [18], the goal of which was to show that the proposed
CM optimized for the PS scenario can also be applied to the LA
scenario. After explaining the experimental setup and model
configurations, we describe each experiment in detail.

A. Experimental Setup and Model Configurations

All CMs were trained by minimizing the so-called P2SGrad-
based mean square error [30]. This criterion was used because
it was found to be more stable and slightly superior to the
conventional CE used in our previous study related to the LA
scenario [30]. During training, we used the Adam optimizer with
a default configuration (β1 = 0.9, β2 = 0.999, ε = 10−8). The
learning rate was initialized with 1× 10−5 and halved every 10
epochs.

We did not use any data augmentation, voice activity de-
tection, or feature normalization during training, nor did we
trim the input trials. All experiments were repeated three times
with different random seeds for CM initialization, except for
the pre-trained SSL front-end. The averaged results of the three
runs are reported. Each round of training was conducted using
a single Nvidia Tesla A100 card.

B. Comparing Front- and Back-Ends for Proposed CM

As explained in Section V, we used a pre-trained SSL model
for the front-end and designed a powerful scoring module for the
back-end. In this experiment, we compared several candidates
for both. Performance was measured using the utterance-level
detection EER on the development set of the PartialSpoof
database. The CM was trained following the same conventional
utterance-level training as in the LA scenario, that is, using the
single temporal resolution training strategy with utterance-level
labels only.

For the front-end, we tested the four pre-trained SSL models
listed in Table V; w2v2-base is based on the Wav2vec 2.0
Base model, while w2v2-large and w2v2-xlsr are based
on the Wav2vec 2.0 Large model. The difference is that the

TABLE V
SSL MODELS MENTIONED IN SECTION VI-B

Wav2vec 2.0 Base model has only 12 Transformer [29] blocks
while Wav2vec 2.0 Large has 24. There are further differences
in the dimension of the output features of the Transformer block,
as shown in Table V. The w2v2-large and w2v2-xlsr
models, both based on Wav2vec 2.0 Large, differ in the data
used for pre-training. These three SSL models were included
in the experiment because they have been shown to give reli-
able performance for the LA scenario [26]. The last candidate
wavlm-large is based on HuBERT [28]. It was included
because it was the top entry on the leaderboard of SUPERB9

when we started this study.
For the scoring module in the back-end, we compared the

following architectures:
� a single fully-connected (FC) layer;
� an FC layer after a bidirectional long short-term memory

(BLSTM) [39] layer;
� an FC layer after two BLSTM layers;
� a single gated multilayer perceptron (gMLP) block [40];
� five gMLP blocks.
A gMLP block is similar to basic Multilayer Perceptrons

(MLPs) with a gating unit. It was found to be simple and
powerful compared with other alternatives.

We compared each of the above components in terms of the
EER on the development set of the PartialSpoof database. To
reduce the time cost, we used w2v2-base as the front-end
when comparing the back-end scoring modules. The EERs listed
in Table VI show that using five gMLP blocks gives the best

9SUPERB: https://superbbenchmark.org/

https://superbbenchmark.org/
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TABLE VI
COMPARISON OF DIFFERENT FRONT-ENDS AND BACK-ENDS

performance. We then compared the SSL models while using
the architecture of five gMLP blocks in the back-end scoring
module. The results indicate that the three Large SSL models
outperformed w2v2-base, and that w2v2-large performed
best. Given these results, all following experiments were con-
ducted using w2v2-large and five gMLP layers.

C. Comparing Training Strategies on the Proposed CM

In this section, we compared the two CM training strategies,
that is, training at a single temporal resolution or multiple
resolutions. Performance was measured on the development set
and evaluation set of the PartialSpoof database.

We first explored the two training strategies on segment-level
detection. The results are shown in Fig. 3(a). For the proposed
CM trained at a single temporal resolution (black circle), since
the segment-level ground-truth labels are available at the six
segment-level temporal resolutions, we trained six versions of
the proposed CM, one for each segment-level temporal resolu-
tion. After training, each CM version produces scores at the
corresponding temporal resolution. We also trained the CM
at multiple temporal resolutions (red triangle) that can derive
scores for all resolutions at once.

Results suggest that segment-level detection is more difficult
at a higher temporal resolution, but it is not impossible. For the
highest temporal resolution of 20 ms, the proposed CM achieved
an EER of around 10% on the evaluation set. This EER is
reasonably good considering the fact that each segment consists
of only one frame and is extremely short. Besides, although
the multiple-resolution CM is slightly better than the single-
resolution counterpart at the resolution of 640 ms, it performed
worse than the single-resolution CMs at fine-grained segment
levels (20 ∼ 320 ms). There is thus room for improvement of
the fine-grained segment-level detection.

We then compared performance on utterance-level detection.
The results are shown in Fig. 3(b). No matter which training strat-
egy was used, the proposed CM achieved an EER below 1% on
the evaluation set for utterance level detection. Furthermore, the
CM trained at multiple temporal resolutions outperformed the
CMs trained at a single temporal resolution for utterance-level
detection. This indicates that the coarse-grained detection tasks
can benefit from the training strategies using multiple temporal
resolutions.

Fig. 4. Results of leave-one-out experiments on development and evaluation
sets. Color represents changing of EER (%).

Results of the above experiments suggest that we need to
select a suitable temporal resolution and training strategy de-
pending on our goal: (1) For the detection at the segment
level, training should be applied at the specific target temporal
resolution; (2) in terms of utterance-level detection, the use
of more fine-grained information is expected to improve CM
performance.

Besides, the differences between the EERs on the evaluation
and development sets demonstrate the difficulty of segment-level
detection and show that it is difficult to generalize to the evalu-
ation set. We thus explore the differences between them in the
next subsection.

D. EER Gap Between Development and Evaluation Sets

We have two hypotheses to explain the significant differences
between the EERs on the development and evaluation sets, and
we examined both using the CM trained at multiple temporal
resolutions.

1) Hypothesis 1: More difficult spoofing systems exist in
the evaluation set. For the LA scenario and ASVspoof 2019
LA database, existing studies have measured the EER over
fully spoofed trials from each spoofing system and found that
a voice-conversion-based spoofing system called A17 signifi-
cantly increased the CMs’ EERs on the evaluation set [3], [41].
Since the PartialSpoof database used spoofed trials from the
ASVspoof 2019 LA database, we hypothesize that the strong
attacks in the evaluation set may have led to the higher EER.
Because the segments in a partially-spoofed audio sample can
be from different spoofing methods, we did not use the same
investigation method as previous studies on the LA scenario
and instead used a leave-one-out evaluation approach. For each
spoofing method, we excluded the test trials that contain at
least one segment produced by that spoofing method. We then
measured the EER on the remaining trials and compared it with
the original EER computed on all the test trials. We conducted
the analysis on both the development and evaluation sets.

The results are shown in Fig. 4. Each column in the figure
corresponds to the results on segment-level detection at one
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TABLE VII
EERS (%) OF DIFFERENT CMS ON PARTIALSPOOF EVALUATION SET. COLUMN TYPES LISTS EACH CM IN ACCORDANCE WITH CATEGORIES IN FIG. 2. ALL CMS

WERE TRAINED ON PARTIALSPOOF TRAINING SET, ALTHOUGH THEY MAY HAVE USED LABELS AT DIFFERENT TEMPORAL RESOLUTIONS. PREVIOUS STUDIES [5],
[6], [16] USED ONLY ONE OR TWO TEMPORAL RESOLUTIONS

temporal resolution, while each row corresponds to the results of
analysis on a specific spoofing method. The IDs of the spoofing
systems such as A07 were inherited from those in the ASVspoof
2019 LA database. It was observed that, if the spoofed trials that
contain spoofed segments from A1510 were removed, the EER
on the rest of the evaluation set decreased significantly. For our
CM, A15 was the strongest spoofing system in the PS scenario.
Leaving out other spoofing systems such as A10, A11, A12 and
A17 also decreased the EER but to a lesser extent. In contrast,
the EERs on the development set did not decrease as much as
the change in the EERs on the evaluation set no matter which
spoofing method was left out.

As hypothesized, partially-spoofed segments produced by
some of the spoofing systems in the evaluation set were more
difficult to detect. Particularly, A15 was the strongest attack.
This may be one reason that EERs in the evaluation set are
higher than those in the development set. However, the EER on
the evaluation set was still higher than on the development set
even when we removed A15. We thus have another hypothesis
to explain the EER gap between the development and evaluation
sets.

2) Hypothesis 2: Detecting spoofed segments with fewer
concatenated boundaries on the evaluation set is more difficult
than on the development set. As described in Section III-B,
the partially-spoofed trials in PartialSpoof were created on the
basis of substitution and concatenation. The overlap-add-based
concatenation may bring in artifacts around the concatenated
boundaries, which are expected to be useful for the CM. How-
ever, a segment to be scored by the CM may not contain any
concatenated boundaries. Furthermore, if such a segment is from
an unseen spoofing attack, the CM is more likely to make a
mistake. Hence, we hypothesize that our CM performed worse
on the evaluation set because it was not perfectly designed to

10A15 is a hybrid spoofing system that uses a TTS voice as a source speaker
and WaveNet as a vocoder for voice conversion.

Fig. 5. Breakdown of EER on number of concatenated boundaries.

distinguish the spoofed segments without any concatenation
point from those with one or more concatenated boundaries.
The performance on the development set may receive less impact
since all the spoofing methods were seen during the training of
the CM.

To verify the hypothesis, we computed the breakdown EERs
on the basis of the number of concatenated boundaries in the
segments. The results are listed in Fig. 5. Each row in the figure
lists the EERs evaluated on segments that have a corresponding
number of concatenated boundaries, and each column is for
EERs at one temporal resolution. We observe that the perfor-
mance of our CM on the evaluation set degraded when the
number of concatenated boundaries decreased. Especially, when
the number of concatenated boundaries was zero, the CM’s EER
significantly increased at temporal resolutions ranging from 20
to 160 ms. In contrast, the EERs on the development set varied
(but to a much lesser extent) regardless of the change in the
number of concatenated boundaries. As hypothesized, our CM
made more errors when facing unseen spoofed segments with
few concatenated boundaries in the evaluation set.
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TABLE VIII
CROSS-SCENARIO STUDY IN UTTERANCE LEVEL (EER %). (ASVSPOOF 2019

LA AND PARTIALSPOOF DATABASES WERE APPLIED FOR LA AND PS
SCENARIOS SEPARATELY.)

E. Comparing Proposed and Conventional CMs

We next compared the proposed CM with the conventional
CMs [5], [6], [16] explained in Section IV-B. Comparisons are
made to a CM trained with the multiple temporal resolutions.
EERs for the PartialSpoof evaluation set are summarized in
Table VII.

The first noteworthy observation was that the conventional
CMs could only directly detect segments at a single temporal
resolution. This is due to the inflexible back-end structure, as
discussed in Section V-A. In contrast, our proposed CM can
detect spoofed segments at different temporal resolutions simul-
taneously. It also significantly outperformed the conventional
CMs at the corresponding segment and utterance levels. These
results indicate that the proposed CM is more suitable for the
PS scenario.

F. Cross-Scenario Study

Since a CM for the PS scenario can execute utterance-level
detection, it can also be applied to the LA scenario. To determine
whether the improvements brought by multi-resolution training
for the PS scenario also translate to the LA scenario, we inves-
tigated the performance of the proposed CM on utterance-level
detection for both LA and PS scenarios. The data for these
scenarios were from the ASVspoof 2019 LA and PartialSpoof
databases, respectively.

These experiments involved two training settings, one using
the training set of the ASVspoof 2019 LA database and the other
using that of the PartialSpoof database. For the ASVspoof 2019
LA database, since the training data only contains utterance-
level labels, the proposed CM was trained using the single tem-
poral resolution training strategy for utterance-level detection.
For CMs trained using the PartialSpoof data, we used the two
CMs trained using either the single temporal resolution strategy
or the multiple resolution one as described in Section V-D. The
first used only utterance-level labels and was trained using the
same strategy as the CM trained on the ASVspoof 2019 LA
database. The latter used the full set of utterance and segment
labels from the PartialSpoof database and trained using the
multiple temporal resolution strategy.

We used each CM to produce scores for the ASVspoof 2019
LA and PartialSpoof development and evaluation sets for the
utterance-level detection. The results are shown in Table VIII.
Focusing first on single resolution and utterance-level training,
the performance for the ASVspoof 2019 LA database was shown
to be competitive. However, the EERs increased significantly

beyond 10% in the PartialSpoof dataset. This was expected
because the CMs trained using the LA data are not exposed
to partial spoofs, thus perform poorly. When trained using the
PartialSpoof dataset; however, performance in the case of PS
data improved significantly, while performance when tested
using the LA data remained competitive.

Further improvements were achieved when the proposed CM
was trained at multiple temporal resolutions. In summary, when
trained on the PartialSpoof dataset, the proposed CM demon-
strated better utterance-level detection performance for both LA
and PS scenarios. Using PartialSpoof training data is beneficial
even when the CM is tested on LA data.11

VII. CONCLUSION

We reported a new spoofing scenario, PS, in which only a
fraction of speech segments are spoofed, with the remaining
segments containing bona fide speech. Successful approaches
to spoofing detection in this scenario can be applied at either
the utterance level or segment level. The latter requires the
assessment of spoofing classifiers using a database of bona fide
and spoofed speech, with the latter labeled at the segment level.
We described the new PartialSpoof database which is labeled at
multiple temporal resolutions from 20 to 640 ms.

After formulating CM tasks required to tackle the PS sce-
nario, we introduced SSL models as an enhanced front-end and
proposed new neural architectures and training strategies that
exploit segment-level labels for simultaneous, multi-resolution
training. Experimental results suggest that CMs and training
strategies should be adapted to a specific goal. Utterance-level
detection can benefit from the use of more fine-grained informa-
tion during training, whereas the comparatively more challeng-
ing task of segment-level detection calls for matched resolution.

There were significant differences between the results of
segment-level detection on the development and evaluation sets.
We thus investigated two hypotheses to explain the differences:
(1) More difficult spoofing systems exist in the evaluation set.
This hypothesis is supported by a series of leave-one-out exper-
iments for each resolution, and significant changes in the EER
were observed after removing certain unknown spoofing sys-
tems. Among those unknown spoofing systems, A15 was found
to be the strongest attack in the PartialSpoof dataset. (2) De-
tecting spoofed segments with fewer concatenated boundaries
on the evaluation set is more difficult than on the development
set. This is supported by an analysis of the breakdown EERs
on the spoofed data with different numbers of concatenated
boundaries. The performance of the CM on the evaluation set
was much worse when there were fewer concatenated bound-
aries within the segments. In contrast, the performance on the
development set was less affected. How to overcome this issue
for the segment-level detection is worth exploring in the future.

11In addition to the cross-scenario study, it is also possible to combine the two
databases and see if they are complementary to each other. This investigation
requires significant changes in the proposed CM structure so that model training
can be effectively conducted even in situations where parts of audio files in the
training database do not have segment-level labels, which is beyond the scope
of this paper and is a future analysis topic.
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We also conducted a cross-scenario study on the LA and PS
scenarios. The proposed CM was shown to achieve the best
reported utterance-level detection result for the ASVspoof 2019
LA database (an EER of 0.77% for the evaluation set). The
PS scenario is a realistic, important, timely, and challenging
spoofing scenario, which warrants greater attention in the future.
The more conventional, utterance-level CMs considered in the
LA scenario largely fail in the face of only partially-spoofed ut-
terances, indicating their vulnerability to manipulation through
such attacks. Results nonetheless show scope for improvement.

Our future work will include explicit use of linguistic infor-
mation for the detection of short spoofed segments embedded
in otherwise bona fide utterances and robust training strategies
to handle imbalanced classes. An important challenge will be
to increase the number of TTS and VC methods for creating
partially-spoofed speech and to use more up-to-date methods.
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