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Deep Learning-Based Non-Intrusive Multi-Objective
Speech Assessment Model With
Cross-Domain Features

Ryandhimas E. Zezario
Chiou-Shann Fuh Y, Member, IEEE, Hsin-Min Wang

Abstract—This study proposes a cross-domain multi-objective
speech assessment model, called MOSA-Net, which can simulta-
neously estimate the speech quality, intelligibility, and distortion
assessment scores of an input speech signal. MOSA-Net comprises
a convolutional neural network and bidirectional long short-term
memory architecture for representation extraction, and a mul-
tiplicative attention layer and a fully connected layer for each
assessment metric prediction. Additionally, cross-domain features
(spectral and time-domain features) and latent representations
from self-supervised learned (SSL) models are used as inputs to
combine rich acoustic information to obtain more accurate assess-
ments. Experimental results show that in both seen and unseen
noise environments, MOSA-Net can improve the linear correla-
tion coefficient (LCC) scores in perceptual evaluation of speech
quality (PESQ) prediction, compared to Quality-Net, an existing
single-task model for PESQ prediction, and improve LCC scores
in short-time objective intelligibility (STOI) prediction, compared
to STOI-Net, an existing single-task model for STOI prediction.
Moreover, MOSA-Net can be used as a pre-trained model to be
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effectively adapted to an assessment model for predicting sub-
jective quality and intelligibility scores with a limited amount
of training data. Experimental results show that MOSA-Net can
improve LCC scores in mean opinion score (MOS) predictions,
compared to MOS-SSL, a strong single-task model for MOS pre-
diction. We further adopt the latent representations of MOSA-Net
to guide the speech enhancement (SE) process and derive a quality-
intelligibility (QI)-aware SE (QIA-SE) approach. Experimental
results show that QIA-SE outperforms the baseline SE system with
improved PESQ scores in both seen and unseen noise environments
over a baseline SE model.

Index Terms—Deep learning, multi-objective learning, non-
intrusive speech assessment models, speech enhancement.

I. INTRODUCTION

PEECH assessment metrics are indicators that quantita-
S tively measure the specific attributes of speech signals.
These metrics are vital to the development of speech-related
application systems. A direct assessment approach measures the
difference between the distorted/processed speech and clean ref-
erence at the signal level. The speech distortion index (SDI) [1]
is a well-known example that calculates the distortion of the
distorted/processed speech compared with the clean speech.
Meanwhile, the signal-to-noise-ratio (SNR) [2] and segmental
SNR (SSNR) [3] are other well-known metrics that indicate the
difference between processed and noisy speech. Scale-invariant
source-to-noise ratio (SI-SNR) [4] and optimal scale-invariant
signal-noise ratio (OSI-SNR) [5] are improved versions of SNR
that have also been proven effective in assessing speech signals.
Although these signal-level metrics can directly indicate the
distortion or SNR of the distorted/processed speech compared
to the clean reference, they may not fully reflect the quality
and intelligibility of the distorted/processed speech. Therefore,
many evaluation metrics have been proposed for measuring
speech quality and intelligibility.

Existing speech quality and intelligibility evaluation metrics
can be classified into two categories: subjective and objective
metrics. The subjective evaluation metrics are based on test
scores from human listeners. To obtain subjective scores, speech
samples are played to a group of human subjects, and these
subjects provide feedback regarding the quality or intelligibility
levels of the played speech signals. In terms of speech quality,
the mean opinion score (MOS) is a typical numerical indicator in
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listening tests. In most cases, the MOS metric categorizes speech
quality into five levels, ranging from one to five, with a higher
score indicating better quality. By contrast, the intelligibility
score refers to the ratio of the number of accurately recog-
nized words/phonemes/sentences in the played speech samples,
where in this study, we focus on word-level speech intelligibility
scores. To attain an unbiased assessment of speech quality and
intelligibility, it is necessary to recruit a sufficient number of
human subjects, and each subject must listen to a large amount
of speech utterances encompassing diverse acoustic conditions,
including speakers and distortion sources. This testing strategy
is prohibitive and may not always be feasible. Hence, several
objective evaluations metrics have been developed as surrogates
for human listening tests [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31].

Generally, a conventional objective quality evaluation metric
comprises two stages. The first stage includes a series of signal
processing units designed to convert speech waveforms into
handcrafted acoustic/auditory features. The second stage derives
a mapping function to predict the speech quality score based on
acoustic/auditory features. The mapping function can be im-
plemented via linear regression [8], polynomial regression [6],
[7], multivariate adaptive regression spline [14], and machine
learning methods, such as Gaussian mixture models [9], [17],
[18], support vector regression [10], [15], and artificial neural
networks [19], [20], [21]. Depending on whether clean reference
speech is required, objective speech quality metrics can be
further classified into two categories: intrusive metrics [6] and
non-intrusive metrics [7], [8], [9], [10], [11], [12], [13], [14],
[15]. Well-known intrusive metrics include perceptual evalua-
tion of speech quality (PESQ) [6] and perceptual objective lis-
tening quality analysis (POLQA) [32]. Compared with intrusive
metrics, non-intrusive metrics do not require a clean reference;
therefore, they are more suitable for real-world scenarios, but
generally have lower assessment capabilities.

Objective intelligibility evaluation metrics can be classified
into two categories. One category first segregates the speech
signal under analysis into frequency subbands, and assumes
that each subband independently contributes to the intelligibil-
ity. Next, the long-term subband SNR is calculated and then
normalized to a value between O and 1. Finally, the intelli-
gibility score is obtained using the perceptually weighted av-
erage of the normalized subband SNRs. Notable examples of
this category include the articulation index (AI) [22], speech
intelligibility index (SII) [23], extended SII (ESII) [24], and
coherence SII (CSII) [27]. The other category is derived based
on the observation that reverberation and/or additive noise
tends to reduce the modulation depth of the distorted sig-
nal, compared with the clean reference signal. Well-known
approaches of this category include the speech transmission
index (STI) [25], spectro-temporal modulation index (STMI),
normalized-covariance measure (NCM) [26], short-time objec-
tive intelligibility (STOI) [28], extended STOI (eSTOI) [29],
spectrogram orthogonal polynomial measure (SOPM) [33], neu-
rogram orthogonal polynomial measure (NOPM) [34], neu-
rogram similarity index measure (NSIM) [35] and weighted

spectro-temporal modulation index (wSTMI) [36]. To avoid
the necessity for clean reference speech, several non-intrusive
approaches have been proposed. Most of them adopt statistical
models of clean speech signals or psychoacoustic features for
speech understanding [37]. Notable non-intrusive speech intelli-
gibility metrics include modulation-spectrum area (ModA) [30],
speech-to-reverberation modulation energy ratio (SRMR) [31],
and the non-intrusive STOI [28].

Recently, the emergence of deep learning algorithms has
resulted in the development of many deep learning-based speech
assessment models. These models are trained to predict human
subjective ratings [38], [39], [40], [41], [42], [43] or objective
evaluation scores, in terms of speech quality [44], [45], [46]
and intelligibility [46], [47]. To attain a higher assessment
accuracy, the MBNet adopts the BiasNet architecture to com-
pensate for the biased scores of a certain judge [48]. In addition,
the multi-task learning criterion that simultaneously optimizes
multiple metrics is used to train the assessment model [46],
[49]. Meanwhile, different acoustic features are used as input
to the assessment model to consider information from different
acoustic domains [50], [51].

In contrast to current deep learning-based speech assessment
models that use a single acoustic feature type and one par-
ticular objective to build the model, the proposed MOSA-Net
aims to exploit rich acoustic information from multiple do-
mains and utilize multiple objectives for model training. More
specifically, MOSA-Net uses three different types of features:
traditional spectral features, waveforms processed by learnable
filters (based on the Sinc convolutional network [52]), and la-
tent representations from self-supervised learned (SSL) models
(wav2vec 2.0 [53] and HuBERT [54]). Note that wav2vec2.0
learns context information by identifying representations to
the true quantized latent speech representation [53], and Hu-
BERT predicts (hidden) cluster assignments [54]. Instead of
directly using the outputs, we use the embeddings of these
SSL models as the SSL features. For more details, please refer
to [51] and [55]. Additionally, MOSA-Net adopts a multi-
task learning criterion that simultaneously predicts multiple
objective assessment metrics, including speech quality, intel-
ligibility, and distortion scores. MOSA-Net is composed of a
convolutional neural network (CNN) and a bidirectional long
short-term memory (BLSTM) with an attention mechanism.
We systematically evaluated the performance of MOSA-Net
based on various model architectures, training targets, acoustic
features, and datasets. Experimental results (in terms of mean
square error (MSE), linear correlation coefficient (LCC), and
Spearman’s rank correlation coefficient (SRCC)) demonstrate
the advantages of cross-domain features, multi-tasking learning,
and attention mechanism. Furthermore, experimental results
also show that MOS A-Net, originally trained to predict objective
speech assessment scores (i.e., PESQ, STOI, and SDI), can
serve as a pre-trained model to be adapted to an assessment
model with limited training data to predict subjective quality and
intelligibility scores. To the best of our knowledge, this is the
first work that adapts a pre-trained objective metric assessment
model to a new model that can predict human subjective ratings
with a small amount of adaptation data.
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In the literature, there have been several studies incorporating
speech assessment models to improve SE performance [56],
[57], [58], [59], such as MetricGAN [56] and MetricGAN+ [57].
In addition, some SE methods prepare multiple SE systems and
use speech assessment models to select the SE system that is
most suitable for the test utterance, such as SSEMS [60] and
ZMOS [61]. In contrast to existing approaches, we propose
integrating the latent representation of MOSA-Net into the SE
system, and derive a novel quality-intelligibility-aware (QIA)-
SE system. Experimental results show that QIA-SE achieves
notable improvements over the baseline SE systems and several
existing SE systems, which confirms the advantage of combining
the knowledge in the speech assessment model to improve the
enhancement capability.

The remainder of this paper is organized as follows. We first
review related work in Section II. Subsequently, we elaborate the
proposed methods in Section III. In Section IV, we describe the
experimental setup, report the experimental results, and discuss
our findings. Finally, we conclude our work in Section V.

II. RELATED WORK
A. Deep Learning-Based Assessment Metrics

To date, deep learning models have been widely used to build
speech assessment systems. In this section, we review several
deep learning-based assessment metrics based on different tar-
gets and model architectures.

As mentioned earlier, the assessment targets can be classified
into two types. The first type is human subjective ratings, and
the second is objective assessment scores. When the target is
the human subjective ratings, the learned assessment metric
through appropriate modeling can directly predict the human
subjective ratings [43], [48], [51], [62], [63], [64]. However, a
significant number of subjective listening tests encompassing
many listeners and acoustic conditions must be conducted in
advance to prepare ground-truth labels for an unbiased training
set. In addition, it is difficult to extend the dataset to new
domains, because additional subjective tests must be conducted.
According to the training target criterion, the human subjective
ratings can be classified into two categories: quality [43], [48],
[62] and intelligibility scores [33], [65], [66]. Notable systems
associated with subjective quality metrics include the following:
(1) The MOSNet [62], which combines the utterance-level and
frame-level scores to estimate the MOS of an utterance; (2)
the DNSMOS [43], which uses the teacher-student architecture
to eliminate subjective bias; and (3) the MBNet [48], which
compensates for individual judgement biases using a BiasNet
architecture. Compared with speech quality assessment, there
is less work on predicting subjective intelligibility scores using
deep learning models. For example, (1) Andersen et al. [63]
used a CNN model to accommodate the entire signal composed
of multiple sentences to estimate the scalar value of the intelligi-
bility score, and (2) Pedersen et al. [64] used a CNN architecture
to calculate scores locally in a short time to achieve more efficient
learning with limited listening test data.

The second group adopts objective speech assessment metrics
as the ground-truth labels for model training. Similar to the

first group, the objective speech assessment metrics can also
be divided into two categories: quality and intelligibility. For
objective speech quality assessment, the PESQ [44], [45], [46],
POLQA [67], and HASQI [46] scores obtained by comparing
the test speech with the reference speech are often used as
the ground-truth scores for training the deep-learning-based
assessment metrics. For speech intelligibility assessment, the
STOI [45], [46], [47] and hearing-aid speech perception index
(HASPI) [68] scores are used as the training targets.

Many model architectures have been used to construct the
deep learning-based assessment metrics, e.g., BLSTM [44],
pyramid BLSTM [69], CNN [41], [43], and CNN-BLSTM [48],
[62]. In addition, attention mechanism [46], [47], multi-task
learning [46], [49], and additional network that compensate
for score biases [48] have been used to improve assessment
capabilities. In terms of input, different acoustic features have
been explored, which can be classified into three categories.
The first category includes traditional spectral features such as
log Mel features [43] and power spectral (PS) features [44],
[47], [62]. The second category uses learnable filters to extract
features from raw waveform [45], [70]. The third category is
based on the end-to-end features of the self-supervised learned
network [51].

B. Incorporating Speech Assessment Metrics to SE

The idea of incorporating informative latent representations
from pre-trained models to guide target speech processing tasks
has been extensively studied. For example, SE systems us-
ing speaker embedding [71], [72], [73], [74] and noise em-
bedding [75] have been shown to provide improved SE per-
formance. Since the goal of speech assessment metrics is to
estimate speech quality/intelligibility attributes given a dis-
torted/processed speech signal, it is feasible to use the infor-
mation from these assessment metrics to guide the SE process
to achieve better speech quality and intelligibility. These ap-
proaches can be classified into two categories. The first category
directly uses speech assessment metrics as training targets to
train the SE system [56], [57], [76]. The second category uses
assessment metrics to determine the best model architecture or
select the most appropriate output [60], [61], [77].

III. PROPOSED METHODS

In this section, we first present the proposed MOSA-Net
model. Subsequently, we will explain how to use latent represen-
tations to guide SE systems for obtaining better speech quality
or intelligibility.

A. Multi-Target Speech Assessment Model With Cross-Domain
Features (MOSA-Net)

Fig. 1 shows the overall architecture of the MOSA-Net model.
As shown in the figure, MOSA-Net adopts cross-domain acous-
tic features and predicts multiple assessment scores. Given a
speech waveform X = [z1,..., %, ...,zy], the model takes
two branches of the input. In the first branch, the speech wave-
form X is processed by STFT and learnable filter banks (LFB)
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Fig. 1. Architecture of the MOSA-Net model.

separately, and the estimated spectral and filtered signal features
are fed into a convolutional layer. In the second branch, the
speech waveform X is processed by a self-supervised learned
model (HuBERT [54] or wav2vec 2.0 [53]). It is noteworthy
that different types of features are concatenated by temporal
dimension. That is, the total number of frames of an utterance
is the summation of the frame numbers of the PS, LFB, and
SSL features. Besides, linear transformations are used to make
these features have the same feature dimension. The combined
features are further processed by a bidirectional layer and a
fully connected layer. Subsequently, a set of attention layers is
used for the corresponding objective assessment metrics. In our
implementation, multiplicative attention is used in the attention
layers because of its high efficiency and decent performance.
Next, for each metric, a fully connected layer is used to generate
the frame-wise scores. Finally, based on the frame-level scores,
a global average operation is applied to calculate the final
predicted PESQ, STOI, and SDI scores.

Considering that speech utterances may contain stationary
and/or non-stationary noise in different segments of frames,
directly estimating the utterance level score may result in less
accurate estimation. Therefore, the MOSA-Net aims to combine
utterance-level and frame-level score estimations. Accordingly,
the objective function of MOSA-Net is defined as follows:

Lau=mLprsq +v2Lsror +7v3Lspr

| X [ L a0 L(Uy) A
LPESQ:N; (Qn_Qn) +L(Un) — (Qn_qnl)
N : ) L(U,
Lsror = ﬁn; _(In — 1) 2

1N L(U,
Lspr = N Z Z —5u)?
n=1 =1
(1)
where ), I,, and S,, are the true utterance-level scores of

the PESQ, STOI, and SDI, respectively, of the n-th training
utterance; Qn, I n,and S‘n are the predicted utterance-level scores
of the PESQ, STOI, and SDI, respectively, of the n-th training
utterance; N denotes the total number of training utterances;
L(U,) = L(X,,) + L(F,) + L(C,,) denotes the total number
of frames in the n-th training utterance; L(X,,), L(F,), and
L(C,,) are the number of frames of the STFT, LFB, and SSL
features, respectively; G, inl, and §,,; are the predicted frame-
level PESQ, STOI, and SDI scores of the [-th frame of the
n-th training utterance, respectively; as shown in (1), for the
n-th training utterance, there are L(U,,) predicted frame-level
PESQ, STOI, and SDI scores; g, o, and ag determine the
weights between utterance-level and frame-level losses; and 71,
~2, and 73 determine the weights between PESQ, STOI, and
SDI losses. In (1), for each metric, the first and second terms
estimate the accuracy of the utterance-level score and the frame-
level score, respectively. The frame-level STOI, PESQ, and SDI
ground-truth scores are the same as the utterance-level STOI,
PESQ, and SDI ground-truth scores, respectively. Although 71,
Y2, V3, @, o, and ag can be adjusted, we set them all to
1 in our experiments. A linear layer was applied to reduce the
high-dimensional SSL features to the same dimension as the
STFT and LFB features.

B. QIA-SE Model

The QIA-SE model is designed to incorporate the latent
representation from MOSA-Net to guide the SE process. The
overall QIA-SE architecture is illustrated in Fig. 2. As shown
in the figure, the noisy speech waveform is first converted to
spectral features, Y = [y1,...,Yn --.,yL], where L is the total
number of frames. QIA-SE aims to convert Y to enhanced
spectral features X, referring to the latent representation features
A =Jay,...,a,...,ar] extracted by the MOSA-Net from the
input noisy speech waveform. In our current implementation,
A is the output of the fully-connected layer after attention in
MOSA-Net, and is incorporated into the middle layer of QIA-SE
via vector concatenation to guide the enhancement process,

Hy = F (Y)

H; = F\") (Hy )
Hk+1 _ F(k-‘rl) ([HT AT] )

Hy = F\%) (Hg 1)

X = F{f) (Hy) )
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where k denotes the layer index, and Fe(k) indicates the transfor-
mation model of the k-th hidden layer. Parameter 6 is optimized
by minimizing the following loss function based on the MSE:

0 = arg min L(X, X), 3)
0

where X denotes the clean speech reference. In this work,
QIA-SE was built with a CNN model [61], which comprised 12
convolutional layers, followed by a fully connected layer con-
sisting of 128 neurons. Each convolutional layer contained four
channels {16, 32, 64, 128} with three types of strides {1, 1, 3}
in each channel. Note that during training, MOS A-Net is frozen,
and the parameters in the SE model are optimized. We can take A
from the PESQ, STOI, or SDI branch, or from multiple branches
by concatenating the representations by feature dimension. In
the testing stage, noisy speech is first input into MOSA-Net
to generate the latent representation A, and then input into
the QIA-SE model to obtain the enhanced spectral features, as
defined in (2). The enhanced speech waveform is generated by
performing ISTFT on the enhanced spectral features along with
phase information from the noisy speech.

IV. EXPERIMENTS
A. Analysis of MOSA-Net

In this section, we systematically investigate the correlations
between the performance of MOSA-Net and different input
features, model architectures, and output labels. A fair com-
parison of MOSA-Net with related neural evaluation metrics is
presented.

1) Experimental Setup: We used the Wall Street Journal
(WSJ) dataset [78], which comprises 37,416 training utterances

and 330 test utterances. The training and test utterances were
recorded at a sampling rate of 16 kHz.

We artificially contaminated the clean training utterances with
100 types of noises [79] at 31 different SNR levels, ranging from
-10to 20 dB with an interval of 1 dB, to prepare noisy utterances.
Weused 37,416 noisy-clean utterance pairs (randomly sampled a
corresponding noisy utterance for each clean training utterance)
to train an SE system, which was constructed by a BLSTM
model with two bidirectional hidden layers, each containing
300 neurons. Then, we used the SE model to prepare enhanced
utterances. Finally, we randomly sampled 1,500 clean utterances
and corresponding 15,000 noisy utterances and 15,000 enhanced
utterances and computed their PESQ, STOI, and SDI scores to
form the training set for the MOSA-Net model.

We prepared two test sets: a seen test set and an unseen test set.
For the seen test set, we randomly selected 300 clean utterances
from the utterances other than the 1500 utterances in the training
set and their corresponding 2,350 noisy utterances and 2,350
enhanced utterances. For the unseen test set, we selected 300
utterances from the test set of the WSJ dataset and artificially
contaminated them with four unseen noise types (i.e., car, pink,
street, and babble) at six SNR levels (i.e., -10, -5, 0, 5, 10,
and 15 dB), amounting to 7,200 noisy utterances. The same
SE model was applied to generate enhanced utterances. Note
that the speakers in the unseen test set were not involved in the
training set. We randomly selected 2,350 noisy utterances and
2,350 enhanced utterances together with the 300 clean utterances
to form the unseen test set.

To evaluate the proposed MOS A-Net model, we adopted three
evaluation metrics, namely the MSE, LCC, and SRCC [80].
Lower MSE scores indicate that the predicted scores are closer
to the ground-truth assessment scores (the lower the better),
whereas higher LCC and SRCC scores indicate that the predicted
scores are of higher correlations to the ground-truth assessment
scores (the higher the better).

2) MOSA-Net With Different Model Architectures: First, we
compared the MOSA-Net with different model architectures,
including the CNN [56], BLSTM [44], CNN-BLSTM [62], and
CNN-BLSTM with attention [47]. In the following, the MOSA-
Net implemented with CNN-BLSTM will be denoted as CRNN,
while the MOSA-Net implemented with CNN-BLSTM with
attention will be denoted as CRNN+AT. In our implementation
of the CNN, CRNN, and CRNN+AT models, we used a batch
size of one and the Adam optimizer [81] with a learning rate of
0.0001. BLSTM was trained with the RMSprop optimizer [82]
with a learning rate of 0.001. For a fair comparison, we adopted
the same acoustic features PS (power spectrogram) and a single-
metric (either the PESQ or STOI score) learning criterion to train
the model. To extract the PS features, each speech waveform
was converted into a 257-dimensional spectrogram by applying
a 512-point STFT with a Hamming window of 32 ms and a hop
of 16 ms. The results of the MOSA-Net using the CNN, BLSTM,
CRNN, and CRNN+AT are shown in Table I, where the results
of both the seen and unseen tests are reported. As shown in
Fig. 1, the CRNN+AT model included 12 convolutional layers,
each comprising four channels 16, 32, 64, and 128, a one-layered
BLSTM (with 128 nodes), and a fully connected layer (with 128
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TABLE I
LCC, SRCC, AND MSE RESULTS OF MOSA-NET USING CNN, BLSTM,
CNN-BLSTM (CRNN) AND CRNN WITH ATTENTION (CRNN+AT) MODEL
ARCHITECTURES. THE PS FEATURES ARE USED AS THE INPUT, AND A SINGLE
METRIC (EITHER THE PESQ OR STOI SCORE) IS USED TO TRAIN MOSA-NET

Model Seen Noises Unseen Noises
LCC H SRCC H MSE LCC H SRCC H MSE
PESQ score prediction
BLSTM 0.964 0.945 0.074 || 0.957 0.932 0.075
CNN 0.975 0.959 0.055 || 0.947 0.931 0.117
CRNN 0.981 0.965 0.042 || 0.966 0.949 0.078
CRNN+AT || 0.982 0.967 0.040 || 0.965 0.954 0.092
STOI score prediction
BLSTM 0.923 0.929 0.005 || 0.764 0.784 0.029
CNN 0.936 0.939 0.004 || 0.698 0.694 0.012
CRNN 0.964 0.962 0.002 || 0.789 0.797 0.016
CRNN+AT || 0.970 0.968 0.001 || 0.827 0.815 0.015

The bold entities represent the best results.

neurons). An attention layer was used to estimate the assigned
objective assessment metric. Finally, the output of the attention
layer was forwarded to a fully connected layer (with one output
node), and a global average operation was applied to generate
the prediction score. The CRNN model architecture resembled
CRNN+AT, where no attention layer was involved. For the CNN,
we used the same model architecture as that reported in [56]. The
model comprised of four two-dimensional convolutional layers
with the following filters and kernels configurations: [15, (5, 5)],
[25, (7, 7)], [40, (9, 9)], and [50, (11, 11)]. In addition, the two-D
global average pooling was added to fix feature dimension into
50, and the feature was mapped into three fully connected layers
with the following configurations: 50 and 10 LeakyReL.U nodes,
and one output node. For BLSTM, we used the same model
architecture as that reported in [44]. The model comprised of
one bidirectional LSTM layer with 100 nodes, followed by two
fully connected layers with 50 exponential linear unit (ELU)
nodes and one output node.

As shown in Table I, CRNN slightly outperformed the CNN
and BLSTM, in terms of both the PESQ and STOI predictions for
the seen and unseen test sets. The results suggest that combining
the abilities of CNN in extracting local invariant features and
BLSTM in characterizing temporal characteristics can yield
better performance than using individual CNN and BLSTM in
this task. Additionally, CRNN+AT outperformed CRNN. This
indicates that by incorporating the attention mechanism, the
model can focus on the more important regions and hence allow
MOSA-Net to achieve better prediction performance.

Next, we compared the CRNN+AT model with two existing
systems, Quality-Net [44] (based on BLSTM) and STOI-Net
(based on CRNN) [47]. Note that the CRNN+AT model is
actually a single-task MOSA-Net model, and the single-task
MOSA-Net model with a single type of features (PS) is the
same as the CRNN+AT based STOI-Net model in [47]. To
qualitatively analyze the advantages of CRNN+AT, we used
scatter plots' to compare the prediction results of these models.

'We drew the scatter plots using the open-source tool: https:/seaborn.pydata.
org/generated/seaborn.regplot.html. The regression lines were estimated with a
confidence interval of 95%.
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Fig.3.  Scatter plots of speech assessment predictions of MOSA-Net, Quality-
Net [44], and STOI-Net [47].

TABLE II
LCC, SRCC, AND MSE RESULTS OF MOSA-NET, QUALITY-NET, AND
STOI-NET
Model ‘ Seen Noises Unseen Noises

‘ LCC H SRCC H MSE

PESQ score prediction
Quality-Net [44] ] 0.964 [ 0.945 [ 0.074 ][ 0.957 [[ 0.932 [ 0.075*
MOSA-Net || 0.982% || 0.967* || 0.040* || 0.965* || 0.954* [ 0.092
STOI score prediction
STOI-Net [47] ][ 0.964 [[ 0.962 [[ 0.002 [ 0.789 [[ 0.797 ] 0.016
MOSA-Net [ 0.970% || 0.968* [ 0.001* [[ 0.827* [ 0.815* [ 0.015*

*Denotes that the performance deference of the two models in each condition
is statistically significant.

LCC H SRCC H MSE

Scatter plots can show the correlation between predicted and true
scores. More specifically, if an assessment model can accurately
predict the metric scores, the points will be densely distributed
on the diagonal; otherwise, the points will be spread out from
the diagonal. As shown in Fig. 3, we can note that the predicted
PESQ and STOI scores by MOSA-Net are more correlated with
the true scores than Quality-Net and STOI-Net as the points
of MOSA-Net are more densely distributed on the diagonal.
More comparisons of MOSA-Net, Quality-Net, and STOI-Net
are shown in Table II. From the table, we can again confirm that
MOSA-Net outperforms these two previous works in almost
all LCC, SRCC, and MSE metrics (except for the MSE metric
for PESQ prediction under the unseen noise condition). We
further compared two methods (MOSA-Net vs Quality-Net and
MOSA-Net vs STOI-Net) by performing t-test on the individual
average MSE/LCC/SRCC scores of 20 matched pairs (where
each individual score was computed from 5 utterances), and
found that all the performance differences in Table II are statis-
tically significant, with a p-value less than 0.05.

3) MOSA-Net With Single and Multi-Task Training: Next,
we aimed to compare the performance of the MOSA-Net with
single- and multi-task training criteria. In the previous section,
we used a single-task training criterion. Specifically, when the
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TABLE IIT
LCC, SRCC, AND MSE RESULTS OF MOSA-NET TRAINED WITH SINGLE
(Q/I/D), DOUBLE (Q+1/Q+D/I+D), AND TRIPLE (Q+I+D) METRICS FOR
PREDICTING PESQ, STOI, SDI SCORES UNDER SEEN AND UNSEEN
CONDITIONS. Q, I, AND D DENOTE PESQ, STOI, AND SDI SCORES,
RESPECTIVELY

Seen Noises Unseen Noises

Model | yeC'SRCC || MSE || LCC || SRCC || MSE
PESQ score prediction
Q 0.982 || 0.965 || 0.043 || 0.965 || 0.954 || 0.092
Q+I 0.987 || 0.974 || 0.028 || 0.966 || 0.952 || 0.068%*
Q+D 0.986 0.975 0.028 0.956 0.939 0.100
Q+I+D || 0.988* || 0.977* || 0.026* || 0.965 || 0.950 || 0.075
STOI score prediction
1 0.970 || 0.968 || 0.001 || 0.827* || 0.815 || 0.015
Q+I 0.971 || 0.968 || 0.002 || 0.802 || 0.815 || 0.014
1+D 0.973 || 0.968 || 0.001 || 0.785 || 0.792 || 0.015
Q+I+D || 0.977* || 0.974* || 0.001 || 0.790 || 0.816 || 0.016
SDI score prediction
D 0.883 || 0.904 || 0.045 || 0.826 || 0.822 || 0.050
Q+D 0.939 || 0.947 || 0.024 || 0.866* || 0.866* || 0.038
1+D 0.952* || 0.955* || 0.019* || 0.848 || 0.826 || 0.042
Q+I+D || 0.947 || 0.954 || 0.022 || 0.850 || 0.859 || 0.036*

The bold entities represent the best results.

*Denotes that the performance deference of the best multi-task
model and the single-task model in each condition is statistically
significant.

prediction task was the PESQ/STOI, the MOSA-Net was trained
using PESQ/STOI labels. In this section, we used multiple
assessment targets to train the MOSA-Net, and the model ar-
chitecture is shown in Fig. 1. The results of single-, double-, and
triple-task learning are shown in Table III, where the prediction
targets are the PESQ, STOI, and SDI scores, respectively.

As shown in Table III, in PESQ score prediction, under
the seen noise condition, the MOSA-Net models trained with
double-task criteria (Q+I and Q+D) yielded better results in
terms of all LCC, SRCC, and MSE metrics than MOSA-Net
trained with a single-task criterion (Q), and the triple-task
criterion (Q+I+D) yielded the best performance. However, for
the unseen noise condition, neither double-task nor triple-task
criteria led to performance gains. For STOI score prediction,
similar trends can be observed in Table III. For SDI score predic-
tion, MOSA-Net (Q+D) and MOSA-Net (I+D) achieved better
performance than MOSA-Net (D) in both seen and unseen noise
conditions. Additional consideration of PESQ or STOI in model
training really helps with SDI score prediction. While addition-
ally considering both PESQ and STOI in model training yielded
good results, these results were not the best. We performed
t-test on the results in Table III. For each testing condition,
the results of the best multi-task model and the corresponding
single-task model were compared. For example, for the SRCC
metric in PESQ score prediction under the seen noise condition,
MOSA-Net (Q+I+D) and MOSA-Net (Q) were compared. From
Table III, we can see that when a multi-task model outperformed
the corresponding single-task model, the performance improve-
ment (e.g., MOSA-Net (Q+I+D) outperformed MOSA-Net (Q)
in PESQ prediction in terms of SRCC: 0.977 vs 0.965) was
almost always statistically significant, with a p-value less than
0.05. In contrast, when the best multi-task model performed
worse than the corresponding single-task model, there was only
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Fig. 4. Scatter plots of speech assessment predictions of the single-task and
multi-task MOSA-Net models.

one case where the difference in performance was statistically
significant, i.e., MOSA-Net (Q+I) vs MOSA-Net (I) in STOI
prediction in terms of LCC under the unseen noise condition.
Overall, the results in Table III suggest that PESQ, STOI, and
SDI predictions are correlated to some extent and that it is ben-
eficial to employ a multi-task learning criterion when training
speech assessment models.

In addition to quantitative analyses, we conducted qualitative
analyses on the MOSA-Net trained with single- and multi-task
training criteria. As shown in Fig. 4, the multi-task MOSA-Net
could estimate the assessment scores more accurately than the
single-task MOSA-Net models, as evidenced by the denser
distribution of points along the diagonal.

To develop a comprehensive analysis, we visualized the hid-
den layer representation of the MOSA-Net with single-task and
triple-task learning. We extracted the output of the attention
layer from MOSA-Net trained with single- and multi-task cri-
teria in Figs. 5 and 6. From Fig. 5, the representations of the
single-task MOSA-Net trained with individual PESQ, STOI,
and SDI values yielded different patterns when predicting the
individual metrics (the PESQ, STOI, and SDI). This shows
that the MOSA-Net trained with a distinct metric is learned to
focus on particular regions. By contrast, as shown in Fig. 6,
the multi-task MOSA-Net that was trained simultaneously on
three assessment metrics yielded different visualization results.
Unlike the single-task models, the multi-task MOS A-Net model
yielded a similar pattern in each of the branches. Therefore, it
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Fig. 5. Latent representations of a speech utterance at the attention layer of
the single-task MOSA-Net (a) PESQ, (b) STOI, and (c) SDI. The horizontal and
vertical axes denote the frame index and attention weight, respectively.
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Fig. 6. Latent representations of a speech utterance at the attention layer of
the multi-task MOSA-Net (a) PESQ, (b) STOI, and (c) SDI. The horizontal and
vertical axes denote the frame index and attention weight, respectively.

may further suggest that the MOSA-Net aims to share useful
representations and achieve more general weights by optimally
considering all metrics.

4) Comparison With Another Multi-Task Method: In this
section, we compare the performance of the MOSA-Net with
that of another multi-task speech assessment model, namely,
attention enhanced multi-task speech assessment (AMSA) [46].
Specifically, we compared two different strategies for construct-
ing the objective function. In our proposed work, we combined
the estimated loss from the utterance- and frame-level scores
to define the objective function. By contrast, AMSA uses the

TABLE IV
LCC, SRCC, AND MSE RESULTS OF MOSA-NET AND AMSA

Model Seen Noises Unseen Noises
LCC H SRCC H MSE || LCC H SRCC H MSE
PESQ score prediction
AMSA [46] || 0.985 || 0.973 || 0.031 || 0.962 || 0.946 || 0.080
MOSA-Net || 0.988 || 0.977 || 0.026 || 0.965 || 0.950 || 0.075
STOI score prediction
AMSA [46] || 0.975 || 0.973 || 0.001 || 0.783 || 0.794 || 0.018
MOSA-Net || 0.977 || 0.974 || 0.001 || 0.790 || 0.816 || 0.016
SDI score prediction
AMSA [46] || 0.929 || 0.942 || 0.029 || 0.835 || 0.847 || 0.039
MOSA-Net || 0.947 || 0.954 || 0.022 || 0.850 || 0.859 || 0.036

The bold entities represent the best results.

regression loss based on the utterance-level score and the clas-
sification loss based on the classification-aided model to define
the objective function. For a fair comparison, the same model
architecture with the same number of assessment targets was
used in both systems. When training the AMSA system, we
followed the same parameter as defined in [46] to adjust the
classification-aided model.

As shown in Table IV, MOS A-Net consistently outperformed
AMSA in PESQ, STOI, and SDI predictions across all LCC,
SRCC, and MSE metrics. Therefore, these evaluation results
demonstrate the benefit of combining the utterance-level score
and the frame-level score to form the objective function.

5) MOSA-Net With Cross-Domain Features: In this section,
we investigate the effectiveness of different acoustic features on
the performance of MOSA-Net 2 and whether the combination of
multiple acoustic features can lead to more accurate predictions
for MOSA-Net. In addition to PS features, which have been used
in the previous experiments, MOSA-Net employed complex
features (termed complex), learnable filter banks (termed LFB
features), and the output of a self-supervised learned model
(termed SSL features). The goals of using these three types
of features are as follows: (1) Complex features can reserve
the phase information; (2) LFB features can retain the raw-
waveform information more completely; (3) SSL features can
exploit the context-information of phones. For (1), we used real
and imaginary (RI) spectrograms. For (2), we used SincNet [52]
as the learnable feature extraction model. For (3), we used two
self-supervised learned models, namely wav2vec 2.0 [53] and
HuBERT [54], to generate the SSL features. The corresponding
features are termed SSL(W2V) and SSL(Hub), respectively. The
results of MOSA-Net using PS, Complex, LFB, SSL(W2V), and
SSL(Hub) features are shown in Table V.

As shown in Table V, the PS features tended to achieve slightly
better performance than the other features when estimating the
PESQ. By contrast, in assessing the STOI score, the SSL(Hub)
features achieved better performance in both the seen and unseen
environments. Meanwhile, in assessing the SDI score, the PS
features achieved better performances in the seen and unseen
environments, respectively. Hence, it is indicated that these
acoustic features have different and complementary information

2 [Online]. Available:

Domain

https://github.com/dhimasryan/MOSA-Net-Cross-
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TABLE V
LCC, SRCC, AND MSE RESULTS OF MOSA-NET USING DIFFERENT INPUT
FEATURES

TABLE VI
LCC, SRCC, AND MSE RESULTS OF MOSA-NET USING CROSS-DOMAIN
FEATURES

Seen Noises Unseen Noises

Seen Noises Unseen Noises

Medel | rce T SRCC [ MISE [ LCC || SRCC || MSE Model LCC[[SRCC[[MSE || LCC [[SRCC|[[ MSE
PESQ score prediction PESQ score prediction
S 0988 17 0.977 1 0.026 [ 0.965 T 0950 T 0.075 PS+SSL(Hub) 0.991 ][ 0.981 [[0.020 || 0.968 || 0.957 || 0.066
Complex 0035 170975 11 0.05T 1T 0.965 1 0.95T 1 0.081 Complex+SSL(Hub) || 0.990 || 0.979 |[0.023 [[0.968 | 0.956 || 0.084
LFB+SSL(Hub) 0.989 ([ 0.978 [[0.024 |[0.963 || 0.951 || 0.085
SSLL(SEZV) 8'32}‘ 8'235 8'8‘3‘2 8'32? 8’22? g'ggi PS+LEB+SSL(Hub) || 0.990 || 0.980 |[0.021 || 0.969 || 0.957 || 0.070
: : : : : : Complex+LFB+SSL(Hub) || 0.990 || 0.980 || 0.022 || 0.967 || 0.956 || 0.081
SSL(Hub) || 0.981 |[ 0.967 | 0.041 || 0.954 || 0.933 || 0.088 STOT score prediction
STOI score prediction PS+SSL(Hub) 0.989 [ 0.085 [[0.001 ][ 0.814 || 0.820 [[0.016
PS 0.977 || 0.974 | 0.001 || 0.790 || 0.816 || 0.016 Complex+SSL(Hub) || 0.989 || 0.986 || 0.001 || 0.826 || 0.828 || 0.015
Complex || 0.976 || 0.974 || 0.001 [| 0.765 || 0.794 || 0.014 LFB+SSL(Hub) 0.986 || 0.984 |[0.001 | 0.834 || 0.834 || 0.022
LFB 0972 || 0.970 || 0.001 || 0.778 || 0.787 || 0.016 PS+LEB+SSL(Hub) || 0.985 || 0.984 |[0.001 || 0.836 || 0.839 || 0.017
SSL(W2V) || 0.970 || 0.968 || 0.002 || 0.804 || 0.820 || 0.017 Complex+LFB+SSL(Hub) || 0.989 || 0.985 [[0.001 || 0.831 || 0.826 || 0.016
SSL(Hub) 0.980 0.978 0.001 0.807 0.821 0.015 SDI score prediction
SDI score prediction PS+SSL(Hub) 0.961 || 0.966 |/ 0.016 || 0.878 || 0.866 || 0.044
PS 0.947 | 0.954 || 0.022 || 0.850 || 0.859 || 0.036 Complex+LFB 0.942{[70.950 [[0.023 |[0.839 || 0.857 |[ 0.048
Complex 0.945 || 0.953 || 0.023 || 0.818 || 0.839 || 0.047 Complex+SSL(Hub) || 0.971 || 0.973 |[0.012([0.890 || 0.888 |[0.037
LFB 0.936 0.944 0.025 0.827 0.834 0.056 LFB+SSL(Hub) 0.964 || 0.970 |/ 0.014 || 0.851 || 0.836 | 0.060
SSL(W2V) 0.890 0918 0.043 0.822 0.836 0.074 PS+LFB+SSL(Hub) 0.964 || 0.967 [[0.015 ([ 0.878 || 0.872 || 0.045
SSL(Hub) 0.935 0.952 0.026 0.842 0.830 0.068 Complex+LFB+SSL(Hub) [ 0.969 || 0.971 {[ 0.012{{ 0.895 || 0.899 || 0.033

The bold entities represent the best results.

for speech assessment. In addition, by considering phase infor-
mation, the Complex features can reserve useful information
that is particularly more useful when conducting assessment
evaluations in seen environments. Because SSL(Hub) generally
provides better performance than SSL(W2V), SSL(Hub) is used
as the representative SSL features in the following discussion.

Next, we further investigated the MOSA-Net that combines
cross-domain features as input. As shown in Fig. 1, the STFT and
learnable neural network (SincNet in this study) were applied
to the speech waveform to obtain the PS/Complex and LFB
features, which were then used as the input to the MOSA-Net.
For the SSL(W2V) and SSL(Hub) features, the speech waveform
was processed by the wav2vec 2.0 and HuBERT models, respec-
tively, and the latent representations were input to the middle
layer of the MOSA-Net model. The results of the MOSA-Net
with different combinations of acoustic features are shown in
Table VI.

Comparing the results in Tables V and VI, the benefits of in-
corporating cross-domain features to train the MOS A-Net model
are evident. For example, the combination of Complex and
SSL(Hub), denoted as Complex+SSL(Hub) in Table VI, con-
sistently outperformed the individual Complex and SSL(Hub)
in PESQ, STOI, and SDI predictions in both the seen and
unseen environments. Furthermore, Table VI shows that the
Complex+SSL(Hub) features achieved the best performance
among all combinations for STOI and SDI predictions in the seen
environments. Finally, the combination of three acoustic fea-
tures, namely Complex+LFB+SSL(Hub)/PS+LFB+SSL(Hub),
consistently achieved better performance in the unseen environ-
ments as compared with Complex+SSL(Hub) / PS+SSL(Hub).
We also present the scatter plots of predictions of the
MOSA-Net with the single-domain (PS) and cross-domain
(PS+LFB+SSL(Hub)) features in Fig. 7. From the figure, the
MOSA-Net with the cross-domain features can achieve a more
accurate estimation than the MOS A-Net with the single-domain

The bold entities represent the best results.
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Fig. 7. Scatter plots of speech assessment predictions of the MOSA-Net with
the single-domain (PS) and cross-domain (PS+LFB+SSL(Hub)) features.

features. In addition, the t-test shows that the improvements
of the MOSA-Net with cross-domain (PS+LFB+SSL(Hub))
features over the MOSA-Net with single-domain (PS) features
in PESQ, STOI, and SDI score predictions for both seen and
unseen environments in terms of LCC, SRCC, and MSE are all
statistically significant, with a p-value less than 0.05. The results
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TABLE VII
LCC, SRCC, AND MSE RESULTS OF MOSA-NET TESTED ON THE TIMIT
DATASET

Model H LCC H SRCC H MSE

PESQ Score Prediction
AMSA [46] 0.728 0.673 0.765
MOSA-Net 0.754 0.710 0.654
MOSA-Net(Cross-Domain) 0.960 0.948 0.111

STOI Score Prediction
AMSA [46] 0.701 0.584 0.015
MOSA-Net 0.746 0.608 0.011
MOSA-Net(Cross-Domain) 0.920 0.936 0.004

SDI Score Prediction
AMSA [46] 0.873 0.678 0.042
MOSA-Net 0.859 0.643 0.047
MOSA-Net(Cross-Domain) 0.895 0.901 0.051

The bold entities represent the best results.

confirm the benefit of cross-domain features, which provide
more complete information for the speech assessment model.

6) MOSA-Net Tested on the TIMIT Dataset: In this section,
we aim to analyze the generalization ability of MOSA-Net
by testing the models trained on the WSJ dataset on another
standard English dataset, TIMIT [83]. The testing noisy set was
obtained by injecting the same set of noises used in the WSJ
task at eight SNR levels (from -10 dB to 25 dB with a step
of 5 dB) to the original clean utterances, and the enhanced set
was obtained by applying the same BLSTM-based SE model
used in the WSIJ task to the noisy utterances. Therefore, the
evaluation experiment was performed under the seen noise
condition. In total, we randomly selected 750 noisy utterances,
750 enhanced utterances, and 500 clean utterances to test the
assessment models, including AMSA [46], MOSA-Net using
PS features (denoted as MOSA-Net), and MOSA-Net using
cross-domain features (denoted as MOS A-Net(Cross-Domain)).
As shown in Table VII, MOSA-Net consistently outperforms
AMSA in PESQ and STOI predictions while slightly underper-
forms AMSA in SDI prediction, but MOSA-Net(Cross-Domain)
achieves the best performance in almost all testing conditions ex-
cept for the MSE metric for SDI prediction. The results show that
by using cross-domain features, MOSA-Net(Cross-Domain) is
obviously more robust across datasets, with clear advantages
over AMSA and MOSA-Net using single features. The t-test
confirmed that the improvements of MOSA-Net(Cross-Domain)
over AMSA in 8 out of 9 testing conditions are all statistically
significant, with a p-value less than 0.05. Overall, the results
confirm the effectiveness of using cross-domain features to
improve generalization to new datasets.

7) Adapting MOSA-Net to Predict Human Subjective Rat-
ings: Collecting subjective scores is time consuming and ex-
pensive because multiple subjects are required for listening tests.
However, compared with models that predict objective evalua-
tion scores, it is much more challenging to train a model to pre-
dict subjective evaluation scores that are highly correlated with
human subjective ratings because human subjective ratings vary
greatly, as shown in some previous work [48], [51], [62]. There-
fore, there is an urgent need for a method that can effectively
and efficiently train a model that replaces subjective evaluation.
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Fig. 8.  Scatter plots between subjective intelligibility and STOI (left), and

subjective quality and PESQ (right).

In the experiments, we used the utterances and corresponding
subjective quality and intelligibility scores in the TMHINT-QI
dataset [85].> The dataset includes clean, noisy, and enhanced
utterances of five SE methods (namely Karhunen-Loeve trans-
form (KLT) [86], minimum-mean square error (MMSE) [87],
fully convolutional network (FCN) [88], deep denoising au-
toencoder (DDAE) [89], and transformer-based SE [90]). 226
subjects participated in the listening test (subjective quality and
intelligibility).* Most utterances were evaluated by one subject,
but some utterances were evaluated by more than one subject.
In [84], it is presented that there are two setups for speech metric
predictions: the corresponding prediction targets can be either
average testing-condition-specific rating scores from multiple
subjects or rating scores from an individual or single subject. In
this study, we followed the later setup. The quality score ranges
from 1 to 5, where a higher score indicates higher perceived
quality. The intelligibility score ranges from O to 1, indicating
the percentage of correctly recognized characters. We used 1,900
utterances evaluated by multiple subjects for testing and selected
15,000 utterances, each evaluated by one subject for training.
For each test utterance, the average score was used as the
ground-truth score. It is noteworthy that the training and test
utterances do not overlap. Besides, the number of clean, noisy,
and enhanced utterances of five SE models is roughly balanced.

First, we investigate whether MOSA-Net can be adapted to
a new model for estimating human subjective ratings with a
limited amount of training data. We used scatter plots to show the
correlations between human-listening test scores (intelligibility
and MOS) and objective test scores (STOI and PESQ). We drew
two scatter plots in Fig. 8 (left panel: subjective intelligibility
vs STOI; right panel: subjective MOS vs PESQ). We used all
the test utterances to conduct the evaluation. The average MOS
scores for individual speech utterances appear to be distributed
only over a limited number of values because each subject
rated an utterance as 1, 2, 3, 4, or 5. Considering each ut-
terance consists of 10 Chinese characters, the human-assessed
recognition rate is either 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9 or 1.0. Therefore, the average speech intelligibility scores
for individual speech utterances also appear to be distributed

3STMHINT-QI dataset: http://gofile.me/6PGhz/4U6GWaOtY; TMHINT-QI
dataset description: https://github.com/yuwchen/InQSS

4Written informed consent approved by the Academia Sinica Institutional Re-
view Board for this study was obtained from each participant before conducting
the experiment.
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only over a limited number of values. We also observe that the
PESQ (or STOI) scores of utterances with the same average
MOS (or intelligibility) score are diverse. From the two scatter
plots, we note that human-listening test results (intelligibility
and MOS) have moderate correlations with the corresponding
objective scores (STOI and PESQ). The correlation between
speech intelligibility and STOI is evaluated as 0.482 (LCC),and
0.461 (SRCC), while the correlation between MOS and PESQ
is evaluated as 0.574 (LCC), and 0.377 (SRCC). These findings
motivated us to use a model adaptation strategy to adapt the
MOSA-Net model pre-trained on objective scores to a new
model that can predict human subjective ratings.

In the next experiment, we used two state-of-the-art speech
assessment models as our baselines: (1) MOSNet: a model
that is based on a CNN-BLSTM architecture for predicting
MOS scores [62]; (2) MOS-SSL: a model that uses features
from fine-tuned wav2vec 2.0 to predict MOS scores [55].
Both models were trained on the TMHINT-QI dataset with
a single-task criterion to predict the quality or intelligibility
score separately. MOSNet was trained from scratch. For MOS-
SSL, its linear output layer was trained from scratch while
the wav2vec 2.0 module was fine-tuned. In addition, several
intrusive speech quality prediction approaches such as CSIG:
MOS predictor of signal distortion, CBAK: MOS predictor of
background-noise, and COVL: MOS predictor of overall signal
quality [84] were selected for speech quality prediction. Along
with that the intrusive speech intelligibility prediction approach
called ESTOI [29] was used for speech intelligibility prediction.
We compared five MOSA-Net models: (1) MOSA-Net(WSJ):
the best model trained on WSJ (i.e., PS+LFB+SSL(Hub) in
Table VI); (2) MOSA-Net(Scratch): a model that is trained from
scratch on the TMHINT-QI dataset with the same configura-
tion as the best MOSA-Net; (3) MOSA-Net(Adapt): a model
that is adapted from MOSA-Net(WSJ) using the TMHINT-QI
dataset where the SSL. model was not fine-tuned; (4) MOSA-
Net(Scratch)pr_ggr,: same as MOSA-Net(Scratch), except that
the SSL model was the one that was fine-tuned in MOS-SSL; (5)
MOSA-Net(Adapt)rr_ssr,: same as MOSA-Net(Adapt), except
that the SSL model was the one that was fine-tuned in MOS-SSL.
The learning rate for adaptation was set to 0.00005 (half the
learning rate used in MOSA-Net training).

The results are listed in Table VIII. Obviously, due to data
mismatch and the gap between the PESQ/STOI metrics and the
subjective quality/intelligibility scores, MOSA-Net(WSJ) could
not yield satisfactory performance (especially intelligibility
score prediction). In contrast, MOSA-Net(Scratch) and MOSA-
Net(Adapt) performed notably better than MOSA-Net(WS]J),
and several well-known intrusive evaluation metrics (CSIG,
CBAK, COVL, and ESTOI). Meanwhile, MOSA-Net(Adapt)
was superior to MOSA-Net(Scratch) in both speech quality and
intelligibility predictions. It is also noted that with the fine-
tuned SSL features, MOSA-Net(Scratch)r_gsr, outperformed
MOSA-Net(Scratch) and MOSA-Net(Adapt), and that by uti-
lizing the prior weight information, MOSA-Net(Adapt)pr_ssr,
achieved the best performance among all MOSA-Net models.
Furthermore, MOSA-Net(Adapt)pr_gsr, outperformed the two

TABLE VIII
LCC, SRCC, AND MSE RESULTS OF MOSA-NET FOR HUMAN LISTENING
TEST PREDICTION
Model H LCC H SRCC H MSE
MOS Prediction
CSIG [84] 0.555 0.453
CBAK [84] 0.545 0.343

COVL [84] 0.556 0.450 -
MOSNet [47] 0.724 0.656 0.489
MOS-SSL [55] 0.787 0.746 0.440
MOSA-Net(WSJ) 0.535 0.371 1.636
MOSA-Net(Scratch) 0.777 0.724 0411
MOSA-Net(Adapt) 0.795 0.742 0.389
MOSA-Net(Scratch)pT _gs1, 0.804 0.758 0.360
MOSA-Net(Adapt)pT—ssT, 0.805 0.763 0.356

Speech Intelligibility Prediction

ESTOI [29] 0.461 0.465 0.162
MOSNet [47] 0.658 0.607 0.027
MOS-SSL [55] 0.760 0.655 0.024
MOSA-Net(WSJ) 0.385 0.378 0.056
MOSA-Net(Scratch) 0.740 0.698 0.023
MOSA-Net(Adapt) 0.756 0.702 0.021
MOSA-Net(Scratch)pr_gsr, 0.796 0.712 0.018
MOSA-Net(Adapt)pT_ss1, 0.807 0.730 0.017

The bold entities represent the best results.

well-known baseline models, MOSNet and MOS-SSL. The t-
test shows that the improvements of MOSA-Net(Adapt)pr_ssr,
over MOS-SSL in both MOS and subjective intelligibility
predictions in all metrics are statistically significant, with a p-
value less than 0.05. The results confirm that MOSA-Net(WSJ)
can serve as a decent pre-trained model to be adapted to a
new model to predict human subjective ratings. Furthermore,
fine-tuning the SSL model can provide more meaningful feature
representations, leading to improved prediction performance.

B. Experiments of SE With Assessment Information

In this section, we evaluate the QIA-SE system that incorpo-
rates the knowledge from the MOSA-Net model for improving
the SE performance. To date, several methods have been pro-
posed to incorporate the knowledge from the speech assessment
models into an SE system, e.g., [60], [61]. We intend to compare
the proposed QIA-SE system with the comparative SE systems.
We tested the proposed QIA-SE system on two SE datasets,
namely the WSJ corpus and the Taiwan Mandarin version of the
Hearing in Noise Test (TMHINT) dataset [91]. PESQ, STOI,
signal distortion (CSIG) [84], and segmental signal to noise
ratio improvement (SSNRI) scores were used to evaluate the
SE performance.

1) Experiments on the WSJ Dataset: We used the same
37,416 noisy-clean pairs in Section IV.A.1 to form the training
set. From the test set of WSJ, we used four seen noise types
(i.e., white, engine, bell, and traffic) and four unseen noise types
(i.e., car, pink, street, and babble) to prepare 330 seen noisy test
utterances and 330 unseen noisy test utterance at six SNR levels
(i.e.,-10,-5,0,5, 10, and 15 dB). All training and test utterances
were converted to 257-dimensional log-power-spectra (LPS)
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TABLE IX
THE AVERAGE SE PERFORMANCE (PESQ, STOI, CSIG, SSNRI) IN SEEN AND
UNSEEN ENVIRONMENTS

See “ Noisy H CNN “ SSEMS “ ZMOS H QIA-SE
PESQ evaluation

Seen 2211 ] 2.652 2.675 2.678 2.953

Unseen || 2.118 || 2.478 2.484 2.507 2.658
STOI evaluation

Seen 0.830 || 0.850 0.851 0.851 0.868

Unseen || 0.799 || 0.820 0.820 0.821 0.828
CSIG evaluation

Seen 1.790 || 2.091 2.089 2.060 2.169

Unseen || 1.989 || 2.238 2.227 2.207 2.312
SSNRI evaluation

Seen - 4.135 4.541 3.640 5.516

Unseen - 3.178 3.506 2.683 5.731

The bold entities represent the best results.

features with a Hamming window of 32 ms, a hop of 16 ms,
and a 512-point STFT.

The baseline SE system was built with a CNN model [61],
which comprised 12 convolutional layers, followed by a fully
connected layer consisting of 128 neurons. Each convolutional
layer contained four channels {16, 32, 64, 128} with three
types of strides {1, 1, 3} in each channel. Two comparative
systems, namely specialized speech enhancement model selec-
tion (SSEMS) [60] and zero-shot model selection ZMOS [61],
were constructed to evaluate the effectiveness of the proposed
QIA-SE system. In SSEMS, multiple component SE models
were prepared, with each model characterizing a particular
noisy-clean mapping. Subsequently, a speech assessment model
was incorporated to select the most suitable component model
based on the estimated PESQ score. In ZMOS, the latent rep-
resentation of a speech assessment model was used to prepare
multiple component models in the offline stage. In the online
process, the noisy speech was input into the speech assessment
model to obtain the latent representation, which was then used
to select the most suitable component model to perform SE. By
contrast, the proposed QIA-SE system directly incorporates the
latent representation into the hidden layer of the SE model, and
is thus a speech-assessment-aware SE system. The enhancement
results in terms of PESQ, STOI, CSIG, and SSNRI for the
SSEMS, ZMOS, and QIA-SE models are shown in Table IX.
Note that the baseline CNN-based SE model and the SSEMS,
ZMOS, and QIA-SE models were all implemented on the same
CNN architecture.

From Table IX, we first note that both SSEMS and ZMOS
outperformed the baseline CNN model. Next, the proposed
QIA-SE model significantly outperformed SSEMS and ZMOS
in both the seen and unseen environments. In terms of STOI,
similar trends were observed, i.e., QIA-SE outperformed the
other SE models. In terms of CSIG and SSNRI, QIA-SE also
achieved the best performance among all SE systems in both
seen and unseen environments. The results confirmed the ben-
efits of applying the speech assessment model as a supportive
tool for the main SE task. It is noteworthy that SSEMS and
ZMOS adopted deep learning-based speech assessment to pre-
pare multiple component models offline and selected the best
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Fig. 9. SE performance (PESQ) of Noisy, CNN, QIA-SE (S-PESQ), QIA-
SE(S-STOI), and QIA-SE(M).

one online, where additional models and selection computa-
tions are required. By contrast, QIA-SE directly incorporates
the latent representation of the assessment model. The results
suggest that directly combining the assessment model into
the SE system may be a more feasible and hardware-friendly
approach.

2) Experiments onthe TMHINT Dataset: In this experiment,
we used the TMHINT dataset to evaluate the proposed QIA-SE
model to fulfill three objectives: (1) to further verify the ef-
fectiveness of the QIA-SE model on a different SE task (from
an English corpus to a Mandarin corpus); (2) to confirm the
effectiveness of speech assessment codes across corpora in
different languages; and (3) to verify the correlation of the SE
performance with the MOSA-Net trained with different training
criteria (single-task and multi-task learning). The training set
comprised of 1,200 utterances recorded by three male and three
female speakers (each speaker provided 200 utterances). We
used 100 types of noises [79] to generate 36,000 noisy training
utterances at 31 SNR levels (from -10 dB to 20 dB, with a step of
1 dB). The test set comprised 120 utterances recorded by another
two speakers (one male and one female). We used four seen noise
types (i.e., white, engine, bell, and traffic) and four unseen noise
types (i.e., car, pink, street, and babble) to generate 120 seen
noisy test utterances and 120 unseen noisy test utterances at six
SNR levels (i.e., -10, -5, 0, 5, 10, and 15 dB).

Similar to the previous experiments, we used the same CNN
architecture to develop all SE systems. We denote the QIA-
SE with the MOSA-Net trained with single-task and multi-
task criteria as QIA-SE(S) and QIA-SE(M), respectively. The
MOSA-Net was constructed based on the best model configura-
tion. The PESQ and STOI results under the seen and unseen
noise conditions are shown in Figs. 9 and 10, respectively.
QIA-SE(S-PESQ) and QIA-SE(S-STOI) indicate that the PESQ
and STOI scores were used to train the single-task MOSA-Net,
respectively.

As shown in Figs. 9 and 10, we note that QIA-SE(S-PESQ),
QIA-SE(S-STOI), and QIA-SE(M) outperformed the baseline
CNN model, whereas QIA-SE(M) achieved better performance
than the other two QIA-SE models. The results again confirmed
the effectiveness of QIA-SE, which leverages the speech as-
sessment model to attain better SE capability. Meanwhile, as
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Fig. 11.  Waveforms of a clean utterance (Clean), its noisy version (car noise
at 5 dB SNR) (Noisy), and the CNN and QIA-SE enhanced ones.

shown in Table III, the multi-task learning criterion allows the
MOSA-Net to more accurately predict the speech assessment
scores. The results in Figs. 9 and 10 show that the SE system
combined with a better speech assessment model can achieve
better enhancement performance.

3) Qualitative Analysis: In addition to objective evaluation,
Figs. 11, 12, and 13 show the waveform, spectrogram, and
amplitude envelope plots of a clean utterance, its noisy version
(car noise), and the enhanced utterances (by the CNN and
QIA-SE models). As shown in Fig. 11, both CNN and QIA-SE
effectively removed the noise components from noisy speech.
Compared with the CNN baseline, the QIA-SE model preserved
more detailed structures (cf. the red rectangles in Figs. 11(a),
11(c), and 11(d)). From Fig. 12, we also note that both CNN and
QIA-SE effectively reduced noise components, and the QIA-SE
model preserved more details in the spectrogram than the CNN
baseline (cf. the red rectangles in Figs. 12(a), 12(c), and 12(d)).

Several previous studies have shown that the amplitude en-
velope of the middle-frequency bands has a significant impact
on speech intelligibility [92], [93]. In this study, we adopted
the four-channel tone-vocoder used in [93] to extract the am-
plitude envelope containing 457-1202 Hz components from
the speech waveform. Fig. 13 shows the amplitude envelopes
of the clean, noisy, and enhanced utterances processed by the
CNN and QIA-SE models, where the x- and y-axes denote the

(a) Clean

(b) Noisy

Fig. 12.  Spectrograms of a clean utterance (Clean), its noisy version (car noise
at 5 dB SNR) (Noisy), and the CNN and QIA-SE enhanced ones.
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Fig. 13. Amplitude envelopes from the second-channel frequency band of a
clean utterance (Clean), its noisy version (car noise at 5 dB SNR) (Noisy), and
the CNN and QIA-SE enhanced ones.

time index and amplitude magnitude, respectively. The results
in Figs. 13(a), 13(c), and 13(d) show that compared with CNN
enhanced speech, the amplitude envelope of QIA-SE enhanced
speech is more similar to that of the original clean wave-
form. The results further confirmed the benefits of the QIA-SE
approach.

V. CONCLUSION

In this article, we proposed a cross-domain speech assessment
metric called MOSA-Net. We first systematically investigated
the performance of the MOSA-Net with different model ar-
chitectures and compared the prediction capability based on
different training criteria (single-task vs multi-task training).
Experimental results showed that the CRNN with the attention
mechanism achieved the best performance as compared with
the other models in terms of the LCC, SRCC, and MSE metrics.
Next, the MOSA-Net with multi-task training consistently and
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significantly outperformed that with single-task training. Sub-
sequently, we tested the MOSA-Net based on different acoustic
features, including spectral features, waveform processed by
learnable filter banks, and representations from SSL models.
The results showed that the MOSA-Net that used cross-domain
features (combining information from spectral features, com-
plex features, raw-waveform, and SSL features) achieved the
best performance. Finally, we confirmed that MOSA-Net can
be used as a pre-trained model to be adapted to an assessment
model for predicting subjective quality and intelligibility scores.

In the second part, we proposed QIA-SE, an SE system that
incorporates the information from the MOSA-Net. Experimen-
tal results showed that the QIA-SE, which directly combined
the latent representations from the MOSA-Net, yielded better
performance than previous SSEMS and ZMOS models, which
utilized speech assessment models for offline ensemble model
preparation and online model selection. In addition to better
performance, the QIA-SE model required less model storage
requirements and online computation. Finally, we observed that
when combined with a better speech assessment model, the SE
system yielded better performance.

Recently, we have used the same model architecture as
MOSA-Net to predict speech intelligibility for hearing loss [94]
and word error rate for ASR [95]. In the future, we will explore
applying the model to predict other speech assessment metrics.
Moreover, how to automatically optimize the scaling factors of
different losses according to specific speech processing tasks
will be further investigated. Meanwhile, we will also inves-
tigate improving the robustness of MOSA-Net in real-world
scenarios.
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