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Abstract—Audio bandwidth extension aims to expand the spec-
trum of bandlimited audio signals. Although this topic has been
broadly studied during recent years, the particular problem of
extending the bandwidth of historical music recordings remains an
open challenge. This paper proposes a method for the bandwidth
extension of historical music using generative adversarial networks
(BEHM-GAN) as a practical solution to this problem. The pro-
posed method works with the complex spectrogram representation
of audio and, thanks to a dedicated regularization strategy, can
effectively extend the bandwidth of out-of-distribution real histor-
ical recordings. The BEHM-GAN is designed to be applied as a
second step after denoising the recording to suppress any additive
disturbances, such as clicks and background noise. We train and
evaluate the method using solo piano classical music. The proposed
method outperforms the compared baselines in both objective and
subjective experiments. The results of a formal blind listening
test show that BEHM-GAN significantly increases the perceptual
sound quality in early-20th-century gramophone recordings. For
several items, there is a substantial improvement in the mean opin-
ion score after enhancing historical recordings with the proposed
bandwidth-extension algorithm. This study represents a relevant
step toward data-driven music restoration in real-world scenarios.

Index Terms—Audio recording, convolutional neural networks,
machine learning, music, signal restoration.

I. INTRODUCTION

H ISTORICAL music recordings are available in large num-
bers in archives but, due to the technological limitations

of the time, by modern standard they are of a very poor audio
quality. Early-20th-century gramophone recordings suffer from
severe degradations, such as multiple kinds of surface noises,
distortion, and a narrow frequency bandwidth [1], [2]. The goal
of digital audio restoration is to correct the imperfections of
audio recordings so that the resulting sound quality is enhanced.
Restoration may target the removal of clicks and noises [3], [4],
the inpainting of missing audio segments [5], [6], declipping [7],
or the bandwidth extension of bandlimited audio signals, among
other tasks.
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This paper focuses on audio bandwidth extension and, particu-
larly, on applying it to historical music recordings. During recent
years, many works have used modern deep learning technologies
for bandwidth extension. However, their goal has usually been
to enhance modern digital audio signals having a limited band-
width because of the usage of a lower sampling rate. Only a few
exceptions are relevant to music signal processing [8], [9], [10],
whereas most of these studies focus on processing speech [11],
[12], [13], [14], [15]. Although music and speech share the same
domain of acoustic signals, the two are fundamentally different.

Usually, the aforementioned methods are trained in a self-
supervised fashion by pre-processing the audio data with
lowpass filters to simulate the bandwidth limitation. Then, the
models are optimized to extend the input lowpass-filtered au-
dio using the broadband original signal as a target. However,
bandwidth-extending historical recordings entails an extra chal-
lenge, as no full-bandwidth version is available for this particular
material. Then, we would rely on the model, trained with synthet-
ically filtered data, to extrapolate to real historical recordings, a
harder out-of-distribution scenario. One should also consider the
problem of filter generalization [16], which refers to the inability
deep neural networks to generalize when they are trained using
a single type of lowpass filter in the training-data pipeline.

Another problem with old gramophone recordings is that they
are often corrupted with a wide range of global and local distur-
bances, such as hiss, clicks, and thumps. These additive noises
represent another obstacle in enhancing the recording. Luckily,
recent works have shown that a vast majority of clicks and
noises appearing on gramophone recordings can be efficiently
suppressed using deep-learning models [4], [17]. We studied
this problem in particular and proposed a model consisting of a
spectrogram-based deep-neural-network architecture [17]. The
denoising model was trained using a realistic dataset of noise
samples extracted from gramophone recordings and yields a
considerable enhancement in quality [17]. This paper builds
upon this previous work [17], in such a way that the proposed
bandwidth extension method is intended to be applied as a
second step after the original recording has been first denoised,
as illustrated in Fig. 1.

In this paper, we present a method for the bandwidth exten-
sion of historical music recordings using generative adversarial
networks (BEHM-GAN) and evaluate it with solo piano music
recordings. The proposed method is based on a generative ad-
versarial network (GAN) [18] and combines a generator in the
spectrogram domain with multiple time-domain discriminators.
To provide the model with the necessary robustness to make
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Fig. 1. Illustration of the inference pipeline. The denoiser block refers to a
model borrowed from earlier work [17], and the BEHM-GAN is the model
proposed in this paper.

inference in historical recordings, we propose a simple but
effective filter regularization in the training stage. The strategy
is based on adding a small amount of white Gaussian noise after
applying a lowpass filter with a randomized cutoff frequency.
We show that the proposed method inserts sound energy in
an appropriate way above the cutoff frequency of about 3 kHz
and, as determined in a formal blind listening test, significantly
improves the perceived quality of both artificially bandlimited
and real old piano music. As far as we are aware, this is the first
work that successfully extends the bandwidth in real historical
music recordings. We emphasize that the goal of this work is
not to restore exactly the missing sound events, but to recreate
plausible high-frequency content and, thus, make the music
more pleasant to listen to.

The remainder of this paper is organized as follows. Sec-
tion II reviews the most relevant related work, with a focus on
recent deep-learning-based audio-bandwidth-extension studies.
To understand the bandwidth limitation of historical gramo-
phone recordings, Section III analyzes empirically their spectral
characteristics using the Long-Term Average Spectrum (LTAS).
The proposed BEHM-GAN method is introduced in Section IV
and is evaluated in Section V with objective and subjective
metrics. In order to assess the robustness of the compared
methods, the experiments are conducted under two separate
conditions: lowpass filtered modern recordings and old historical
recordings. Finally, Section VI concludes the paper.

II. RELATED WORK

This section reviews previous work on audio bandwidth ex-
tension, focusing on approaches that apply GANs for related
tasks or study the problem of filter generalization.

A. Audio Bandwidth Extension

Audio bandwidth extension refers to methods that extend the
spectrum of audio signals [19]. A popular sub-topic is audio
super-resolution [11], [12], which increases the sampling rate
of a given audio signal by extending its bandwidth above the
original Nyquist limit. This topic has a long history in telephony,
where the bandwidth of a transmitted speech signal was usually
compressed because of channel constraints [20]. Another rele-
vant application is audio compression, as bandwidth-extension
techniques can be used to reduce the bit rate of an audio sig-
nal [21], [22].

Early works used signal processing methods such as a source-
filter model [23], [24], codebook mapping [25], nonlinear de-
vices [19], or spectral band replication [26]. Other approaches

were based on data-driven techniques, such as Gaussian mixture
models [27], [28], hidden Markov models [29], or shallow neural
networks [30], [31]. However, due to their inadequate modeling
capabilities, these early methods often lead to a poor or mediocre
audio quality.

More recently, deep-learning-based bandwidth extension-
methods outperformed previous approaches. The vast majority
of the presented methods used convolutional neural networks
and work using either a spectrogram representation [32], [33],
raw audio data [11], [12], [34], [35], or a mixture of both [36],
[37].

B. GANs for Audio Bandwidth Extension

Deep learning models based on optimizing reconstruction
losses excel at tasks where the goal is to design a nonlinear
mapping between two data distributions, e.g., denoising. How-
ever, the performance of supervised learning is limited when
the task involves generating new content that is absent in the
observed signal, as is the case in bandwidth extension. As a
consequence, deep learning tends to build over-smoothed and
unrealistic spectra. For this reason, recent works have adopted a
generative approach that allows the model to have more expres-
sive power. Some studies applied different kinds of generative
models for the task of speech bandwidth extension, such as flow-
based models [38] or diffusion-probabilistic models [15], but, in
particular, GANs [18] have shown great potential for this task.

GANs are generative models that are based on optimizing a
two-player min-max game between a generatorG and a discrim-
inator D [18]. The discriminator D is optimized to distinguish
real data samples from the ones generated by G, whereas G
tries to fool D by generating data samples that are harder to
detect. Ideally, if the training does not collapse, both G and
D will converge to the so-called Nash equilibrium, where G
fits the target data distribution and D is unable to detect the
fake data samples from the real ones. In the original GAN
formulation, a latent vector of Gaussian noise z is provided
to the generator G(z) as an input. However, GANs for audio
bandwidth extension can be viewed as conditional GANs [39],
where the generator G(x, z) is also conditioned on an observed
signal x, here the bandlimited input. Then, due to the high
dimensionality of x, the latent vector z is often omitted if a
controllable latent-space representation is not required [40].

Although only a few studies have applied GAN models to
bandwidth extension of music signals [10], [41], many recent
works have applied them for speech [13], [14], [42]. Eskimez
et al. [42] proposed one of the earliest works using an adversarial
approach for speech super-resolution. Their proposed model
predicted the magnitude spectrogram representation of audio
and used an adversarial loss combined with a reconstruction
loss. However, the Eskimez model had the limitation that it did
not predict the phase information but just replicated it [42].
Other phase-aware works made an effort to incorporate the
phase information into the training framework [10]. Instead, Kim
et al. [41], opted for working directly on raw audio, thus avoiding
the aforementioned phase issues. They also incorporated a third
auxiliary feature-matching loss term. Su et al. [13] used a
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time-domain Wavenet generator and a composite of multiple
time-domain and spectral-domain discriminators. Utilizing a
complex combination of loss terms, they achieved impressive
results. Li et al. [14] proposed a lighter time-domain model that
was suitable to run in real-time.

C. Lowpass Filter Generalization

A particular problem in the audio-bandwidth-extension liter-
ature is the incapability of deep neural networks to generalize
when they are trained using lowpass filters. We hypothesize that
this problem is a special case of shortcut learning [43], stating
that the model does not learn the true underlying mechanisms
of the data but relies on spurious statistical relationships. In
this case, the neural network learns the easier task of inverting
the response of a lowpass filter instead of generating new and
coherent high-frequency content.

Kuleshov et al. [11] observed that a neural network trained to
conduct audio super-resolution using aliased training data was
ineffective if an antialiasing filter was included during testing.
The same problem happened when antialising filters were only
used during training and when the filters utilized during training
and testing differed. Sulun and Davies [16] studied this phe-
nomenon and named it “filter overfitting”. They showed that
the problem could be mitigated considerably by using a set of
different lowpass filters during training as a data augmentation
strategy.

Wang and Wang [12] examined the robustness of their
speech super-resolution model that was trained with different
down-sampling schemes. They proposed a solution based on
randomly combining three different down-sampling strategies
during training. Li et al. [14] also experimented with using
variable-band filters with randomized cutoff frequencies to in-
crease the robustness of the model in real-life speech bandwidth-
extension scenarios. Similarly, Nguyen et al. [44] applied anti-
aliasing filters having random order and ripple intending to
improve the robustness of their model.

This problem gets more relevant in the case of historical
recordings when we aim to infer a target distribution that has
not been processed by any lowpass filter. In this case, neither a
specific filter specification nor a known cutoff frequency can be
assumed, since they may vary greatly depending on the recording
conditions. In the next section, we investigate the underlying
lowpass filtering in old gramophone recordings.

III. SPECTRAL ANALYSIS OF GRAMOPHONE RECORDINGS

To obtain prior knowledge to design our method, we analyzed
the bandwidth of 78-RPM (rounds per minute) gramophone
recordings, which we were interested in enhancing. To fully
understand the frequency characteristics of these recordings, one
must study the recording conditions of the time. However, due to
the lack of international standards, the exact characteristics vary
widely depending on the manufacturer, the publication date, the
recording material, or possible equalization corrections made
by recording engineers. Hence, the work of audio restoration is
extremely hard, as restoration engineers now have to conduct a

study on industrial archaeology for every single record they aim
to restore [45].

One of the main reasons for the limited bandwidth in old
analog recordings are the disc-cutting lathes, used to record
sound into the physical disc media [45]. The most critical piece,
the cutterhead, converts electric waveforms into modulations in
a groove. The frequency response of the recording vary greatly
depending on the cutterhead model, the speed of the record, or
the shape of the stylus. The most commonly used cutterheads
during the early 1920 s produced a resonance frequency between
3 kHz and 4 kHz, and above that the frequency response decayed
rapidly. As a consequence, due to the poor signal-to-noise ra-
tio (SNR) of the recordings, the high-frequency components
above this resonance frequency were practically lost. With the
introduction of Western Electric’s electromechanical cutterhead
in 1925, the frequency response could be considerably flat-
tened, but the cutoff frequency could not be extended to above
5 kHz [45]. Over the years, better equipment was developed
that allowed engineers to extend the recordable bandwidth of
audio, thanks to many technological advances like motional
feedback [45].

To analyze empirically the spectral characteristics of 78-RPM
gramophone recordings, we conduct a study based on the LTAS.
To do so, we collected six 78-RPM gramophone recordings of
a given music piece, all of them containing a similar ensemble
of instruments and dated from 1920 to 1930. For comparison,
we also collected three contemporary broadband recordings of
the same piece. The six old recordings were first denoised using
our previously proposed method [17]. The LTAS was calculated
for each of the recordings using the IoSR library [46], applying
Gaussian smoothing per octave band. We then subtract the LTAS
of the three contemporary recordings from each of the old
versions to obtain a rough estimate of the frequency response
of the recording. The resulting 18 difference LTAS curves are
re-scaled so that their mean level between 500 Hz and 2 kHz is
0 dB.

Fig. 2 shows the computed difference LTAS curves and their
average for three classical pieces: the orchestral piece The Blue
Danube Waltz, by Johann Strauss (Fig. 2(a)); the opera piece
L’amour est un oiseau rebelle, from Carmen by Georges Bizet
(Fig. 2(b)); and Humoresque No. 7, by Antonin Dvořák, played
by string ensembles (Fig. 2(c)). Although these plots do not give
accurate information due to the averaging and the octave-band
smoothing, they indicate a decaying trend starting at approxi-
mately 3 kHz. The estimated −3-dB cutoff frequencies are 2.7,
3.1, and 2.5 kHz for the above-mentioned historical recordings,
as indicated in Fig. 2.

IV. BEHM-GAN

This section presents the BEHM-GAN, the proposed GAN-
based method for the bandwidth extension of historical record-
ings. The generator model, the loss functions, and the three
different discriminators used are first described, and their roles
are also illustrated in Fig. 3. The dataset, the use of lowpass filters
to simulate the loss of high frequencies, and the implementation
of the training are also explained.
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Fig. 2. LTAS difference curves computed between six pre-1930s recordings
and three contemporary recordings of (a) The Blue Danube Waltz, (b) Carmen,
and (c) Humoresque. Each colored line represents the difference between the
LTAS of one of the six old recordings and one of the three modern ones, totalling
18 curves. The black line is the average of the difference curves, and the vertical
dashed line marks its −3-dB point.

Fig. 3. Proposed GAN-based training framework containing generator G,
three time-domain discriminators D1, D2, and D3, a variable lowpass filter
(LPF), and additive noise w. The training is optimized with a composite
of two losses: an adversarial loss Ladv and a reconstruction loss Lrec. The
down-sampling operators refer to strided average pooling with a kernel size
of 4.

A. Generator Model Architecture

We opt to work in the time-frequency domain to design
our generator. Thus, the input bandlimited audio x sampled at
fs = 22.05 kHz is first transformed by means of the short-time
fourier transform (STFT). We use an FFT length of 1024 samples
(46.11 ms) with a Hamming window of the same size and a hop
length of 256 samples (11.61 ms). The resulting complex signal
is converted to a real one by stacking its real and imaginary
parts as separate channels. Then, assuming that the generator
succeeds at maintaining the implicit phase information, the
output signal can be directly converted back to the time domain
using the inverse-STFT, without the need for a phase-recovery
technique. We opted not to use a complex-aware neural network
architecture [47] as, in our experiments, it did not provide any

clear benefit against the double-real representation. Moreover,
complex-valued modules require twice the amount of computa-
tion, an issue that slowed down the training significantly.

The generator architecture is based on the U-Net model [17]
and is shown in Fig. 4. The architecture is formed by 2D-
convolutions and Exponential Linear Unit non-linearities [48]
to capture time-frequency features from the spectrogram. We
concatenate frequency-positional embeddings [49] as an in-
ductive bias to break the frequency-equivariance symmetry,
which is implicit in 2D-convolutions. The architecture has an
encoder-decoder structure with residual DenseNet blocks [50]
as intermediate layers. The encoder coarsens the resolution at
each layer using strided convolutions, sequentially increasing
the number of channels. The decoder structure is symmetrical
to the encoder and upsamples the resolution with transposed
convolutions. The concatenative skip connections help to retain
fine-grained details of the spectrogram. We refer the reader to
the source code1 for further details on the model implementation
and the used hyperparameters.

B. Training Objective

The generator is optimized with a composite of two losses, an
adversarial loss Ladv and an auxiliary reconstruction loss Lrec:

LG = Ladv + αLrec, (1)

where the coefficient α = 0.4 is a tuning hyperparameter used
to combine the two loss terms. The value of α was optimized
by grid search, using informal listening as the quality criterion.
For the adversarial loss, we adopt the multi-scale discriminators
D1, D2, and D3 from MelGan [51].

As indicated in Fig. 3, discriminator D1 operates directly
on the raw audio waveform, whereas the input waveforms
of discriminators D2 and D3 are, respectively, downsampled
by factors 2 and 4. Thus, each discriminator learns features
in a different frequency range. Since the model operates at
fs = 22.05 kHz, D1 observes frequency components up to the
Nyquist limit fs/2 = 11.03 kHz, D2 up to fs/4 = 5.51 kHz
and D3 only to fs/8 = 2.76 kHz. Although our main interest
is to reconstruct the frequency components above 3.0 kHz,
using D3 is still beneficial to stabilize the adversarial train-
ing and leads to better convergence. The architecture of each
of the discriminators consists of a stack of grouped strided
convolutions, and the down-sampling is performed by strided
average pooling with a kernel size of 4, in the same way as
in [51]. Time-domain discriminators are highly sensitive to
phase mismatches in the data. This is a very convenient property
when using a spectrogram-based generator, since maintaining
the phase coherence when the audio data is transformed to the
complex STFT domain may be problematic.

In this work, we apply the least-squares GAN objective [52].
The adversarial loss for the generator is then defined as

Ladv = Eŷk

[∑
k

(Dk(ŷk)− 1)2

]
, (2)

1[Online]. Available: https://github.com/eloimoliner/bwe_historical_
recordings

https://github.com/eloimoliner/bwe_historical_recordings
https://github.com/eloimoliner/bwe_historical_recordings
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Fig. 4. Proposed U-net-based architecture of the generator model, cf. Fig. 3.

where E is the expectation operator. The discriminators are
optimized by minimizing the loss function:

LDk
=

1

2
Eyk

[
(Dk(yk)− 1)2

]
+

1

2
Eŷk

[
Dk(ŷk)

2
]
. (3)

We use the multi-resolution STFT loss [53] as the auxiliary
reconstruction lossLrec. This loss is defined as the expectation of
the sum of two terms, L(m)

sc and L
(m)
mag , at M different frequency

resolutions as

L(m)
rec = Ey,ŷ

[
1

M

M∑
m=1

L(m)
sc + L(m)

mag

]
. (4)

The spectral convergence term L
(m)
sc and the log magnitude

distance term L
(m)
mag are defined, respectively, as:

L(m)
sc =

‖ |Y (m)| − |Ŷ (m)| ‖F

‖ |Y (m)| ‖F
(5)

and

L(m)
mag =

1

S
‖ log |Y (m)| − log |Ŷ (m)|‖1, (6)

where Y (m) and Ŷ (m) are the STFTs of the signals y and
ŷ, respectively, using an analysis window of length m ∈
{256, 512, 1024, 2048}, ‖ · ‖F is the Frobenius norm, ‖ · ‖1 is
the L1 norm, and S is the total number of STFT bins. Note
that this reconstruction loss is only aware of the magnitude
differences in the spectrogram, as we rely on the adversarial
loss term to deal with the phase information.

C. Dataset

We train and evaluate our method using solo piano classical
music. Doing so, we reduce the difficulty of the problem by
limiting the variance in the training data. Piano sounds are
a convenient choice for evaluating bandwidth-extension algo-
rithms, since they contain both transient and tonal components.
Moreover, since the piano is one of the most common musical
instruments for solo performances, a large quantity of contem-
porary and historical solo piano recordings is publicly available.
Considering that classical music is a genre that has practically
remained unchanged over time, we avoid introducing a major
divergence between the training and target distributions.

We collected our training data from the solo piano pieces
of the MusicNet dataset [54], but discarded some of the older
recordings as they contained heavy background noise and the
audio quality was suboptimal. The training set contains 14.4 h

of broadband piano classical music. A separate test set with 1.1 h
of broadband piano music is used for the objective and subjective
evaluation metrics that require a reference signal (Section V-B
and Section V-C). The music pieces included in the test set are
not present in the training set.

A test set of real historical recordings was also collected to
compute the objective and subjective evaluation metrics that do
not require a reference signal (Section V-B and Section V-D).
It consists of six historical solo piano recordings extracted from
“The Great 78 Project” [55], a large collection of publicly
available digitized 78-RPM gramophone records [56].

D. Lowpass Filter Generalization

Since the frequency responses in historical music recordings
are far from being deterministic, we apply a lowpass filter
with a randomized cutoff frequency fc to the training data. We
parameterize the cutoff frequency with a normal distribution,
whose mean and standard deviation are set up empirically to be
a rough estimate of the frequency responses in the gramophone
recordings in the 1920 s.

Based on our findings from the spectral analysis in Section III,
we set the mean cutoff frequency to μfc = 3.0 kHz and the
standard deviation to σfc = 300 Hz. The value of σfc is the
result of a trade-off off bias against variance in the model. In
other words, a model trained with a larger σfc would probably
generalize to a wider range of cutoff frequencies. However, the
resulting quality would likely diminish due to the increase in
variance in the data, making the optimization more challenging
and unstable. The lowpass filters are 25th-order FIR filters using
the windowing method with the Kaiser window (β = 1). The
magnitude responses of the FIR filters used for training are
presented in Fig. 5. FIR filters have the convenient advantage that
they can be efficiently implemented by applying convolution,
thus not demanding much extra computation during training.

The idea of applying variable-band filters was also studied
by Li et al. [14], with the difference that they used a uniform
distribution instead of a normal one. Randomizing the cutoff
frequency of the filter indeed helps to increase the robustness of
the model in different frequency ranges, but, as we show with
our experiments in Section V-D, randomization is certainly not
enough if we want to successfully make inferences in historical
recordings.

To further regularize the model, we apply a well known
regularization approach [57] and corrupt the lowpass-filtered
training data by adding a small amount of Gaussian white
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Fig. 5. Magnitude responses of lowpass filters used for training and testing.
The training filters are FIR with a randomized cutoff frequency, while the testing
filters are IIR with a fixed cutoff.

Fig. 6. Magnitude response of one of the lowpass filters used during training
and its equivalent response after applying the noise regularization.

noise w having zero mean and a fixed power σ2 = −30 dBFS
(decibels relative to full scale) directly to the raw audio signal.
The added noise diffuses the magnitude response of the filter,
as Fig. 6 demonstrates, and successfully enforces the model to
generate new high-frequency content instead of overfitting the
filter shape. The use of the additive noise during training also
encourages the generator to focus only on the most prominent
musical features making the model robust to the minuscule de-
noising residuals that it may encounter while making inferences
in historical recordings. Furthermore, this noise regularization
strategy injects stochasticity into the model. Given that we do
not add a latent vector z to the generator, this extra noise allows
the generator to produce stochastic outputs. The fixed value
of σ2 = −30 dBFS is chosen in consistence with the training
lowpass filters, in such a way that the noise level is sufficiently
high to mask the remaining information in the side lobes of the
filter (see Fig. 6). We observed that using higher values of σ2

was often detrimental to the resulting audio quality, as some
unwanted noisy residuals were still present in the output.

E. Making Inferences in Historical Recordings

Using the proposed regularization, the generator can be ap-
plied to make inferences on out-of-distribution historical music
recordings. Our inference pipeline builds on previous work
on denoising [17], as illustrated in Fig. 1. The original noisy
recordings are first denoised to suppress clicks, hisses, and
other additive disturbances. Then, the denoised recordings are
bandwidth-extended by directly applying the pre-trained STFT-
based generator.

In the same way as during training, the noise regularization
could be added at the inference stage before feeding the denoised
recording to the bandwidth-extension generator. As discussed in
Section V-B, this step helps to achieve better objective metrics.
However, in the majority of the tested cases, no perceptual
differences were noticed with or without noise during inference
and hence it is left as an optional step.

F. Implementation Details

The used sampling frequency fs = 22.050 kHz sets the upper
limit of processing to about 11 kHz. This choice makes the
training fast and still leaves a wide range from about 3 to 11 kHz
for bandwidth extension. For training, we used batches of four
audio segments, each with a duration of 5 s. Nevertheless, due
to the nature of convolutional neural networks, the input length
can be set arbitrarily during inference. With the goal to make the
model robust to different volume (loudness) levels, we also apply
a uniformly random gain, set between −6 dB and 4 dB for each
input signal. We did not find using batch normalization or weight
normalization beneficial to the generator. The discriminators,
however, are weight-normalized [58].

We use the Adam optimizer [59] with the parametersβ1 = 0.5
andβ2 = 0.9 to train both the generatorG and the discriminators
Dk. The training is divided into two separate stages. First, we
train G for 10,000 steps with a learning rate of 1× 10−4 using
only the reconstruction loss Lrec. This step guarantees that the
model learns to apply an identity mapping to the low-frequency
components before including the adversarial discriminators into
the training loop. Then, we decrease the learning rate to 1×
10−5, incorporate the adversarial lossLadv, and continue training
for 300,000 steps. During the second stage, the discriminators
Dk are updated twice for every step taken by the generator, using
a learning rate of 1× 10−4. The training took, on average, two
days to complete on a single Tesla V100 GPU in Triton, Aalto
University’s computing cluster.

V. EXPERIMENTS AND RESULTS

This section evaluates the quality of the bandwidth-extension
using both objective and subjective experiments.

A. Comparison Models

We compare our proposed method with two baseline models,
AudioUnet [11] and SEANet [14]. Considering that these base-
lines were not designed to do bandwidth extension in historical
recordings, their training had to be adapted to perform well
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Fig. 7. Spectrograms of (a) a lowpass filtered reference signal, (b), (c), (d), (e), (f) its bandwidth-extended versions, and (g) a reference modern piano recording.

on this task. Unless otherwise specified, the compared base-
lines were trained using the same methodology as the BEHM-
GAN (Section IV), using the same lowpass filters and noise
regularization.

AudioUnet is a supervised model based on a time-domain
U-Net [11], which was originally presented to enhance both
speech and piano music signals sampled at 16 kHz. The model
is optimized using a reconstruction L2 loss between the resulting
output waveform and the original unfiltered audio. We use the
PyTorch implementation of the model released by Sulun and
Davies.2

SEANet is a GAN-based model that was used for speech
enhancement [60] and speech bandwidth extension [14]. Its
generator is a time-domain U-Net with dilated convolutions
at the intermediate layers. An effort was made to replicate
the implementation details from the larger non-real-time model
evaluated in [14]. Given that the original SEANet utilizes very
similar, if not the same, time-domain discriminators as in this pa-
per, we opted to train SEANet using the same training objective
as ours. This gave us better performance than the “feature” loss
the authors originally applied and allowed us to directly evaluate
the effects of using a spectrogram-based generator versus a
time-domain one.

We also experimented with TFiLM [35], the GAN-based
HiFi-GAN [13], and the diffusion probabilistic NU-Wave mod-
els [15]. However, we did not obtain positive results using
these methods for bandwidth-extending historical recordings.
We hypothesize that, in contrast to speech, the aforementioned
models may not be well suited for processing music instead of
speech or that further hyperparameter optimization is necessary
to adapt the models to our training methodology. We decided
not to include these baselines in the formal evaluation to avoid

2[Online]. Available: https://github.com/serkansulun/deep-music-enhancer

reporting misleading results and to not overload the number of
listening conditions in the subjective evaluation.

So as to understand the effects of the main components of our
approach, we also include four ablated versions of our model in
the formal evaluation. Firstly, we study the importance of noise
regularization by training a model without adding white noise
(w/o noise reg.). Secondly, we switch the adversarial training ob-
jective for an L2 reconstruction loss in the complex-spectrogram
domain (w/o adv.). The multi-resolution STFT loss Lrec is not
used, being ineffective if used alone, since the phase information
in the spectrogram is ignored. We also report, although only with
objective metrics, the effect of adding noise to the input audio
signal during inference, in the same way as we do during training
(with noise inf.). Finally, we also included in the objective
evaluation a model based on a complex-aware architecture [47],
which consists of the same architecture from Fig. 4, but replacing
each of the convolutional blocks with their complex-valued
counterparts.

Figs. 7 and 8 show a visual comparison of the spectrogram
representations of the compared models in a modern-lowpass
filtered example and an old recording, respectively. Figs. 7(a)
and 8(b) present, respectively, the bandlimited input signals
for the examples, and the other spectrograms visualize how
each method recreates the missing high-frequency content. The
reference signal is added in Fig. 7(g) so that the results can be
compared with the original real spectrogram. As is evident, some
of the compared methods produce a more realistic spectra than
others. A reference signal is unavailable for the old recording in
Fig. 8. In this case, we additionally present the spectrogram of
the noisy old recording before applying the denoiser in Fig. 8(a),
which reveals that the old recordings contains only noise and
distortion above about 4 kHz.

Figs. 7(f) and 8(g) show the spectrogram of the results of the
proposed method. By comparing them with the input bandlim-
ited signals (Figs. 7(a) and 8(b), respectively), one can observe

https://github.com/serkansulun/deep-music-enhancer
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Fig. 8. Spectrograms of (a) an original noisy historical recording, (b) its a denoised version, and (c), (d), (e), (f), (g) the bandwidth-extended versions of (b).

Fig. 9. Box-plot visualizations of the listening test results on synthetic lowpass filtered recordings.

how the bandwidth has been practically doubled. Nevertheless,
almost no new frequency has been generated above 8 kHz.
Another issue that can be perceived is the fact that the model
is sometimes too aggressive in building up high frequencies,
meaning that sometimes they may start too early. We hypothesize
that the problem may come from the time-frequency processing,
as the FFT window may be smearing the transients of the piano
notes.

B. Objective Evaluation

To conduct the objective evaluation, we utilize the test set
described in Section IV-C, which comprises 70 min. of modern
broadband classical music recordings. All the audio signals
from the test set were resampled at the rate fs = 22.05 kHz
and were split into non-overlapping 5-s segments. A sixth-order
Butterworth lowpass filter is applied at the fixed cutoff frequency

of 2 kHz, 3 kHz, and 4 kHz to imitate different bandwidth
limitations. Note that the testing filters are purposely different
from the training filters in order to evaluate the models in out-
of-distribution filtering conditions. The magnitude responses of
the three Butterworth filters used for testing are shown in Fig. 5,
together with the filters used during training.

The proposed method and the aforementioned baselines are
evaluated using three objective metrics: log-spectral distance
(LSD), VGG distance (VGG), and Fréchet Audio Distance
(FAD) [61].

1) Log-Spectral Distance: The LSD, a frequency-domain
metric that has been popularly used in bandwidth-extension
literature [11], [12], [13], [42], is defined as:

LSD =
1

T

T∑
t=1

√√√√ 1

K

K∑
k=1

(
log |Yt,k|2 − log |Ŷt,k|2

)2

, (7)
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TABLE I
OBJECTIVE METRICS, WHERE LOWER IS BETTER FOR ALL CASES. THE BEST RESULT IN EACH COLUMN IS HIGLIGHTED

where Yt,k = STFT(y) and Ŷt,k = STFT(ŷ) are the STFTs of
the reference y and the bandwidth-extended audio signal ŷ,
respectively. For the STFT computation, an analysis window
of K = 2048 samples and a hop length of 512 samples is used.

2) VGG Distance: This metric is defined as the L2 distance
between pairs of individual embeddings given by the VGGish
network [62]. The VGGish network has been pre-trained for
large-scale audio classification. Thus, this metric is expected to
provide a distance measure focusing on the higher level features
of the audio data. This metric was previously used to evaluate
music denoising [4] and bandwidth-extension [16] methods.

3) Fréchet Audio Distance: FAD [61] has been adapted for
audio from the Fréchet Inception Distance (FID), a frequently
used metric to evaluate image-generative models. This metric
also uses the VGGish embeddings to compare the statistics
between two collections of audio. FAD fits a multivariate nor-
mal distribution to a collection of background N (μb,Σb) and
evaluation N (μe,Σe) embeddings. Then, the Fréchet distance
between both distributions is defined as:

FAD = ‖μb − μe‖2 + tr(Σb +Σe − 2
√

ΣbΣe), (8)

where ‖ · ‖2 is the L2 norm and tr(·) is the trace of a matrix.
Being reference-free, we avoid computing FAD on paired data
by dividing the test set into two equally-sized splits. One of them
is used to compute the background statistics, whereas the second
is used to evaluate the different models.

As FAD is reference-free, it is also used to evaluate the
bandwidth-extension performance in real historical recordings.
Similarly, the FAD is computed from 15 min of historical record-
ings using the same background statistics. The six historical
recordings that we use for evaluation were extracted from “The
Great 78 Project” [55], as mentioned in Section IV-C. However,
since the FAD has the limitation of working at the sampling
frequency of 16 kHz, which differs from that at which the
BEHM-GAN operates (22.05 kHz), the audio signals must be
resampled before computing this metric. As a consequence, the
FAD only observes frequency components up to the Nyquist
limit of 8 kHz, missing some high-frequency details. The study
of the design of broadband reference-free audio quality metrics
is left as future work.

No SNR-related metric is used for the objective evaluation
because they are extremely sensitive to phase misalignments
between pairs of data. Since the training and testing filters have

TABLE II
COMPARISON STUDY OF ADDING NOISE AT THE INFERENCE STAGE. THE BEST

RESULT IN EACH ROW IS HIGHLIGHTED

a different phase response, the waveform representations of the
reference and the bandwidth-extended audio can differ greatly,
although they may sound similar. For this reason, the SNR
results do not correlate with perceptual audio quality and are
discarded.The objective results are tabulated in Table I . Note that
a reference condition for the FAD metrics is added in the lowpass
filtered results. This refers to computing the FAD between the
two test splits of broadband piano recordings. Thus, the reference
results can be considered as a lower bound of the FAD metric.

The proposed method outperforms the two compared base-
lines in all the evaluated conditions and, most importantly, im-
proves over the “LPF/Original” condition, where no bandwidth
extension was applied. The performance decreases when the
noise regularization is not used, and also when the model is
trained without the adversarial losses, proving that these are
critical features of the model within the context of the results
obtained. We will return to this point when analyzing the sub-
jective evaluation results in Section V-D.

The BEHM-GAN obtains the most substantial improvement
when fc = 3 kHz, which corresponds to the mean cutoff fre-
quency used for the training filters. The model also generalizes
well when the cutoff frequency is higher (fc = 4 kHz). However,
when decreasing the cutoff frequency (fc = 2 kHz), the metrics
deteriorate a little as the task gets considerably harder. Neverthe-
less, even in this case, a significant improvement is seen in all
three metrics with respect to the unprocessed lowpass filtered
condition. The objective metrics also show that the FAD is
decreased by a factor of two when the BEHM-GAN is evaluated
with real historical recordings, implying that the model is able
to generalize in this real-world case.
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Fig. 10. Box-plot visualizations of the listening test results on real historical recordings.

Substituting the convolutional layers for complex convolu-
tions [47] does not produce an improvement in the reference-
based objective metrics (LSD and VGGish). This configuration
improves the FAD score, but only for the synthetic filtered data
and not for the real historical recordings. In informal listening,
we did not find any perceptual improvement in the results. As
a consequence, we opt to use the double-real representation
instead, given that the complex-valued layers require twice the
amount of computation.

The metrics of the proposed method consistently improve
when noise regularization is added at the inference stage. This
is an expected result given that, in this case, the test example
gets closer to the training distribution. However, as seen in
Table II, this does not necessarily happen with the other baseline
methods. We noticed that AudioUnet and, to a lesser extent,
SEANet sometimes do not succeed at completely suppressing
the extra added Gaussian noise. No perceptual improvement was
observed in the BEHM-GAN with or without noise added during
inference or not. As a consequence, to make a fair comparison,
only versions with no extra noise are included in the subjective
evaluations.

C. Subjective Evaluation of Synthetic Filtered Data

Since finding an objective metric that correlates with hu-
man perception is not easy, a formal subjective evaluation is
conducted. We designed a blind listening test structured as
two consecutive sessions, one to assess the performance of
our method with simulated lowpass filtered piano music and
the other to evaluate the performance in real historical piano
recordings, which is detailed in Section V-D.

The first part was designed following the MUSHRA recom-
mendation [63] with the purpose to evaluate the bandwidth-
extension performance in synthetic lowpass filtered recordings.
The listeners had to grade, on a perceptual scale from 0 to 100,
the audio quality in eight different conditions. The reference
signal was a contemporary broadband recording, expected to
be rated as 100. Another condition was a lowpass filtered ver-
sion of the reference at the cutoff frequency of 3 kHz (LPF
3 kHz), applying the same Butterworth filter that was used in

the objective evaluation. The rest of the conditions were five
different bandwidth-extended versions of the lowpass filtered
signal, using the same methods as in Section V-B. Also included
as a low anchor is an easy-to-recognize poor-quality signal
lowpass filtered at 1.5 kHz, which was expected to be graded
as 0 by the listeners. We included six different 10-s piano music
examples, repeated twice in random order, forming a total of 12
pages in the MUSHRA test. The audio examples included in the
test are available listen at the companion webpage.3

Altogether, 13 listeners participated in the listening test. How-
ever, one participant was discarded from the first part because
they did not identify the reference in more than 15% of the
occasions, as recommended in [63]. All subjects had previous
experience in formal listening tests, three of them were female,
and their average age was 29 years. None of the participants
reported of known hearing defects. The two test sessions took,
on average, 45 min to complete. The experiment was conducted
in the sound-proof listening booths of the Aalto Acoustics Lab,
providing the same isolated listening conditions for all subjects.
The listening test was implemented using the webMUSHRA
interface [64] that allowed the listeners to set loops if they
wanted to focus on particular short passages of the audio signal.
This feature was particularly useful for some participants, since
the most noticeable differences between the conditions were
localized in certain details, such as at the attack transients of the
piano tones.

The results of the first session are plotted in Fig. 9. Table III
presents the distances between the median scores of the BEHM-
GAN and the compared conditions. The level of statistical
significance given by a paired t-test is also marked. Examples
3, 4, and 6 contained intense fortissimo piano passages, where
the effect of the bandwidth limitation was easily audible. This
explains why all the compared models obtained consistently
lower ratings in these examples than in Examples 1, 2, and 5,
which were softer and contained less high-frequency content.

For all six examples, the proposed method obtained higher
median scores than the other evaluated conditions. As indicated

3[Online]. Available: http://research.spa.aalto.fi/publications/papers/ieee-
taslp-behm-gan/

http://research.spa.aalto.fi/publications/papers/ieee-taslp-behm-gan/
http://research.spa.aalto.fi/publications/papers/ieee-taslp-behm-gan/
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TABLE III
DIFFERENCES BETWEEN THE MEDIAN SCORES OF THE LISTENING TEST ON SYNTHETIC FILTERED RECORDINGS

TABLE IV
DIFFERENCES BETWEEN THE MEDIAN SCORES OF THE LISTENING TEST ON REAL HISTORICAL RECORDINGS

Fig. 11. Spectrograms of (a), (c) denoised historical recordings and (b), (d) their bandwidth-extended versions.

in paired t-tests (see Table III), most differences are statistically
significant. The subjects easily identified the reference in all the
examples except examples 2 and 5, where a large proportion
of listeners rated the BEHM-GAN with the maximum score of
100.

The worst-rated model was AudioUnet, which introduced
some annoying aliasing artifacts that can be seen at the upper
part of Fig. 7(b). SEANet worked significantly better but still
produced a slightly distorted sound. The ablated versions of the
proposed method obtained relatively good scores but, in the ma-
jority of the cases, were outperformed by the full BEHM-GAN
model.

D. Subjective Evaluation of Historical Recordings

The goal of the second session of the listening test was
to evaluate the performance of the compared models in real
historical recordings. The test method was a modified version
of MUSHRA, where the audio examples were historical piano
recordings. Since a broadband reference is unavailable, the
reference presented to the listeners was, as in [65], the unpro-
cessed signal, in our case a denoised bandlimited gramophone

recording. The tested conditions were the various bandwidth-
extended versions of the reference, using the same methods
as in the previous session. The same low anchor was included
with the expectation of it being graded as 0, forming a total of
seven conditions. The participants were asked to grade the audio
quality for each of the conditions on a scale from 0 to 100 with
the same criteria as in the first session, where 100 corresponds
to a hypothetical perfect version of the reference. Thus, the
participants were discouraged to rate any of the conditions with
a score of 100 unless the quality was considered enhanced in a
perfectly realistic manner. The second session included six 10-s
examples of historical piano recordings, also repeated twice, and
the total number of pages was 12.

The experiment was conducted consecutively after the first
session in the same conditions, with a short break between the
two sessions. The test participants were also the same, except
one who had to be discarded from the second part as they
misunderstood the test question. This session took, on average,
20 min to complete.

The results of the second session are presented in Fig. 10
and Table IV. Given that a higher “excellent” anchor was not
available, the resulting scores contain more variance. Despite
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the wider confidence intervals, valuable conclusions can be
extracted on how well each model generalizes to real historical
recordings.

The BEHM-GAN obtained significantly better results than
the original recording in all the examples, implying that the
bandwidth extension improved the sound quality. The other
compared models introduced some distortion artifacts that the
listeners sometimes evaluated negatively. The proposed method
obtained marginally better scores than the rest of the conditions
in all the examples except example 8, where SEANet received
a slightly higher median score. Nevertheless, the BEHM-GAN
outperformed SEANet in four out of six examples, as is evident
from Table IV. After finishing the test, some participants com-
mented that the enhancement was often more noticeable with
the time-domain SEANet model. However, the proposed method
produced more realistic results, despite being more conservative.

Both ablated conditions suffered from a decline in perfor-
mance. In particular, when noise regularization was ablated
(BEHM-GAN w/o noise reg.), the resulting metrics were dis-
appointing. These results can be explained by looking at the
example in Fig. 8(e), which looks noisy and distorted. We hy-
pothesize that the model learned to invert the frequency response
of a hypothetical lowpass filter but it failed when it encountered
an out-of-distribution example where no such filter was applied.
By closely inspecting the spectrogram of Fig. 8(e), the model is
observed to significantly boost the frequency bands above 4 kHz
and introduce some horizontally-shaped noisy components that
resemble the side lobes of the lowpass filters seen during train-
ing. These results show that noise regularization is critical for
the good performance of our system. Another observation is that
the non-adversarial condition (BEHM-GAN w/o adv.) obtained
worse scores in this case, implying that the proposed adversarial
training objective is highly beneficial to generate a more realistic
enhancement in this out-of-distribution scenario.

VI. CONCLUSION

This paper proposes the BEHM-GAN, a method to extend
the bandwidth of historical music. The proposed method is
based on a generative adversarial network and combines a
time-frequency-domain generator with multiple time-domain
discriminators. The BEHM-GAN is trained in a self-supervised
fashion using lowpass filters to simulate the bandwidth limitation
of old recordings. With the intention of strengthening the robust-
ness of our model, we regularize the training by randomizing
the cutoff frequency of the filters and perturbing the filtered
signal with a small amount of Gaussian white noise. The trained
generator is designed to be incorporated as the second step in a
music restoration pipeline, where the first step is a deep music
denoiser [17]. This is, to the best of our knowledge, the first
successful work that extends the bandwidth of historical music
recordings.

The proposed method is evaluated using solo piano music,
with objective and subjective metrics. As we show in App. B, the
BEHM-GAN can also be applied to other types of music, such
as orchestral music or string ensembles. However, this implies
retraining the model with specialized data, as our attempts to

train the BEHM-GAN with a broader range of music resulted in
weaker performance. We leave as future work to study ways
to allow the model to have better generalization capabilities
without the need for retraining. Another limitation is that our
method does not consider all the degradations present in old
recordings. While the denoiser does a good job suppressing
the additive disturbances and the BEHM-GAN reduces the
bandwidth limitation, many other distortion artifacts remain
untreated and present in the signal. Further work needs to be
done to design a more robust method that addresses these issues.

APPENDIX A MEDIAN SCORES OF THE LISTENING TESTS

Tables III and IV show for each of the listening test sessions,
the differences between the median scores of the proposed
BEHM-GAN model and the rest of the conditions, respectively.
Thus, larger positive values represent worst median scores,
relative to the scores received by the proposed method. Asterisks
(∗) denote significant differences in a paired t-test, where ∗,
∗∗ and ∗ ∗ ∗ respectively indicate p-values < 0.05, < 0.01 and
< 0.001.

APPENDIX B EXPERIMENTS WITH DIFFERENT MUSICAL

INSTRUMENTS

We have also experimented applying our model to other kinds
of music having different musical instruments, more precisely
string formations and orchestral music. The model has been
retrained with a different dataset for each case. For the first
case, 9.5 h of string ensemble recordings from the MusicNet
dataset [54] have been used as training data and, for the or-
chestral music experiment, the training data comprised 7 h of
freely-available modern orchestral recordings from The Internet
Archive [56].

Fig. 11 shows the spectrogram representations of two orig-
inal historical recordings and the results after applying the
BEHM-GAN. Compared with solo piano recordings, strings and
orchestral music recordings have a much richer high-frequency
spectra. This implies that the bandwidth extension processing is
often more noticeable in these cases. The BEHM-GAN seemed
to perform well with string ensemble music. As can be ob-
served in Fig. 11 b, the proposed method was able to extend
the vibrato sound of a violin. In the case of orchestral music,
the model succeeded in enhancing softer passages with strings
and winds. However, in this case, we noticed some annoying
artifacts with louder percussive instruments, such as drums and
cymbals (Fig. 11 d). We attribute this weaker performance to
the higher variance present in the training data, as orchestral
music contains a wide ensemble of different instruments. This
variance represents a higher difficulty for the model to generate
more robust results. A set of audio examples is available for
listening in the companion webpage.4

4[Online]. Available: http://research.spa.aalto.fi/publications/papers/ieee-
taslp-behm-gan/

http://research.spa.aalto.fi/publications/papers/ieee-taslp-behm-gan/
http://research.spa.aalto.fi/publications/papers/ieee-taslp-behm-gan/
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