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Automatic Assessment of Parkinson’s Disease Using
Speech Representations of Phonation and Articulation

Yuanyuan Liu"”, Mittapalle Kiran Reddy

Abstract—Speech from people with Parkinson’s disease (PD)
are likely to be degraded on phonation, articulation, and prosody.
Motivated to describe articulation deficits comprehensively, we
investigated 1) the universal phonological features that model ar-
ticulation manner and place, also known as speech attributes, and
2) glottal features capturing phonation characteristics. These were
further supplemented by, and compared with, prosodic features
using a popular compact feature set and standard MFCC. Tempo-
ral characteristics of these features were modeled by convolutional
neural networks. Besides the features, we were also interested
in the speech tasks for collecting data for automatic PD speech
assessment, like sustained vowels, text reading, and spontaneous
monologue. For this, we utilized a recently collected Finnish PD
corpus (PDSTU) as well as a Spanish database (PC-GITA). The
experiments were formulated as regression problems against ex-
pert ratings of PD-related symptoms, including ratings of speech
intelligibility, voice impairment, overall severity of communication
disorder on PDSTU, as well as on the Unified Parkinson’s Disease
Rating Scale (UPDRS) on PC-GITA. The experimental results
show: 1) the speech attribute features can well indicate the severity
of pathologies in parkinsonian speech; 2) combining phonation
features with articulatory features improves the PD assessment
performance, but requires high-quality recordings to be applicable;
3) read speech leads to more accurate automatic ratings than the
use of sustained vowels, but not if the amount of speech is limited to
correspond to the sustained vowels in duration; and 4) jointly using
data from several speech tasks can further improve the automatic
PD assessment performance.

Index Terms—Parkinson’s disease, phonological features, speech
attributes, glottal features, automatic speech assessment.

I. INTRODUCTION

ARKINSON’S disease (PD) is the second most common
I neurodegenerative disease and has a high incidence among
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the aging population [1]. Since speech production is in general
affected by the integrity of the underlying neural system, PD
is likely to lead to voice and speech disorders in the forms
of dysphonia and dysarthria [2]. Dysphonia refers to abnormal
functioning of the voice and is therefore related to phonation,
while dysarthria corresponds to articulation abnormalities. It
has been reported that up to 90% of people with PD suffer
from dysarthria, while the prevalence of dysphonia can be
around 65.5% [3], [4]. However, it has been reported that only
3 — 4% of people with PD receive speech treatment [5]. The
most common perceptual speech pathologies in PD include
impaired phonation, imprecise articulation, reduced variabil-
ity of pitch and loudness, and other prosodic disturbances on
speech rate, stress, and pauses. These pathologies result in
degraded intelligibility of speech produced by speakers with
PD [3], [6], [7].

Speech signal has been demonstrated to be a valuable indica-
tor of disease progression and treatment efficacy in PD [7]. There
is a large body of research on automatic PD assessment using
speech, which employs acoustic analysis and pattern recognition
techniques and aims at objective, non-invasive, and cost-efficient
health care technology for the benefit of clinical practice [8], [9],
[10], [11], [12], [13], [14]. Most studies have investigated PD
detection, which is typically formulated as a binary classification
problem. Only a few studies have, however, investigated the
prediction of the PD severity level (e.g., [12], [15]), which would
be more suitable for clinical purposes in monitoring disease
progression, the impact of medication, or speech rehabilitation
interventions where relative degrees and over-time changes of
motor/speech impairment are of interest.

Given the basic mechanisms of speech production, it would
be useful to analyze speech in PD using speech representations
that model phonation, and articulation. However, although there
is a large body of studies on phonation and articulation in
parkinsonian speech demonstrating the relevance of both aspects
in speech assessment (see [2] for a review), only a few studies
have investigated the joint use of both aspects (e.g., [16]).
In addition, the most commonly used features for articulatory
analysis, such as vowel working space area (VSA), vowel articu-
lation index (VAI), and formant centralization ratio (FCR) [17],
[18], focus on vowel formants despite the fact that PD can affect
the articulation of both vowels and consonants [19], [20].

Besides the different speech representations, another issue
that affects automatic PD assessment from speech signals is the
selection of the appropriate speech task used in the collection of
data in the system training and testing phases. Speech tasks used
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in the study area include the production of sustained vowels and
short sentences, text reading, and spontaneous speech [2], [21],
[22]. Sustained vowels are more stable for feature computation
and can be collected and analyzed similarly in different language
populations, while continuous speech, such as text reading or
monologue, are more representative of daily speech commu-
nication [22]. In [2], the authors reported that the selection of
the best speech task depends on the analysis target and also
on the features to compute. In [12], PD detection and UPDRS
regression results were reported for different speech tasks in
the Spanish PD database PC-GITA [23]. However, the selec-
tion of speech tasks in PD assessment was not considered in
that work. In investigating the Frenchay Dysarthria Assessment
(m-FDA) score regression for the speakers in PC-GITA, the
authors of [24] studied the contributions of different speech tasks
and recommended using three tasks (the oral diadochokinetic
(DDK!) task, the text reading task, and the monologue task)
in clinical practice. In many other studies, data from different
speech tasks have been used together without any distinction,
such as PD disease detection in [25] and phonation impairments
prediction in [26].

In connection to the above-mentioned issues in automatic PD
assessment, the aims of the present study were to 1) investigate
the combination of phonation and articulatory features in auto-
matic assessment, and 2) to study the effects of different speech
tasks in assessment. Moreover, we 3) carried out these investiga-
tions in the context of regression tasks instead of classification
in order to study how accurately these features and speech tasks
can capture subject-level variability in speech intelligibility and
pathology in PD patients.

A. Related Work

A comprehensive review of phonatonary and articulatory
aspects for automatic PD assessment using speech signals was
published by Moro-Velazquez et al. [2]. They concluded that
both phonation and articulation are associated with the severity
of PD. As described in [2], the commonly used phonation
features include, for instance, jitter, shimmer, harmonic-to-noise
ratio (HNR), noise-to-harmonic ratio (NHR), pitch, and Mel-
frequency cepstral coefficients (MFCCs). The most popular
articulation features include MFCCs, features based on linear
predictive coding (LPC), and perceptual linear prediction (PLP),
as well as formant-based features like FCR, VSA, and VAI
to measure vowel articulation characteristics. From the above
articulation features, MFCCs have been particularly popular in
many areas of speech research as a method to parameterize vocal
tract information. In [25], MFCCs were applied in the classifica-
tion of PD and healthy control (HC) speakers from the Spanish
PC-GITA database. The authors trained support vector machines
(SVMs) with statistical functionals of MFCCs, which were com-
puted on the Bark bands and extracted from speech consisting
of individual sentences, DDK, text reading, and monologue. As
a result, an accuracy of 73.7% was reported based on K-fold

'DDK task: rapid repetition of /pa-ta-ka/, /pe-ta-ka/, /pa-ka-ta/, /pa/, /ta/, and
/kal.

(K = 10) cross-validation [25]. In [27], a comparative study
was conducted on classification of PD and HC using sustained
vowel utterances of /a/ and several features, including jitter,
shimmer, MFCC, tunable Q-factor wavelet transform (TQWT)
features among others. Of all the features, TQWT and MFCC
were shown to outperform others in terms of classification
accuracies.

As a paralinguistic feature set of low dimension, eGeMAPS
[28] is also popular in pathological speech analysis (see Sec-
tion II-B for details). In [29], statistics (mean, maximum, and
range) were computed over frame-level eGeMAPS features to
discriminate PD and HC speakers in PC-GITA. The study used
logistic regression with leave-one-speaker-out cross-validation,
where classification accuracies of 72.0% and 80.0% were ob-
tained on text reading and monologue speech, respectively.

Besides the traditional acoustic features mentioned above,
phonological features (also known as speech attributes), such
as articulation manner and place, can be considered as “uni-
versal” descriptors across all spoken languages [30]. These
articulation-related phonological features have been success-
fully utilized in different domains, such as spoken language
recognition, speech recognition, as well as pathological speech
analysis [30], [31], [32]. In [32], phonological features (on
vocal source, manner, place-consonant, and vowel) together
with phoneme features were employed for the prediction of
speech intelligibility scores. In their work, transcriptions were
used for forced-alignment in feature computation. In [33], the
effect of articulation manner was studied in PD detection using
several Spanish PD speech corpora, including PC-GITA. In the
study, speech frames were represented by Rasta-PLP and then
grouped according to the articulation manners of the correspond-
ing forced-aligned phonemes (affricate, fricative, liquid, nasal,
plosive, and vowel). The force-alignment was conducted using a
language-matched ASR system and the transcripts of the speech
under analysis. This phonemic grouping was combined with
GMM-UBM classifiers and K-fold (/X = 11) cross-validation.
The best accuracy for classifying the 50 PD speakers and 50 HC
speakers of PC-GITA was 85 + 7% (95% confidence interval),
obtained on read speech utterances with a UBM trained for plo-
sives. In [15], phonological posteriors from non-silence frames
were used for manually designed features, which were utilized
to measure the similarity between non-modal phonation and
pathological speech. In the study, a read voice quality database
(including speech of modal and non-modal phonation) and data
from healthy speakers in PC-GITA were utilized to normalize
the phonological posterior features. The proposed features were
used to predict the larynx-related score in the m-FDA score for
the 50 PD speakers in PC-GITA, which improved the Spearman
correlation coefficient on read speech when using baseline fea-
tures on articulation and prosody [15]. However, the extraction
of the above-mentioned phonological features required manual
efforts, transcripts for test speech, or a language-matched ASR
system, which limits the flexibility of using phonological fea-
tures for completely automatic processing.

Besides articulation, phonation features have also been uti-
lized in several previous studies on pathological speech. In
PD patients, abnormalities in vocal fold closure patterns have
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been observed through laryngeal videoscopic examinations [34].
Therefore, glottal features representing the mode of the vibration
of the vocal folds are effective in the analysis and detection of
PD. In [35], glottal features were used to capture dysphonia in
the sustained phonation of PD speakers. Their study showed that
glottal features outperformed the traditional perturbation and
cepstral approaches in the assessment of PD-related dysphonia.
In [36], glottal features were shown to have a fairly good perfor-
mance in discriminating between dysarthric and healthy speech
on utterances of non-words, words, and sentences. Moreover,
glottal features have also been shown to be effective in clinical
research topics like the detection of depression [37], specific
language impairment in children [38], and heart failure [39]
using speech signals.

In this work, we go beyond the existing language-specific
or manual-work intensive methods in the usage of articulatory
features by investigating the usage of speech attribute scores au-
tomatically extracted from a universal (language-independent)
automatic speech attribute estimation system. Moreover, we
combine the articulatory features with automatically extracted
phonation features to study their complementarity in PD as-
sessment, also comparing and combining them with the more
commonly used MFCC and eGeMAPS feature sets. We also take
a systematic and cross-lingual stance to the issue of speech task,
and investigate the usefulness of the features in sustained vowels,
read speech, and spontaneous speech in Finnish and Spanish
data. Finally, we carry out these investigations in the context
of regression tasks, which are rarely utilized (but see [12],
[15]) in pathological speech analysis. We argue that a more
detailed picture of disease stage or progression is required for the
assessment systems to have practical clinical value, and hence
performance assessment should also be conducted in terms of
regression instead of (binary) classification.

This article is organized as follows: Section II introduces the
workflow, speech representations, and neural regressors we used
for PD assessment. Section III describes the PD speech corpora.
The experimental setup is introduced in IV. The experimental
results are presented and discussed in Section V. This work is
concluded in Section VI.

II. METHODS

A. Overview of Workflow

The workflow for our automatic PD speech assessment sys-
tem is illustrated in Fig. 1. The input speech can be from
different speech tasks, such as sustained vowels, text reading,
or spontaneous monologue. After pre-processing (e.g., resam-
pling), frame-level features are extracted from the signals. In
this work, we investigated the efficacy of four different speech
representations: automatically extracted speech attribute scores
(SAS), glottal features, MFCCs, and low-level descriptors from
a well-known compact feature set for automatic speech analysis,
eGeMAPS. These features will be introduced in the following
section. The frame-level features were grouped into one-second
clips with a temporal overlap of 20%. As a result, each 1-s
segment was represented by a fixed-dimensional feature matrix,
which served as the input to a dedicated neural network model
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Fig. 1.  Workflow of the automatic Parkinson’s disease assessment experi-
ments. SAS, Glottal, MFCC, and eGeMAPS stand for different feature types
introduced in Section II-B. NN denotes neural network. Here, S stands for the
total input segment count.

TABLE I
SPEECH ATTRIBUTES INCLUDED IN THE ASAT SYSTEM [40], [41] AND USED AS
SAS FEATURES IN THE EXPERIMENTS

Type Attributes

Manner fricative, glides, nasal, stop, voiced, vowel

Place coronal, dental, glottal, high, labial, low, mid, palatal,
velar

for a specific target to be predicted, such as the rating of speech
intelligibility or the severity level of voice impairment. The
neural network gave as its output segment-level predictions for
the targets. Finally, a subject-level prediction was computed as
the median from the segment-level predictions.

As PD can affect various aspects of speech, a straightforward
feature fusion strategy was adopted in this work. Feature fu-
sion is investigated by averaging the predicted segment-level
scores across the features to be combined. From these averaged
segment-level scores, the prediction regarding the test speaker
was generated by taking the median across all the segments for
the given speaker.

B. Speech Representations

1) Speech Attribute Scores: In [40], [41], a universal auto-
matic speech attribute transcription (ASAT) system was de-
veloped and implemented in Kaldi [42]. The ASAT system
was trained with speech of six languages from the OGI Multi-
language Telephone Speech corpus [43]: English, German,
Hindi, Japanese, Mandarin, and Spanish. The time-aligned
phoneme labels in the OGI corpus were converted to correspond-
ing speech attribute labels according to a phonological table.
Totally there are 17 articulatory attributes of interest modeled
in [40], [41], including 6 manner and 9 place attributes as shown
in Table I, together with “silence” and “other” for silence and
unlabeled frames.

In ASAT, input audio is first resampled to 8§ kHz and 40
log Mel-filter bank coefficients together with 3 fundamental
frequency features are computed for every 25-ms frame using
a shift of 10 ms. Then the 43-dimensional frame-level features
are normalized and input to a DNN, from which attribute label
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Fig. 2. Spectrogram (top) and speech attribute scores (bottom) for speech
segment of uttering “/i: k a/”. Brighter shades denote higher posterior scores for
the particular speech attributes and black stands for zero score.

hypotheses and the underlying 17-dimensional sigmoid pos-
terior scores for the modeled speech attributes are generated
for each input frame. The 17-dimensional attribute posteriors
(Pattribute € [0, 1]) and their first- and second-order temporal
derivatives with a context of 9 frames (as computed with Li-
brosa [44]) were used as frame-level features in our experiments,
resulting in a total of 51 SAS features.

As an example, the SAS for the speech segment /i: k a/ in the
Finnish word “siika” are illustrated in Fig. 2 (time-derivatives
not shown). For the high vowel /i:/, attributes “voiced,” “vowel,”
and “high” are detected with large scores. The low vowel /a/ is
labeled with attributes “voiced,” “vowel,” and “low”. For the stop
consonant /k/, “stop” and “velar” are recognized. The example
shows that one phone can be represented well by one or a few
speech attributes despite a language mismatch between training
and testing.

2) Glottal Features: Glottal features represent the phonation
information of speech. They are computed by first estimating
the acoustic excitation of voiced speech, the glottal flow, from
speech microphone recordings using glottal inverse filtering
(GIF) and then expressing the estimated glottal flow with se-
lected parameters [45]. In the current study, we used the quasi-
closed phase (QCP) algorithm [46] as the GIF method. QCP
was selected because it was shown in [46] to be more accurate
in the estimation of the glottal flow than four state-of-the-art
GIF methods. The glottal features used in the current study
(listed in Table II) consist of 12 time- and frequency-domain
parameters [47], [48]. These parameters were computed in
25-ms frames with a shift of 10 ms using the APARAT tool-
box [49]. Two frequency domain parameters (the harmonic
richness factor (HRF) and the difference between the first two
glottal harmonics (H1H2)) were computed pitch asynchronously
once per frame and all the other parameters were computed pitch
synchronously once per glottal cycle and then averaged over
the frame. H1H2 and HRF were expressed using the dB scale,
whereas all the 9 time-domain parameters and the parabolic
spectral parameter (PSP) were expressed using a linear scale.
The glottal parameters were computed from voiced speech

TABLE II
TIME- AND FREQUENCY-DOMAIN GLOTTAL PARAMETERS USED AS FEATURES
IN THE EXPERIMENTS

Time-domain glottal parameters

0Q1 Open quotient, calculated from the primary glottal opening

0Q2 Open quotient, calculated from the secondary glottal opening

NAQ Normalized amplitude quotient

AQ Amplitude quotient

CIQ Closing quotient

0Qa Open quotient, derived from the LF model

Q0Q Quasi-open quotient

SQl Speed quotient, calculated from the primary glottal opening

SQ2 Speed quotient, calculated from the secondary glottal opening
Frequency-domain glottal parameters

HIH2 | Difference between the first two glottal harmonics

PSP Parabolic spectral parameter

HRF Harmonic richness factor

For more details, see [47] and [48].

frames, which were detected using a straightforward method
based on the frame’s log energy. The first- and second-order
derivatives of the 12 glottal parameters were calculated using
Librosa with 9 contextual frames for each frame, resulting finally
in a 36-dimensional vector (from now on referred to as Glottal).

3) Mel-Frequency Cepstral Coefficients: MFCCs were used
as standard baseline features capturing the main characteristics
of the vocal tract, and hence carrying articulatory information.
MFCCs were computed for each 25-ms speech frame using a
shift of 10 ms. The first 13 coefficients were extracted and the
first- and second-order derivatives were calculated with Librosa
with 9 contextual frames. As a result, each speech frame was
represented by a 39-dimensional MFCC feature vector.

4) Low-Level Descriptors in eGeMAPS: eGeMAPS is a
compact and knowledge-based acoustic feature set designed for
automatic voice analysis that has been used in paralinguistic and
clinical studies [28]. In general, the eGeMAPS features consist
of statistical functionals computed from a set of low-level acous-
tic descriptors (LLDs) extracted at the frame-level. Here we
adopted the most up-to-date (“eGeMAPSv02”) 25-dimensional
LLD version of eGeMAPS, extracted with the openSMILE
toolkit [50], using a frame length of 25 ms with a shift of
10 ms. Among these LLDs, there are prosodic parameters on
pitch and intensity and voice quality parameters like jitter, shim-
mer, and HNR. Specific measurements of formants and certain
MEFCC coefficients are also included. Together with the first- and
second-order dynamic features calculated with Librosa with 9
temporal contextual frames, each speech frame was represented
by a 75-dimensional eGeMAPS vector.

C. Neural Networks for Feature Modeling

In order to model the features for the PD assessment, our
preliminary experiments investigated a number of neural archi-
tectures and SVMs for regression analysis. Based on the average
performance across different features, datasets, and conditions,
and for the conciseness of the paper, only the results for the best
performing CNN architecture are reported.

Input to the CNN consists of features of a 1-s speech segment
and the output consists of one scalar number depending on the
regression task. The CNN includes three convolutional ReLu
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TABLE III
STATISTICS OF PARTICIPANT INFORMATION IN THE FINNISH PDSTU CORPUS
(MEAN, (MIN, MAX))

Control speakers PD speakers

Female 9 21

Male 6 14

Age 57.7 (51, 67) 65.6 (48, 82)
Years after diagnosis ~ N/A 5.5 (1, 18)
H&Y N/A 1.8 (1, 2.5)

Speech intelligibility
Voice impairment
Overall severity
Speech task

97.3 (76.0, 114.2)

12.4 (2.5, 26.1) 28.3 (5.7, 75.2)

9.5 (1.2, 20.8) 23.2 (4.0, 66.9)
Duration (in seconds)

78.3 (45.0, 101.7)

VOWEL 96 (7.2, 13.6) 128 (62, 23.7)
READ 38.5 (28.5, 50.0)  38.8 (25.7, 55.1)
SPON 56.7 (12.6, 170.4)  52.7 (21.5, 164.0)

layers with a filter size of (8,1) and filter count of 128, sepa-
rated by two temporal maxpooling layers with pooling sizes of
(5,1) and (2,1), respectively, followed by one temporal average-
pooling layer that integrates information across the entire 1-s
segment, ultimately feeding into a dense layer with 32 units
that merges the features, followed by a one-unit dense ReLu
layer that performs the regression to targets. Unlike typical
approach of convolving across the feature dimensions, the CNN
only performs convolutions along the temporal dimension and
independently for each channel. Kernel weights were shared
across the feature channels and the outputs of the filters were
not interacting between the channels before the dense layer. In
contrast, the combination of feature channels only occurs in the
dense layers following the hierarchical feature-specific temporal
analysis. We found that focusing on the temporal modeling of
the individual features led to the best performance in the analysis
tasks, likely due to the substantially reduced parameter count due
to the sharing of kernel weights across each channel dimension.
The input of CNN was a feature map with a dimension of
100 x feat_dim, where 100 is the frame count in one speech
segment and feat_dim is the frame-level feature dimension
described in the previous section.

III. SPEECH CORPORA
A. Pdstu

A subset of a Finnish PD speech corpus, PDSTU [51], was
used for the PD assessment experiments in this work. PDSTU
speech has been recorded in the mono channel with 32 bits and
a sampling rate of 44.1 kHz with a close-talking microphone.
This subset contains recordings of speech in terms of vowels-
in-words (VOWEL), passage reading (READ), and spontaneous
monologue (SPON) from 35 PD speakers as well as 15 HC
speakers and their associated expert ratings (see Table IIT for
statistics).

The VOWEL task contained utterances of 5 Finnish words
with long vowels, which were siika, laatta, kookos, tuuri, and
veeti for [i:], [a:], [o:], [u:], and [e:], respectively. The speakers
were instructed to elongate the long vowels in the words as much
as possible. For example, duration of [i:] in siika was on average
of 1.59 s (SD =0.86 s; min = 0.48 s, max = 3.58 s) across all the

50 speakers. For the READ task, a passage from “Pohjantuuli ja
aurinko” (“North Wind and the Sun’), which contains 77 Finnish
words and has been commonly used in clinical studies in Finland
(e.g., in [52]), was used:
® Read passage: Pohjantuuli ja aurinko véittelivit, kummalla
olisi enemmén voimaa, kun he samalla nékivit kulkijan,
jolla oli ylldén ldmmin takki. Silloin he sopivat, ettd se on
voimakkaampi, joka nopeammin saa kulkijan riisumaan
takkinsa. Pohjantuuli alkoi puhaltaa niin, ettd viuhui, mutta
miti kovempaa se puhalsi, sitd tarkemmin kééri mies takin
ympdrilleen, ja viimein tuuli luopui koko hommasta. Sil-
loin alkoi aurinko loistaa lampimasti, eiké aikaakaan, niin
kulkija riisui manttelinsa. Niin oli tuulen pakko myontdi,
ettd aurinko oli kuin olikin heistd vahvempi.

The SPON task consisted of a monologue to describe the
plot of a one-page cartoon using one’s own words (controls)
or to describe what the speaker did last summer (PD subjects).
Hence, the spoken content in the VOWEL and READ tasks was
the same for each speaker, whereas SPON varied between each
talker.

The speech of each talker in this PDSTU subset was rated by 3
external logopedics experts recruited through public advertise-
ment. The raters had on average 23 years (at least 16 years) of
working experience in speech therapy. The rating was performed
on samples of read speech, and the rated dimensions included
speech intelligibility, voice impairment, and overall severity of
communication disorder. The rating was conducted in a quiet
room using high-quality headphones (Sennheiser HD598). The
recordings were randomly presented to the raters and participant
information was hidden. The average of the 3 experts’ ratings
of each rated perspective was assigned to the speaker under
assessment.

For speech intelligibility, each rater was asked to compare
the intelligibility of the given sample with that of a standard
sample, where the standard was selected from a HC speaker with
adefined intelligibility score of 100. A score larger (smaller) than
100 means it is more (less) intelligible than the standard sample.
To reduce the effects of familiarization, 3 short phrases were
randomly selected from the reading passage, and the selected
phrases were different for each speaker. The rater could only
listen to the presented sample once.

A scale from 0 (normal) to 100 (most severe) was used in the
ratings of voice impairment and overall severity of communica-
tion disorder. For these two measures, the raters could listen to
the presented samples as many times as they required.

As areference of PD severity in this patient group, the Hoehn
and Yahr scale (H&Y) [53] was used to measure the severity of
PD for each speaker. The rating was determined by the medical
doctor responsible for the patient. The H&Y value ranges from
1 to 5 in increments of 0.5. The larger the value, the more severe
the movement disorder.

Table IIT summarizes the statistics of the dataset. On average,
PD speakers in PDSTU were at a mild stage of PD with a
mean H&Y of 1.8. However, PD-related symptoms of speech
and voice disorders can be seen from the expert ratings, where
on average the PD patient has a lower score for intelligibility
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TABLE IV
STATISTICS OF PD SPEAKER INFORMATION IN THE SPANISH PC-GITA CORPUS
(MEAN, (MIN, MAX))

Male Female Total
Number of speakers 25 25 50
Age 61.3 (33, 81) 60.7 (49, 75) 61.0
Years after diagnosis 8.7 (0.4, 20) 13.8 (1, 43) 11.2
H&Y 2.1 (1,4) 2.2 (1, 3) 2.2
UPDRS 37.8 (6, 93) 37.6 (19, 71) 37.7
Speech tasks Duration (in seconds)
VOWEL 18.9 (4.6, 81.3) 18.2 (6.1, 49.6) 18.6
READ 19.0 (13.0, 37.3) 18.2 (10.3, 45.3) 18.6
SPON 44.2 (19.7, 111.0) 474 (14.1, 104.1) 458

and higher scores for voice impairment and overall severity than
those of the controls. Average recording duration for each speech
task is also shown in the table.

Permission for PDSTU data collection and analysis was ob-
tained from the Ethics Committee of Tampere University. All
participants provided written informed consent according to the
Declaration of Helsinki.

B. Pc-Gita

The popular Spanish PD speech database PC-GITA [23] was
used as the second database in the current study for automatic
PD assessment. PC-GITA contains speech recordings from 50
speakers diagnosed with PD and 50 HC speakers matched by age
and gender. All the speakers are native Spanish speakers. Each
PD speaker is associated with a Unified Parkinson’s Disease
Rating Scale (UPDRS) rating of PD severity. The UPDRS was
originally developed in the 1980 s as a core assessment tool for
PD-associated symptoms from diverse perspectives, including
mentation, behavior and mood, activities of daily living, motor,
and complications [54]. The scale can be used in a clinical
setting as well as in research. The higher the UPDRS score,
the more severe the PD symptoms, which makes the scale
a suitable target for regression analysis. Since only the PD
speakers have UPDRS ratings in PC-GITA, the 50 PD speakers’
speech from sustained vowels (VOWEL), text reading (READ),
and spontaneous monologue (SPON) speech tasks were used in
the experiments.

In our experiments, the VOWEL audio sample for each
speaker was a concatenation of sustained utterances of five
Spanish vowels (/a/, /e/, /i/, /o/, and /u/). The spoken content
of the READ task consisted of predefined sentences read by
all speakers. In the SPON task, each speaker was asked to talk
about what they commonly do in a normal day. The demographic
information, expert ratings on UPDRS, and time durations for
each speech task are summarized in Table IV.

IV. EXPERIMENTAL SETUP

In this work, we conducted regression tasks on PDSTU and
PC-GITA, training and testing our models on each corpus sepa-
rately. For PDSTU, the prediction targets included expert ratings
of speech intelligibility, voice impairment, and overall severity
of communication disorder for all the speakers of the database
(35 PD patients, 15 controls). For PC-GITA, we estimated the

UPDRS for the 50 PD patients of the database. The regression
experiments were conducted on each speech task (VOWEL,
READ, and SPON) using the different features (SAS, Glottal,
MFCC, and eGeMAPS) and for each prediction target sepa-
rately.

As shown in Fig. 1, the regression was carried out at the level
of 1-s segments. The segment counts for the VOWEL, READ,
and SPON tasks in PDSTU were 2,734, 9,449, and 13,239,
respectively. For the 50 PD participants in PC-GITA, there were
a total of 4,405, 4,421, and 11,216 speech segments in the
VOWEL, READ, and SPON task, respectively. The CNN model
was separately trained with different speech representations
(SAS, Glottal, MFCC, eGeMAPS) for each prediction target.
Loss function of mean absolute error was used together with
Adam optimizer and a learning rate of 0.001. Early stopping
based on validation data and patience of 10 epochs was adopted
in all experiments. Cross-validation of leave-one-speaker-out
was used for model testing. At the test time, the median value
of the predicted 1-s segment-level ratings was used as the final
subject-level prediction for the given regression task. The Pear-
son correlation coefficient (PCC) between the predicted and true
expert rating for each subject was used to measure regression
performance.

A. Feature Fusion

We also investigated feature fusion due to the potential com-
plementarity of the investigated features. Feature fusion was
conducted by averaging the model-based segment-level predic-
tions in each regression task. Then the median value of the
averaged segment-level predictions was taken as the final score
for the speaker under test. We expected that the combination of
the articulation-related SAS features and the phonation-related
glottal features would improve the performance of parkinsonian
speech assessment. We were also specifically interested in the
combination of MFCC and eGeMAPS, as they were expected to
simultaneously capture the characteristics of the vocal tract and
prosody in PD speech. Besides the two combinations mentioned
above, we also tested all other possible combinations among the
four speech representations.

V. RESULTS

The regression performance scores for speech intelligibility,
voice impairment, overall severity of communication disorder
(on PDSTU), and UPDRS (on PC-GITA) are shown in Table V.
The table shows PCC for the different studied features and for
each of the involved speech tasks. In addition, fusion perfor-
mance of the features motivated by speech production (SAS +
Glottal) and fusion performance of the more commonly used
eGeMAPS + MFCC are shown. More detailed observations of
the results are presented in the following sections.

A. Comparison of Speech Features

To compare the efficacy of different speech features, Table VI
shows the performance for each feature type for each regression
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TABLE V
REGRESSION RESULTS FOR EACH REGRESSION TARGET, SPEECH TASK, AND FOR INDIVIDUAL FEATURES AND SAS+GLOTTAL AND MFCC+EGEMAPS
COMBINATIONS
Corpus Target Speech task | SAS Glottal SAS + Glottal MFCC eGeMAPS  MFCC + eGeMAPS
VOWEL 0.63***  0.66™**  0.72*** 1 0.45***  0.59*** 0.57***
Speech intelligibility | READ 0.72***  0.63***  0.73*** 1 0.59***  0.66*** 0.66***
SPON 0.61***  0.64™**  0.71*** 1 0.53***  0.56%** 0.57*** 1
VOWEL 0.42% 0.41%% 0.51%% 1 0.46*% 0.63F** 0.57F%
PDSTU Voice impairment READ 0.64***  0.55***  0.64*** 0.40** 0.37** 0.43** 1
SPON 0.42** 0.45***  0.49*** 1 0.44** 0.57*** 0.55%**
VOWEL 0.55%FF 0.53"F  0.627F 1 0.43%* 0.46™*F 0.50%* 1
Overall severity READ 0.67***  0.62***  0.72**" 1 0.55***  0.39** 0.50***
SPON 0.69***  0.45%**  0.62*** 0.50***  0.53*** 0.55%** 1
VOWEL 0.10 —0.27 —0.10 0.10 0.16 0.18
PC-GITA | UPDRS READ 0.19 —0.14 0.10 0.33* 0.11 0.27
SPON 0.41** —0.04 0.24 0.38%* 0.32* 0.37**

Performance is measured using pearson correlation coefficient (PCC) between the subject-level predictions and ground truths. Boldface marks the
highest score for each target and T marks the cases where feature fusion improves over the individual features. For all correlations, * stands for

p<0.05, **for p<0.01, and *** for p <0.001.

TABLE VI
REGRESSION PERFORMANCE (PCC) FOR DIFFERENT SPEECH FEATURES AND REGRESSION TARGET COMBINATIONS

Corpus Target Best performance Average performance
SAS  Glottal MFCC eGeMAPS | SAS Glottal MFCC eGeMAPS
Speech intelligibility | 0.72  0.66 0.59 0.59 0.66 0.64 0.52 0.60
PDSTU Voice impairment 0.64 0.55 0.46 0.63 0.49 047 0.43 0.52
Overall severity 0.69 0.62 0.55 0.53 0.64 0.54 0.49 0.46
PC-GITA | UPDRS 041 —0.04 0.38 0.32 0.23 —0.15 0.27 0.20

Maximum and average across the different speech tasks is shown. The highest PCC for each prediction target is marked in

bold case.

target when the average and max across the different speech
tasks is reported. Individual subject-level ground truth and pre-
dicted values are exemplified in Fig. 4 of Appendix for speech
intelligibility.

As can be observed from the table, SAS consistently outper-
formed the other three speech representations in PD assessment.
Glottal features ranked as the second best in predicting speech
intelligibility and overall severity, but failed in the prediction of
UPDRS. Post-hoc analysis revealed that the decreased perfor-
mance of the glottal features in the prediction of UPDRS was
due to the recording quality of the speech data used in this task.
This task was namely computed using the speech signals of the
PC-GITA database, which were recorded as reported in [23]
using a dynamic microphone. The non-linear phase response
of dynamic microphones is known to be a source of distortion
in GIF analysis [45]. The use of microphones with non-linear
phase responses in GIF results in particular in the degradation
of the time-domain waveform of the estimated glottal flow.
Therefore, the use of a low-quality microphone in the speech
recordings of the PC-GITA database resulted in the distortion of
the time-domain glottal parameters (listed in Table II), which in
turn resulted in the poor performance of the glottal features in
the UPDRS prediction.

When considering the average feature performance across
three different speech tasks in terms of which is a more robust
descriptor of the general usefulness of the features independently
of the exact speech data, SAS always ranked as the best or
second best on the four prediction targets. eGeMAPS and MFCC
ranked as the best in predicting voice impairment and UPDRS,
respectively. As noted, glottal features suffer from estimation

issues in UPDRS, but they ranked as the second or third best for
the other three prediction targets, highlighting the relevance of
glottal features computed from high-quality speech recordings.

B. Fusion of Different Speech Representations

Table V shows the results of the feature combinations of
SAS+Glottal and MFCC+eGeMAPS, while Table VII shows
the results for the best possible performance for each regression
target and speech task across all possible feature combinations.
As can be observed from Table V, the combination of SAS
and Glottal achieved a notable improvement in overall severity
assessment over the use of SAS only. In addition, performance
of the feature combination is comparable to that of SAS only
on speech intelligibility and voice impairment. Slight improve-
ments are observed for the four prediction targets when using
combinations of MFCC and eGeMAPS with certain speech
tasks. However, the combination of MFCC and eGeMAPS never
improves over the best performance obtained for a given regres-
sion target using only MFCC or eGeMAPS alone, when using
the optimal speech task and feature combination for the given
regression target.

As for the best possible feature combinations across the
regression targets and speech tasks (Table VII), there is a clear
trend of SAS being nearly always included in the optimal feature
set (in 9 out of 12 cases). For voice impairment prediction, none
of the feature combinations outperformed SAS when used in
combination with READ speech. Glottal features are included in
the best feature sets for intelligibility and overall severity, while
MFCCs are the most useful ones in UPDRS assessment. Notably,
eGeMAPS is never part of the best feature set for any of the



LIU et al.: AUTOMATIC ASSESSMENT OF PARKINSON’S DISEASE USING SPEECH REPRESENTATIONS OF PHONATION AND ARTICULATION

249

TABLE VII
BEST-PERFORMING FEATURE COMBINATIONS FOR EACH OF THE REGRESSION TARGETS AND SPEECH TASKS

. . . Feature type
Corpus Target Speech task SAS  Glotal  MFCC — cGeMADPS PCC
VOWEL 1 1 0 1 0.72%**
Speech intelligibility | READ 1 1 1 0 0.76***
SPON 1 1 0 0 0.71%**
VOWEL 0 0 0 I 0.63%*F
PDSTU Voice impairment READ 1 0 0 0 0.64***
SPON 0 0 0 1 0.57***
VOWEL 1 1 0 0 0.627
Overall severity READ 1 1 0 0 0.72%%*
SPON 1 0 0 0 0.69***
VOWEL 0 0 1 1 0.18
PC-GITA | UPDRS READ 1 0 1 0 0.34*
SPON 1 0 1 0 0.44**

1 in each column denotes that the corresponding feature was included in the best feature set. Bolding marks
the highest score for each prediction target. For all correlations, stands *** for p < 0:001, ** for p < 0:01, and for

*p <0:05. otherwise, p > 0:05.

TABLE VIII
CORRELATIONS BETWEEN SUBJECT-LEVEL PREDICTIONS AND GROUND
TRUTHS FOR EACH SPEECH TASK AND REGRESSION TARGET WHEN AVERAGED
ACROSS THE FEATURE TYPES

Target Speech task
VOWEL READ SPON
Speech intelligibility | 0.58 0.65 0.59
Voice impairment 0.48 0.49 0.47
Overall severity 0.49 0.56 0.55
UPDRS 0.02 0.12 0.27

The highest PCC for each prediction target is marked in
bold case. Updrs resultsare for PC-GITA and the other
three for PDSTU.

regression targets when the best performing speech task is only
taken into account for each target. Scatter plots for predictions
and corresponding ground truth ratings in PDSTU are shown in
Fig. 5 of the article Appendix.

In general, for all the regression targets, except for voice
impairment assessment, a combination of features improves the
performance compared to the use of individual feature sets. As
supplementary, the results measured in root mean squared error
(RMSE) are reported in Table X and Table XI in Appendix. As
can be observed from these two tables, the range of system output
is slightly compressed compared to the original human ratings,
yet internally consistent, as characterized by the reported cor-
relations (i.e., an increase in human ratings leads to an increase
in automatic ratings). Therefore, direct comparisons of absolute
values from humans and the automatic system should be carried
out with caution. However, if human and automated ratings are
required to be directly comparable, it is easy to adopt a linear
post-correction function to match the range of the automatic
ratings to the range of human ratings. By definition, such a
scaling would not affect the correlations reported here for our
main results.

C. Comparison Between Speech Tasks

Based on the results in Table V, we calculated the average
performance across the four features for each target/task com-
bination. These are shown in Table VIII.

As seen from the table, READ is superior to VOWEL and
SPON in the speech intelligibility assessment, while SPON is
superior to others for UPDRS rating. For voice impairment,
all three speech tasks lead to a similar average performance
across the feature sets, and READ and SPON achieve a similar
performance for automatic assessment of overall severity of
communication disorder.

When considering the best feature/speech task/regression tar-
get combinations (Table VII) instead of averages across features,
the advantage of READ can be observed for intelligibility and
overall severity assessment. SPON is again the best for UPDRS,
and VOWEL and READ are comparable for voice impairment.

However, caution should be used in interpreting small dif-
ferences between the performance figures for different speech
tasks. In fact, the differences in correlations obtained for the
optimal feature sets (Table VII) are not statistically different
from each other (p > 0.05; William’s test for comparing depen-
dent correlations [55]). In fact, a substantially larger number of
speakers would be needed to extract fine-grained differences in
the performance measures—arequirement that very few existing
pathological speech corpora satisfy at the time of writing.

As the final step of our speech task analysis, we wanted to
investigate the complementarity of the different speech tasks.
This was obtained by weighted summation of the subject-level
predictions obtained by each speech task as a means to create the
final predictions for the individual speakers. For each task and
regression target, the best feature set for the given combination
was used in the fusion. The weight for each speech task was
searched from 0.0 to 1.0 with a step of 0.1. As our final test,
we tested the fusion of all speech representations and all speech
tasks.

The weights for each task/target combination and the cor-
responding PCC scores are shown in Table IX. As a result of
optimal task fusion, the PCC was further improved to 0.78 in the
prediction of speech intelligibility, to 0.74 for voice impairment,
and to 0.76 for overall severity. No improvement for UPDRS was
observed. As these are better than or equal to any of the results
reported in Tables V— VIII, this further demonstrates the benefit
of multiple alternative ways to 1) collect speech data from PD
patients, and 2) analyze it in terms of complementary features.
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TABLE IX
RESULTS FOR SPEECH TASK FUSION WHEN OPTIMAL WEIGHTS ARE USED FOR
TASK-SPECIFIC REGRESSION SCORES FROM EACH TASK AND FOR EACH
REGRESSION TARGET

Weights
Target VOWEL _READ SPON | '€
Speech intelligibility | 0.6 1.0 0.4 0.78***
Voice impairment 0.7 1.0 0.1 0.74***
Overall severity 0.1 0.7 0.7 0.76***
UPDRS 0.0 0.3 1.0 0.44**

For all correlations, **stands for p < 0.01 and *** for p < 0.001.
UPDRS results are for PC-GITA and the other three for PDSTU.

D. Comparison Between Regression Targets

Besides comparing the speech tasks and technical solutions
to assess speech from these tasks, one central question is the
accuracy at which different aspects of pathological speech can
be estimated automatically. By looking at Table VII, one can ob-
serve that speech intelligibility can be most accurately estimated
from the speech data (PCC = 0.76 with the best feature and
speech task combination), followed by overall communication
disorder severity (PCC =0.72), voice impairment (PCC = 0.64),
and UPDRS (PCC = 0.44) in the descending order. If optimal
weighing across speech tasks is used (Table IX), intelligibility,
impairment, and overall severity reach a similar overall accuracy,
while UPDRS is again substantially lower.

The above findings are not surprising: speech intelligibility is
largely determined by the most prominent properties of speech,
namely suitable temporal modulations of the spectral envelope
and adequate prosody (rhythm, intonation, stress) for the given
linguistic content—all properties that are strongly reflected in
many of the studied features. The other end of the performance
spectrum, UPDRS, is a general measure of PD severity that
involves a variety of non-motor and motor factors, and where
potential difficulties in speech production represents only one of
the many factors contributing to the overall score. Therefore it
was predictable that an automatic speech-based assessment of a
general health measure such as UPDRS is much more difficult
than predicting expert ratings directly related to characteristics
of speech.

As for the exact UPDRS prediction scores on the PC-GITA
data, the best PCC we obtained in this work was 0.44, which
is lower than the PCC of 0.79 obtained in [12]. However, it
should be noted that a different cross-validation method (K-Fold,
K = 10) was used in [12], and the model hyperparameters used
in [12] were optimized on the held-out set each time, which
could lead to optimistic results.

This also raises another topic of generalizing the PD assess-
ment model to different speech corpora, which is beyond the
aims of this work.

E. The Effect of the Amount of Training and Testing Data on
Speech Tasks

Compared with VOWEL, READ contains richer dynamic
information on prosody, articulation of various phonemes, and
transitions between different linguistic units, which is unar-
guably more representative of the daily use of speech communi-
cation [56]. However, it should be noted that the data amount for

0.80

EEm PDSTU_READ
mmm PDSTU_READ 0.3
= PDSTU_VOWEL

0.75 A

Pearson correlation coefficient

speech intelligibility ~ voice impairment overall severity

Fig. 3. Results for the READ versus VOWEL tasks when matching the
duration of read speech with that of vowels (denoted by PDSTU_READ_0.3).
Only the best results across the alternative feature combinations are shown.

READ in PDSTU was substantially larger than that for VOWEL.
Given that the same machine learning model architecture was
used across all the tasks, it is also possible that READ and SPON
resulted in more accurate regression due to their larger number
of training samples to optimize the parameters and the number
of testing segments to derive the subject-level predictions, com-
pared to the VOWEL data. To check how much the data amount
affects the prediction performance, we ran the assessment exper-
iments on PDSTU using only 30% of READ speech data from
each speaker, making it comparable to VOWEL in size (2,800
READ segments versus 2,734 VOWEL segments in PDSTU).
Fig. 3 shows the PCC for each prediction target on PDSTU
when using VOWEL, READ, and 30% of READ speech, when
only the best feature configuration for the given setup is shown.
The figure shows that the performance decreased when only
30% of READ speech was used. When READ speech had the
same amount of data as VOWEL, the performance of speech
intelligibility prediction was slightly better than that of VOWEL,
while the performance on voice impairment prediction was
worse than that of VOWEL. On overall severity prediction, the
performance when using VOWEL and 30% READ was similar.
However, these correlation differences obtained by VOWEL and
30% of READ are not significant (p > 0.05 for William’s test).
While Fig. 3 shows that the reduction of read speech duration
to be comparable with carefully collected sustained vowels leads
to a similar performance, we cannot conclude that sustained
vowels are similar in informativeness to that of read speech.
While larger amounts of read speech can be (and already is)
collected in a clinical setting and can be utilized in machine
learning, it is not so clear whether collection of larger amounts
of sustained vowel data would add to a comparable boost in
performance. In addition, we showed that the combination of
several speech tasks improves performance beyond the individ-
ual tasks, indicating complementarity in the data and models
trained for the speech tasks. However, the result does show that
continuous read speech with standardized contents, when avail-
able in comparable amounts to that of sustained vowels, is not
necessarily superior in automatic speech pathology assessment
compared to the vowel data. These observations complement
the previous discussions on appropriate speech tasks used for
pathological speech analysis [21], [22], [24], [57].
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** stands for p < 0.001.

VI. CONCLUSION

This work studied the use of phonation and articulation fea-
tures in the automatic assessment of PD speech, also comparing
and combining these features with commonly used MFCCs
and eGeMAPS features. We also systematically explored how
the type of speech material affects the assessment outcomes.
Notably, all the experiments were conducted in the context
of regression tasks using speech from two very distinct lan-
guages (Finnish and Spanish). Even though regression is not

true speech intelligibility

(k) READ-eGeMAPS

true speech intelligibility

(1) SPON-eGeMAPS

Subject-level ground truth and leave-one-speaker-out predictions of speech intelligibility using different feature types (SAS, Glottal, MFCC, eGeMAPS)
on each speech task (VOWEL, READ, SPON) on the PDSTU corpus. Each dot corresponds to one speaker. In the legend, ‘r’

refers to Pearson correlation and

often utilized in automatic pathological speech assessment, we
found its use central to our research purposes. This is because
our primary long-term interest is in the automatic evaluation
and monitoring of disease progression, including following
the effects of treatment and therapeutic interventions, making
gradual subject-level changes important to track. In contrast,
hard classification of subjects into “health categories,” such as
healthy, mild, or severe, produces information that is difficult
to utilize in practical healthcare settings, at least as long as we
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Scatter plots for predictions vs. ground truth of speech intelligibility (intelligibility), voice impairment (voice), and overall severity (overall) of the PDSTU

data from the VOWEL, READ, and SPON tasks while using the best feature combination for each (as shown in Table VII). Each dot corresponds to one speaker.

In the legend, ‘r’ refers to Pearson correlation and *** stands for p < 0.001.

lack extremely accurate classifiers and standardized (clinical)
criteria for the categorical groupings.

Our experimental results demonstrate that 1) the speech
attribute scores can adequately capture the abnormalities in
parkinsonian speech, 2) and combining SAS with different
speech representations is likely to improve the PD assess-
ment performance. To be more specific, the combination
of articulation-related speech attribute scores and phonation-
related glottal features achieved a better performance than that
of using either feature set alone in several of our test scenarios,
which has not been the case in previous work [16]. However,
the benefit of glottal features was also highly dependent on
the quality of the available audio recordings. In the case of
PC-GITA, the use of glottal features was found to be problematic
due to the following reasons: 1) the use of dynamic microphones
to collect the data (resulting in a non-linear phase response), 2)
uncertainties associated with signal polarity (that was poten-
tially changing between different recordings), and 3) mild but
noticeable reverberation in the audio. As a result, the obtained
glottal waveforms and the consequent glottal features were of
poor quality compared those extracted from the PDSTU data.

The experimental results on different speech tasks show that,
in general, text reading speech achieved better performance than
sustained vowels. Our results also showed that a combination
of model-based predictions from all three speech tasks can
improve the prediction performance even further. Based on
all the discussions, we recommend the employment of audio
recordings from diverse speech tasks for parkinsonian speech
analysis.

In general, the efficacy of speech attribute scores and phona-
tion features used for PD assessment was demonstrated in this
work. One of our next aims is to study the visualization and
sensitivity analysis of the features in the context of pathological
speech assessment. The aim would be to connect the mecha-
nisms of speech production with the obtained summary scores
on intelligibility and pathology. Given that the articulatory and
phonation features have a relatively straightforward interpre-
tation in terms of speech production, if successful, such an
approach would help to identify what type of targeted changes
(interventions) in speech production could lead to the largest
improvements in the quality of produced speech for a given
talker. Besides the phonation, articulation, and prosody studied
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TABLE X
REGRESSION RESULTS FOR EACH REGRESSION TARGET, SPEECH TASK, AND FOR INDIVIDUAL FEATURES AND SAS+GLOTTAL AND MFCC+EGEMAPS
COMBINATIONS
Corpus Target Speech task | SAS  Glottal ~ SAS + Glottal MFCC eGeMAPS  MFCC + eGeMAPS
VOWEL 13.0 12.2 119 ) 14.1 13.2 13.4
Speech intelligibility | READ 12.3 12.7 12.0 ) 13.3 12.3 12.5
SPON 14.2  12.7 12.9 13.9 13.7 13.5]
VOWEL 16.1 16.3 15.3 ] 15.8 14.2 14.7
PDSTU Voice impairment READ 14.6 14.8 14.2 | 16.4 16.9 16.1 ]
SPON 17.0 16.2 16.0 | 16.2 14.7 15.0
VOWEL 13.3 13.1 125 ] 14.0 13.7 134 ]
Overall severity READ 12.8 122 11.8 | 13.3 14.6 13.6
SPON 13.3  14.2 13.2 | 13.8 13.4 13.1 ]
VOWEL 18.3  20.2 18.8 19.5 18.7 18.1 ]
PC-GITA | UPDRS READ 18.1 19.9 18.3 17.6 18.9 17.6
SPON 16.6 19.1 17.6 16.9 17.3 16.9

Performance is measured using root mean squared error (RMSE) between the subject-level predictions and ground truths. Boldface marks
the lowest RMSE for each target and | marks the cases where feature fusion improves over the individual features.

TABLE XI
BEST-PERFORMING FEATURE COMBINATIONS FOR EACH OF THE REGRESSION TARGETS AND SPEECH TASKS, MEASURED IN ROOT MEAN SQUARED ERROR (RMSE)

Feature type

Corpus Target Speech task SAS  Gloial  MFCC — cGeMADS RMSE
VOWEL 1 1 0 0 11.9
Speech intelligibility | READ 1 1 1 0 11.7
SPON 0 1 0 0 12.7
VOWEL 0 0 0 I 14.2
PDSTU Voice impairment READ 1 1 0 0 14.2
SPON 0 0 0 1 14.7
VOWEL I I 0 I 12.6
Overall severity READ 1 1 0 0 11.8
SPON 1 0 1 0 12.9
VOWEL 1 0 0 1 18.1
PC-GITA | UPDRS READ 1 0 1 0 17.1
SPON 1 0 1 0 16.4

1 in each column denotes that the corresponding feature was included in the best feature set. Bolding marks

the highest score for each prediction target.

in this work, we plan to explore representations of the cognitive-
linguistic aspect of parkinsonian speech with the employment of
text features computed from transcripts of monologue speech.
Finally, we would like to point out that the PDSTU data used in
the current study is relatively limited in size and not completely
balanced between the PD and HC groups in terms of the number
of speakers, their ages, or in terms of the monologue task
instructions. Although the effect of potential group biases is not
critical in present type of regression tasks where within-group
variance also needs to be captured by the features and models,
it would be useful to further verify the studied methods on
larger pathological speech databases with balanced enrollment
of participants.

APPENDIX

Scatter plots in Fig. 4 illustrate the relationship between the
PDSTU subject-level expert ratings (x-axes) and the automati-
cally predicted ratings (y-axes) in case of different speech tasks
and speech features. Fig. 5 shows the corresponding plots as a
function of PDSTU regression target and speech task when using
the best feature combination for each (as listed in Table VII of
the manuscript).

Table X and Table XI are parallel to Table V and Table VII
respectively, but only measured in root mean squared errors

(RMSE). The advantages of SAS features and feature fusion
can be observed from RMSE results as well.
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