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Pruning Deep Neural Network Models of Guitar
Distortion Effects

David Südholt , Alec Wright , Cumhur Erkut , and Vesa Välimäki , Fellow, IEEE

Abstract—Deep neural networks have been successfully used in
the task of black-box modeling of analog audio effects such as dis-
tortion. Improving the processing speed and memory requirements
of the inference step is desirable to allow such models to be used on
a wide range of hardware and concurrently with other software. In
this paper, we propose a new application of recent advancements in
neural network pruning methods to recurrent black-box models of
distortion effects using a Long Short-Term Memory architecture.
We compare the efficacy of the method on four different datasets;
one distortion pedal and three vacuum tube amplifiers. Iterative
magnitude pruning allows us to remove over 99% of parameters
from some models without a loss of accuracy. We evaluate the
real-time performance of the pruned models and find that a 3x-4x
speedup can be achieved, compared to an unpruned baseline. We
show that training a larger model and then pruning it outperforms
an unpruned model of equivalent hidden size. A listening test con-
firms that pruning does not degrade the perceived sound quality,
but may even slightly improve it. The proposed techniques can be
used to design computationally efficient deep neural networks for
processing the sound of the electric guitar in real time.

Index Terms—Audio systems, machine learning, music,
supervised learning, recurrent neural networks.

I. INTRODUCTION

D ISTORTION is one of the most common effects applied
to the signal of an electric guitar. Many popular devices

that achieve this effect, such as amplifiers and effects pedals, are
based on analog circuitry. These circuits are characterized by
their use of nonlinear components such as transistors, diodes,
and vacuum tubes.

In virtual analog (VA) modeling, the aim is to reproduce the
behavior of such devices in software as accurately as possible,
accounting for the real-time constraints [1], [2], [3]. This allows
the effects to be used in a digital audio workstation (DAW) as
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part of a fully digital music production workflow, reducing the
need to purchase, store and transport analog equipment.

Approaches to VA modeling of distortion circuits can broadly
be classified as white-box, black-box, or gray-box [2]. In white-
box modeling [4], [5], [6], [7], the circuitry is analyzed and sim-
ulated using time-stepping methods. Additionally, these models
can then be further optimized using data recorded from the
target device [8], [9]. This can achieve very accurate results, but
often involves a labor-intensive design process and can produce
computationally demanding models.

In black-box modeling, the circuit’s response to some in-
put signals is measured, and the model aims to recreate the
observed input-output mapping through various means. Those
include dynamical convolution [10], the Volterra series [11],
[12], or Wiener models, combining a linear filter with a static
nonlinearity [13], [14]. The strength of black-box models lies
in their generality, and the same model design can be used
to emulate a range of different systems. However, black-box
models typically fail to reach the same accuracy as white-box
models, and either do not model user controls at all or require the
input-output measurements to be performed at multiple different
configurations.

Gray-box modeling [15], [16], [17], [18] falls somewhere be-
tween white- and black-box approaches. The model is designed
using knowledge of the circuit, but still requires input-output
measurements of the emulated device. Modeling the input-
output mappings with machine learning techniques has become
popular in recent years. Gray-box approaches that model the
circuit’s states and output using kernel regression [15] or a deep
neural network [17] have been proposed.

Various neural network models have also seen increasing
use in virtual analog modeling. Zhang et al. introduced a
many-layered long short-term memory (LSTM) network ar-
chitecture in [19], and a single-layered LSTM along with a
real-time C++ implementation was presented in [20]. Various
recurrent, dense and convolutional models are analyzed in [21].
Damskägg et al. [22] proposed a convolutional model based
on the WaveNet [23] architecture and presented a real-time
implementation [24]. While they focused on the emulation of
distortion pedals [24], Wright et al. compared performance of
recurrent and convolutional models when applied to the emula-
tion of vacuum tube amplifiers [25].

Real-time performance is an important aspect of VA mod-
eling. Improving the processing speed and memory footprint
of a model can allow it to run with lower latency, on a
wider range of hardware, and concurrently with other, possibly
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Fig. 1. Deep neural network architecture studied in this work [40].

resource-intensive plugins. Recent work has combined aspects
of deep learning with traditional IIR filters to produce more effi-
cient and interpretable models [26], [27], whilst Steinmetz and
Reiss have explored efficient convolutional models for real-time
VA modeling [28].

The inference process of many neural networks can be made
more efficient through pruning away weights [29], [30]. Various
pruning methods have been proposed that are specific to general-
purpose convolutional [31], [32], [33] or recurrent [34], [35],
[36] neural network architectures.

The Lottery Ticket Hypothesis (LTH) [37] conjectures that
dense feed-forward networks contain subnetworks, referred to
as winning tickets, that perform with comparable accuracy to
the original network when trained in isolation. These subnet-
works can be uncovered by iteratively pruning and retraining the
network. Esling et al. [38] confirmed the existence of winning
tickets for popular generative audio network architectures, such
as the convolutional WaveNet [23] and the recurrent DDSP
autoencoder [39].

This paper investigates the real-time performance improve-
ments that can be gained from applying LTH-based pruning
techniques to the LSTM distortion model proposed in [20]. We
apply the models to the emulation of the Electro-Harmonix Big
Muff Pi distortion pedal, the Blackstar HT-1 and HT-5 Metal
amplifiers, and the Mesa Boogie 5:50 Express Plus amplifier.

The rest of the paper is organized as follows. Section II
describes how LSTM models can be used for black-box VA
modeling. In Section III, we present the approach to pruning
the model. Section IV details the setup of our experiments to
determine the effect of the pruning on accuracy and real-time
performance, and Section V presents their results. Section VI
concludes the paper.

II. RECURRENT NEURAL NETWORKS FOR BLACK-BOX

MODELLING

The recurrent model discussed in [25] produces a single
output sample based on a single input sample at each time step.
It consists of a single LSTM unit, the output of which is fed
into a fully connected (FC) layer, as shown in Fig. 1. A residual
connection adds the input sample value to the output of the FC
layer at each time step. This means that the desired output of
the FC layer is the difference between the input sample and the
corresponding sample that the emulated device would output at
this time step. The rest of this section will explore the model in
detail.

A. Long Short-Term Memory Layer

The key characteristic of RNNs is their statefulness. At each
time step, the RNN output depends on its state at the previous
time step, allowing it to model time series data while processing
only one sample at a time.

A particularly popular method of keeping an internal state
is the LSTM unit, first proposed in [41]. The LSTM state is
composed of the hidden state, h, and the cell state, c. At time
step n, the LSTM uses its previous states h[n− 1] and c[n− 1],
along with the current input sample x[n], to produce the outputs
h[n] and c[n] according to the following set of functions:

i[n] = σ(Wiix[n] + bii +Whih[n− 1] + bhi), (1a)

f [n] = σ(Wifx[n] + bif +Whfh[n− 1] + bhf ), (1b)

c̃[n] = tanh(Wicx[n] + bic +Whch[n− 1] + bhc), (1c)

o[n] = σ(Wiox[n] + bio +Whoh[n− 1] + bho), (1d)

c[n] = f [n]c[n− 1] + i[n]c̃[n], (1e)

h[n] = o[n] tanh(c[n]), (1f)

where i[n] is the input gate, f [n] the forget gate, c̃[n] the
candidate cell state, o[n] the output gate, tanh(·) the hyperbolic
tangent function and σ(·) the logistic sigmoid function. The
weight matrices W and biases b are learnable parameters. In
this model, the vectors h and c are both of the same size Shid,
referred to as the hidden size of the LSTM. The total number of
learnable parameters Nparam of the LSTM can be expressed as

Nparam = (4Sin + 8)Shid + 4S2
hid, (2)

whereSin denotes the input size. In the simple case where the in-
put consists of a single sample of mono-channel audio, Sin = 1.

B. Fully Connected Layer

The input of the FC layer is the hidden stateh[n] of the LSTM.
Since this model does not use a nonlinear activation function
in the FC layer, its output can be simply viewed as an affine
transformation of the LSTM hidden state. Including the residual
connection, the predicted output ŷ[n] of the model is given by:

ŷ[n] = Wfch[n] + bfc + x[n]. (3)

Since the output is again a single sample of mono-channel audio,
the weight Wfc is simply a vector of size equal to the LSTM
hidden size, and the bias bfc is a single scalar, which can be seen
as a learned dc offset.

III. COMPRESSION OF RECURRENT NEURAL NETWORKS

In this section, we describe the method we employ to reduce
the size of the model in order to speed up inference without
sacrificing accuracy in the process.

A. Iterative Magnitude Pruning

Removing parts of a fully trained network leads to an initial
loss in accuracy, which can be recovered by retraining the
pruned model [30]. Repeating the pruning and retraining steps
iteratively until a target sparsity is reached or until accuracy starts
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to degrade generally results in higher accuracy than pruning in
one shot [30], [37], [42].

When considering a neural network as a function f(x; θ)with
input x and network parameters θ, pruning can be formalized
as introducing a mask m ∈ {0, 1}|θ| [37]. Removing a weight is
realized by setting its corresponding mask entry to zero, and the
network function becomes f(x; θ �m), where � denotes the
element-wise product.

In unstructured global pruning, all of the parameters are
pooled together, assigned a score, and the p% of the weights
with the lowest score are removed for some pruning ratio p. In
magnitude pruning, that score is simply equal to the weight’s
magnitude. Esling et al. [38] evaluated a number of other scor-
ing methods for pruning generative audio models and found
that magnitude pruning preserves the most accuracy in higher
pruning contexts (p > 90).

Before the introduction of the LTH [37], the most common
retraining technique was to fine-tune the model after pruning for
a number of epochs at a fixed learning rate [30], [43]. With the
proposal of the LTH came the introduction of weight rewinding,
in which the remaining weights after pruning are reset to their
values at some early epoch or initialization. Renda et al. [42]
propose that learning rate rewinding, in which the weights are
kept but the learning rate schedule is reset to its initialization,
generally matches or outperforms weight rewinding, and suggest
it as a network-agnostic default choice for pruning.

B. Early Stopping Based on Mask Distance

Reaching a desired level of sparsity by fully training a model
and then applying iterative pruning, fully retraining the model
at each iteration, incurs a large computational cost. Since it can
be observed that important connectivity patterns emerge early
in training and become relatively fixed in later stages [44], it has
been proposed that so-called Early-Bird (EB) winning tickets
can be identified at a very early training stage [45].

The valuable output of a given pruning iteration is not nec-
essarily a fully trained, accurate model, but rather the pruning
mask on which the next iteration of pruning is based. This allows
us to stop the pruning iteration early when the mask is identified.

The decision to stop training is based on calculating a pruning
mask at each epoch (without actually applying it) and monitoring
their pair-wise Hamming distance. Once the pruning masks
cease to change by more than a chosen threshold from epoch
to epoch, the EB ticket is considered identified. The most recent
pruning mask is applied and the next iteration is started. Training
is stopped once the most recent k mask distances all fall below
some threshold ε for some small constant k, to account for
fluctuation in the early training stages.

Algorithm 1 describes the combination of unstructured global
iterative magnitude pruning and the EB early stopping crite-
rion that we use to obtain a pruned model. In a variant of
this algorithm referred to as Fully Train First (FTF), the EB
early stopping criterion is not applied in the first iteration of
the algorithm, instead training the unpruned model for a fixed
number of epochs.

Algorithm 1: The Mask Search Algorithm.
1: Initialize parameters θ, pruning mask m, learning rate

scheduler l, pruning ratio p, number of pruning iterations
N , mask distance threshold ε, and a FIFO queue Q with
length k

2: for i = 1 to N do
3: Set epoch counter t = 0
4: while max(Q) < ε do
5: Train one epoch, updating l and θ where m �= 0
6: Calculate pruning mask mt by pruning p% of

currently active parameters θ where m �= 0
7: Calculate mask distance between mt and mt−1 and

add to Q
8: t = t+ 1
9: end while

10: Set m = mt

11: Set θ = θ �m
12: Reset learning rate scheduler l
13: end for
14: return θ, m

C. Model Compression

Simply sparsifying the weight matrices through pruning does
not result in notable performance improvements during infer-
ence. In [35], the authors find that for large LSTMs (Shid = 1500,
Sinp = 1500), the sparse matrix implementation of the Intel
Math Kernel Library adds overhead and actually slows down
inference at sparsities less than 80%. This matches our prelimi-
nary experiments with unstructured sparsity in our much smaller
VA models (Shid ≤ 96, Sinp = 1), using the sparse matrix func-
tionality of the Eigen library in our real-time implementation.

A more significant speedup can be achieved by exploiting
the intrinsic sparse structures (ISS) that were shown to exist
in LSTMs in [35]. Applying unstructured global magnitude
pruning to the weight matrices of LSTMs gravitates towards
masking entire related rows, so that some hidden states of the
LSTM become useless. They can then be entirely removed from
the model without affecting the computation graph at all, leading
to an effective reduction in hidden size, which has a much more
direct impact on inference performance. From here on, we will
refer to the number of hidden nodes that are still active in a
pruned model as the effective hidden size.

IV. EXPERIMENTAL SETUP

We perform a number of experiments to investigate to what
degree the LSTM black-box VA model can be compressed
without sacrificing accuracy, and how this benefits real-time
performance. Training deep neural networks depends on a large
number of design decisions and hyperparameters, which this
section describes in detail.

A. Training Data

1) Data Acquisition: We train the models on four sets of
training data. Two of these datasets, the Big Muff pedal and
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the HT-1 amplifier, are identical to those used in [20]. The 8 min
and 10 s of input audio are sourced from the guitar and bass
guitar datasets presented in [46], [47]. The dataset is split into a
training set of 5 min and 42 s, a validation set of 1 min and 24 s
and a test set of 1 min and 4 s. All audio is sampled at a standard
rate of 44.1 kHz.

For the HT-1 amplifier and the Big Muff pedal, the output data
is obtained by feeding the input data into the modeled devices
using a MOTU UltraLite-mk3 USB audio interface. Both the
output of the audio interface and the output of the modeled device
are recorded to construct the input-output data used in training.

For the HT-5 and Mesa amplifiers, we use data from an
existing dataset [48]. The training set consists of 2 min and 43 s
of audio, which was previously shown to be sufficient to train a
perceptually accurate model on these devices [25].

2) Modeled Devices: The Electro-Harmonix Big Muff guitar
pedal (Big Muff) is a famous distortion effect and has been
a popular subject of VA modeling research [13], [24], [49].
It achieves a heavily distorted sound with two cascaded diode
clipping stages. The pedal offers a “sustain” and “volume” knob
that control the pre- and post-gain, respectively, as well as a
“tone” knob to control the shape of a combined lowpass and
highpass filter after the clipping stages.

The Blackstar HT-1 (HT-1) is a 1 W vacuum tube amplifier
with a high-gain and a low-gain channel. In addition to controls
for pre- and post-gain, it offers a knob controlling the “Infi-
nite Shape Feature” (ISF). According to the manufacturer, it
allows for continuous shifting between two distinct tone settings,
described as the “American” tone when turned fully counter-
clockwise and the “British” tone when turned fully clockwise.

The Blackstar HT-5 Metal (HT-5) offers similar controls to
the HT-1 amplifier, but has a wattage of 5 W and distorts more
heavily on both channels. Since the focus of this work is on
modeling distortion, recordings from the high-gain channel are
used for both Blackstar amplifiers.

The Mesa Boogie 5:50 Express Plus (Mesa) is also a 5W tube
amplifier, offering the choice between channels labeled “Clean
or Crunch” and “Blues or Burn”. Recordings are obtained from
the “Crunch” channel.

B. Model Training

During all training runs, the models are trained using the
Adam optimizer [50] with an initial learning rate of 5× 10−4.
Additionally, the training loss function is calculated on the
validation set every second training epoch, and the learning
rate is halved if the loss does not improve for five consecutive
validations.

The models and experiments were implemented using the
PyTorch [51] and PyTorch Lightning [52] libraries. The code
and the raw and processed audio used for training is available
online1.

1) Loss Function: We train the model to minimize the loss
function from [20], which is a combination of the error-to-signal
ratio (ESR) loss used in [22] and [24], and an additional dc loss.

1[Online]. Available: https://github.com/dsuedholt/PrunedGuitarVA

Before computing the ESR loss, a first-order high-pass filter with
the transfer function

H(z) = 1− 0.85z−1 (4)

is applied to the output. This pre-emphasis filter helps the
network learn to model the high-frequency content [40]. Giving
a segment of training signal of length N , the pre-emphasized
ESR is given by:

EESR =

∑N−1
n=0 |yp[n]− ŷp[n]|2
∑N−1

n=0 |yp[n]|2
, (5)

where yp is the pre-emphasized target signal, and ŷp is the pre-
emphasized neural network output.

The dc loss term is given by:

Edc =

∣
∣
∣ 1
N

∑N−1
n=0 (y[n]− ŷ[n])

∣
∣
∣
2

1
N

∑N−1
n=0 |y[n]|2 . (6)

The final loss function used in training is the weighted combi-
nation of the ESR and dc loss given by:

E = 0.75EESR + 0.25Edc. (7)

2) Truncated Backpropagation Through Time: Updating the
parameters of the LSTM after every time step comes at a
prohibitive computational cost for audio sequences, since that
would result in a number of parameter updates per second
of training data equal to the sampling rate. Backpropagation
through time (BPTT) [53] refers to a method of training RNNs
in which an entire training sequence is processed before updating
the network parameters. This is also not well-suited to audio data
consisting of a large number of time steps, since backpropagat-
ing through long sequences is also computationally expensive
and the infrequent parameter updates require the sequences to
be processed many times, making training very slow.

Truncated BPTT [54] is a compromise between the two
methods, in which parameter updates are carried out during
the processing of a sequence. The recurrent unit state persists
between updates. We train our models with truncated BPTT,
carrying out parameter updates every 2048 samples, roughly
corresponding to 50 ms of audio.

3) Batch Processing: The training dataset is split into seg-
ments of 22050 samples, corresponding to half a second of audio.
During training, the segments are processed in mini-batches of
40 segments, the order of which is randomized at the beginning
of each training epoch.

At the start of each mini-batch, the LSTM state is set to 0.
The first 1000 samples of each segment are treated as “warmup”
samples, which are processed without performing parameter
updates, allowing the LSTM state to initialize. Afterwards,
parameters are updated according to the previously described
process of truncated BPTT, resulting in roughly 10 parameter
updates per segment.

The validation and test datasets are neither segmented nor
pre-emphasized and simply processed as-is.

4) Mask Search: We perform 15 iterations of the mask search
described in algorithm 1, pruning 30% of the weights in each
iteration, resulting in a maximal sparsity of 99.53%. The pruning

https://github.com/dsuedholt/PrunedGuitarVA
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TABLE I
PERFORMANCE OF UNPRUNED LSTM MODELS AND AT SELECTED STAGES OF PRUNING. THE BEST RESULTS ARE HIGHLIGHTED

iteration is stopped when the mask distance from training epoch
to training epoch is less than ε = 0.1 for k = 5 consecutive
epochs.

C. Speed Measurements

The impact of model compression and sparsity on inference
performance is measured using the real-time JUCE implementa-
tion presented in [20]. We process a second of audio three times,
measuring the processing time in each run and averaging the
results. The speed measurements are reported in the form of the
real-time factor (RTF), which is the ratio between the required
processing time and the duration of the processed audio. An RTF
value smaller than 1.0 means that the model runs in real time.

V. RESULTS

In our experiments, we investigate the impact that the mask
search algorithm has on the accuracy and real-time performance
of LSTM models of varying hidden sizes. Table I shows an
overview of the results on the different datasets obtained with
the FTF variant of the mask search algorithm.

On the Mesa and Big Muff datasets, applying the mask
search algorithm to larger model results in a pruned model that
outperforms smaller base models both in accuracy and real-time
performance. The pruning speeds up the largest model by a factor
of 3.1 (Mesa) and 3.7 (Big Muff).

On these datasets, training a larger model of hidden size 96
and then pruning it yields models whose effective hidden size is
smaller than 32, but still achieve higher accuracy than training
an unpruned model of hidden size 32 from scratch.

On the HT-1 and HT-5 datasets, pruning the largest model
still results in a speed-up factor of 1.3 (HT-1) and 1.5 (HT-5)
compared to the unpruned model. This means that on these
datasets, the pruned large models do not run faster than the
smaller models, but are still significantly more accurate.

On all devices, previously published ESR baselines [20], [25]
can be met by models pruned to considerable sparsity. In [25],
listening tests were performed, in which the sound quality of the
best-performing LSTM models of the HT-5 and Mesa amplifiers
was rated as “excellent”.

The rest of this section explores different aspects of the
proposed method in more detail.

Fig. 2. Validation and training loss while training an LSTM model with hidden
size 64 on the HT-5 dataset.

A. Mask Search Algorithm

Preliminary experiments showed that the FTF variant of the
mask search algorithm, in which the unpruned model is trained
to convergence before applying the EB early stopping criterion,
consistently produced more accurate models at every stage of
pruning than the variant in which the EB early stopping is applied
in every iteration. One possible reason for this can be found in the
relatively slow convergence of LSTM models when compared
to the convolutional models, for which the EB criterion was
first proposed [45]. Fig. 2 shows that the validation loss shows
significant improvements until very late into training, suggesting
that the important connectivity patterns of LSTM models take
longer to emerge than those of convolutional models.

It is impractical to fully retrain the model at every mask
search iteration to select the best-performing one, or to know
up to which degree of sparsity a model can be pruned without
major performance losses. With the FTF variant of the algorithm
however, the validation loss of the model at the end of a mask
search serves as a reasonable heuristic to predict the point at
which pruning degrades the performance after retraining. Fig. 3
shows an example of the relationship between the validation loss
at the end of a mask search iteration and the test loss achieved
after fully retraining the model.

Figs. 4 and 5 compare the outputs of a model with hidden size
96. In one case, it was pruned to a sparsity of 91.8% with the
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Fig. 3. The relationship between the validation loss at the point of early
stopping and the final test loss while pruning an LSTM model with hidden
size 32 and training on the Big Muff dataset.

Fig. 4. A waveform processed through the HT-1 amplifier (target) and an
LSTM model. (a) Output of the model pruned with one-shot pruning. (b) Output
of the model pruned with iterative mask search.

iterative mask search algorithm, achieving an ESR test loss of
1.2% after retraining for 750 epochs. In the other, it was pruned
to 90% sparsity in one shot, achieving an ESR test loss of 9.6%
after retraining for 750 epochs. Across all datasets and model
sizes, one-shot pruning results in a significant drop of the model
accuracy at sparsities exceeding 50%, while the mask search
algorithm is able to retain the model accuracy with sparsities up
to 99.6%, depending on the model size and dataset.

Fig. 4 shows the outputs as a time-domain waveform, while
Fig. 5 shows the frequency-domain spectra. Fig. 5 illustrates that
even the model pruned in one shot matches the low-frequency

content reasonably well, but starts to deviate from the target
peaks at frequencies higher than ca. 2400 Hz. The model pruned
using iterative mask search never misses the target peaks by more
than 2 dB at all frequency ranges. The model pruned in one shot,
however, misses most target peaks at higher frequencies by 3 dB
or more.

B. Difference Between Devices

We were able to remove a significantly higher number of
hidden nodes and thus achieve a larger speedup on the Mesa and
Big Muff datasets than on the HT-1 and HT-5 datasets. Fig. 6
shows the differences between the datasets. This discrepancy
does not seem to be related to the model accuracy, since the
models were able to emulate the Mesa and HT-1 amplifiers more
accurately than the Big Muff pedal and the HT-5 amplifier.

Fig. 7 shows the settling time of the models of the different
devices, which is the time it takes to return to a steady state after
excitation with an impulse. The HT-1 and HT-5 amplifier mod-
els, which proved harder to prune, show a significantly longer
settling time. The need to model longer time dependencies is a
likely reason for why these models require a larger number of
effective hidden nodes and weights, than models of devices with
shorter settling times.

Since the amount of pruning that can be achieved seems to be
related to the effect’s settling time, it is not possible to settle on
a “one-size-fits-all” level of pruning. However, as described in
Section V-A and Fig. 3, monitoring the validation loss at every
pruning indication gives a good indication on when pruning
starts to degenerate model performance, so that an appropriately
pruned model may be selected.

C. Real-Time Performance

The removal of hidden nodes and the resulting size reduction
of the matrix multiplications required for inference has a more
significant impact on the inference speed of the models than the
amount of pruned weights. It can be seen in Table I that a much
higher speedup is achieved in the pruned models compared to
their baselines when many hidden nodes can be removed.

At the relatively small hidden sizes of the models we are
considering, sparsity alone does not benefit inference speed
much. Fig. 8 shows that the sparse matrix type provided by
the Eigen library incurs an initial significant overhead, so that
a speed-up compared to an unpruned baseline using a dense
implementation is only achieved once the sparsity exceeds 90%.
However, as we are able to remove more and more nodes at
higher sparsities, the implementation using dense matrix types
still outperforms the sparse implementation.

D. Listening Test

To investigate the impact of pruning on the perceptual quality
of the models, a MUSHRA-style listening test was carried out for
the HT-1 amplifier and Big Muff pedal. For the HT-1 Amplifier,
the unpruned model with hidden size 96 was compared to the
same model after pruning, with a new hidden size 76. These
models achieved a test loss of 1.0 and 1.2 respectively, indicating
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Fig. 5. The spectra of the outputs of the HT-1 amplifier (target) and of an LSTM model on the same input compared at different frequency ranges. The one-shot
pruned model starts to deviate from the target significantly at around 2 kHz.

Fig. 6. The relationship between pruning and the number of active hidden
nodes illustrated for an LSTM with hidden size 64. The models shown in table I
are marked along the graph.

Fig. 7. Illustration of the settling times for unpruned LSTM models with
hidden size 64 for each of the devices.

a slight decrease in quality from the pruning. For the Big Muff
pedal, the unpruned model of hidden size 32 was compared to
the model with initial hidden size of 64, after pruning to a hidden
size of 20. In this case, the test loss for the two models was 7.3
and 5.4 respectively, indicating that the smaller pruned model
performs better than the unpruned model.

Fig. 8. Comparison of the real-time performance of a deep neural network
model with hidden size 64, trained on the Big Muff dataset, using dense and
sparse matrix types. Smaller is better.

For each trial, the participant was presented with a reference,
consisting of a short clip of either guitar or bass guitar, that was
processed through the target device. They were then asked to
rate a number of test conditions based on perceived similarity to
the reference, on a scale of 0 to 100. The test conditions included
the hidden reference, a low anchor produced by processing the
input through a tanh nonlinearity, as well as the output of
pruned and unpruned neural network models. This resulted in a
total of 4 test conditions per trial. For each tested device, five
examples from a bass guitar and two examples from an electric
guitar were presented. More examples from the bass guitar were
included as preliminary listening tests indicated that bass guitar
produces more audible differences between the RNN models
and the reference. This resulted in a total of seven MUSHRA
trials for each device. In total, twelve people participated in
the listening tests, with one being removed in post-screening
because they gave the hidden reference a score of less than 90 in
more than 15% of the trials. None of the participants reported
hearing impairments. The tests were conducted in sound-proof
booths using Sennheiser HD-650 headphones.
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Fig. 9. Mean MUSHRA scores and 95% confidence intervals for pruned and
unpruned models of the (a) HT-1 and (b) Big Muff, showing that pruning does
not compromise the perceived sound quality but may rather improve it.

The results are shown in Fig. 9, where it can be seen that for
the HT-1 the pruning has not resulted in a significant change in
the perceptual quality of the model. In this case, the RTF of the
unpruned and pruned models is 0.246 and 0.187, respectively,
showing that the pruning has reduced the RTF by almost 25%
whilst leaving the emulation quality unaffected. For the Big
Muff, the unpruned and pruned models have RTFs of 0.091 and
0.057 respectively, a reduction of 37%. In this case, the results
indicate that the pruned model offers a small, but statistically
significant improvement over the unpruned model, showing that
the pruning in this case has produced a model that both has
a lower computational cost at runtime, and a higher perceived
quality.

VI. CONCLUSION

This work investigated a new application of recent pruning
methods to speed up the inference of neural network models of
distortion effects. By employing iterative magnitude pruning,
we were able to sparsify the deep neural networks to a high
degree without a loss of accuracy. We applied the pruning to
LSTM models of the Big Muff distortion pedal, the Blackstar
HT-1 and HT-5 amplifiers, and the Mesa Boogie 5:50 Express
Plus amplifier.

Speedups and significant parameter reductions were achieved
on all four devices. The weights could be pruned by 65.7 to
99.6% in the different models. Training a large deep neural
network model and pruning it consistently outperformed the
unpruned model, according to both objective error metrics and
a perceptual listening test. However, the Mesa and Big Muff
models could be sparsified to a notably larger degree than the
other two models, allowing the removal of a large number of
hidden nodes, which is the main driver of faster inference.
There exists a negative correlation between the settling time
of an distortion device and the degree of achieved pruning,
implying that our approach helps uncover the amount of hidden
nodes required for the model to effectively capture the temporal
behavior of the effect.
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